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Abstract An analytic solution is introduced for the stress

field developed in a circular finite disc weakened by a

central slit of arbitrary ratio of its edges and slightly

rounded corners. The disc is loaded by radial pressure

applied along two finite arcs of its periphery, anti-sym-

metric with respect to the disc’s center. The motive of the

study is to consider the stress field in a disc with a

mechanically machined slit (finite distance between the

two lips) in juxtaposition to the respective field in the same

disc with a ‘mathematical’ crack (zero distance between

lips), which is the configuration adopted in case the frac-

ture toughness of brittle materials is determined according

to the standardized cracked Brazilian-disc test. The solu-

tion is obtained using Muskhelishvili’s complex potentials’

technique adopting a suitable conformal mapping function

found, also, in Savin’s milestone book. For the task to be

accomplished, an auxiliary problem is first solved, namely,

the infinite plate with a rectangular slit (in case the resul-

tant force on the slit is zero and also the stresses and

rotations at infinity are zero), by mapping conformally the

area outside the slit onto the mathematical plane with a unit

hole. The formulae obtained for the complex potentials

permit the analytic exploration of the stress field along

some loci of crucial practical importance. The influence of

the slit’s width on the local stress amplification and also on

the stress concentration around the crown of the slit is

quantitatively described. In addition, the role of the load-

application mode (compression along the slit’s longitudinal

symmetry axis and tension normal to it) is explored.

Results indicate that the two configurations are not equiv-

alent in terms of the stress concentration factor. In addition,

depending on the combination of the slit’s width and the

load-application mode, the point where the normal stress

along the slit’s boundary is maximized ‘oscillates’ between

the central point of the slit’s short edge (intersection of the

slit’s longitudinal axis with its perimeter) and the slit’s

corners.
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1 Introduction

Fracture toughness is a material property quantifying the

resistance against initiation and further propagation of pre-

existing faults resembling ‘mathematical’ cracks. The term

‘mathematical’ crack is used to denote discontinuities for

which the distance between their lips approaches zero. The

Mode-I fracture toughness, KIC, (i.e., resistance against

initiation of crack by loads normal to the crack) is an

extremely useful parameter in quite a few practical appli-

cations. As a result, its laboratory determination is already

standardized (ASTM 2014; ISRM 1988, 1995). Especially

for brittle rock-like materials, three standardized tests are

used, i.e., the ‘‘Short Rod’’ (SR), the ‘‘Chevron Bend’’

(CB) and the ‘‘Cracked Chevron Notched Brazilian Disc

(CCNBD)’’ tests (ISRM 1988).

CCNBD was introduced by the International Society for

Rock Mechanics (ISRM) to simplify the respective

experimental procedure. It is ‘‘… an ideal specimen… for
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rock fracture toughness measurements’’ characterized by

‘‘… high failure load, simple loading fixture, convenient

and flexible specimen preparation’’ (Fowell and Xu 1993).

CCNBD is also extensively used to investigate mixed-

mode fracture problems, since any combination of Mode-I

and -II loading schemes can be achieved by properly ori-

enting the crack with respect to the load axis.

Since its standardization in 1995, the CCNBD test is

under intensive study. Quite a few papers have been pub-

lished enlightening critical aspects of the experimental

procedure and also of the theoretical analysis employed to

calculate KIC from the test’s raw data. Even today, how-

ever, 20 years after the test was standardized, some critical

questions are still open: For example, a unique relationship

between the KIC values obtained using CCNBD specimens

and differently shaped (yet standardized) ones does not as

yet exist; the values obtained for the specific quantity stand

well apart from each other (Erarslan 2013). It is mentioned

for example that a few years ago Iqbal and Mohanty (2006,

2007) (motivated by the differences in the KIC values as

determined using different types of specimens) claimed

that an error exists in the ISRM formula for KIC. Although

this suggestion was definitely anticipated by Wang et al.

(2012) (who stated that such a correction ‘‘…is equivalent

to replacing the original inaccurate formula with an

unreasonable formula the latter being even worse because

of the violation of the upper bound’’), the specific point is a

clear indication that additional research is required before

the topic is considered as definitely closed. In this direc-

tion, Wang’s scientific group contributes for over a decade

in an attempt to improve the ISRM’s formula (Wang 2010;

Wang et al. 2004a, b) and the respective experimental

procedure (Wang and Xing 1999; Wang et al. 2004a, b).

Among others, they gave out ‘‘…a warning that the for-

mula of ISRM was inadequate and inaccurate’’ (Wang

et al. 2012) while recently they arrived to conclusions

about the need to recalibrate the method (Wang et al.

2013). Moreover, they attempted to improve the formula

taking into account three-dimensional Stress Intensity

Factors (SIFs) as obtained from finite element analyses, a

topic that has been studied also by Lin et al. (2015).

Along the same lines, Fowell et al. (2006) indicated that

‘‘it may be necessary to revise the dimensionless SIF val-

ues for a future release of the suggested method to incor-

porate some recent developments …’’. They pointed out,

also, that ‘‘…more research and input from different

sources need to be coordinated’’. Their suggestions again

reflect the fact that, despite the almost general acceptance

and wide use of the CCNBD test, the topic is still open.

In our opinion, the most crucial open aspects are related

to the exact formulae of the SIFs, the exact shape of the

crack machined and also to the actual boundary conditions

prevailing along the disc–jaw contact arc. Indeed, the

dimensionless formulae for the SIFs used in the CCNBD

test are obtained from the respective ‘‘Cracked Straight

Through Brazilian Disc’’ (CSTBD) configuration adopting

either the technique proposed by Munz et al. (1980) or the

respective one suggested by Bluhm (1975). Both tech-

niques consider a finite disc with a central ‘mathematical’

crack loaded by a pair of diametral point forces. It is

known, however, that in practical application both

assumptions are strongly violated. The cracks machined

approach rectangular slits rather than ‘mathematical’

cracks while on the other hand the disc is loaded by a

complicated distribution of radial (and shear) stresses

which are responsible for the generation of stress and

displacement fields that only roughly correspond to the

respective ones generated by a pair of point forces. The

latter becomes even more crucial considering that for

practical reasons the ‘‘cracks’’ machined cannot be very

‘‘short’’ (Dong 2008) and, therefore, the common

assumption that the boundary conditions do not seriously

influence the fields in the immediate vicinity of the crack

tips is not well justified.

Besides the above practical difficulties, ‘mathematical’

cracks induce complications, also in theoretical analyses,

since for specific configurations (combinations of load

level and inclination of the crack with respect to the load

axis) the crack lips come in contact generating contact

stresses, which violate the stress-free crack lips boundary

condition. This was long ago observed among others by

Burniston (1969), Tweed (1970) and Pazis et al. (1988) for

cracks in infinite plates and also by Atkinson et al. (1982)

in their pioneering work for the finite centrally cracked

disc. Atkinson et al. (1982) considered thoroughly the

geometries leading to crack closure and under specific

assumptions they quantified the stresses developed during

the crack lips’ contact. Similar conclusions were recently

drawn by Markides et al. (2011) for a ‘mathematically’

cracked disc under uniformly distributed radial stresses.

In this context, an attempt is here described to deal with

some of these open questions by introducing an analytic

solution for the stress field in a centrally ‘‘cracked’’ circular

disc, assuming that the crack is not a ‘mathematical’ one

but rather it resembles a rectangular slit with slightly

rounded corners. Such a configuration approaches reality in

a more satisfactory manner. The loading scheme consid-

ered is also closer to the actual stress distribution along the

disc–jaw contact region, since it comprises a parabolic

distribution of radial stresses, acting along two finite arcs.

It is recalled that the solution of the respective disc–jaw

contact problem (Timoshenko and Goodier 1970; Kourk-

oulis et al. 2012) indicates that the specific distribution is

actually cyclic, however, it is excellently approximated by

the parabolic one (Markides and Kourkoulis 2012) con-

sidered in the present study.
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The analysis is carried out using Kolosov (1935) and

Muskhelishvili (1963) complex potentials technique.

Advantage is taken of recently introduced solutions for the

finite ring (Kourkoulis et al. 2015a) and the finite disc with

a central elliptical hole (Markides and Kourkoulis 2014a,

b). Compact (though lengthy) expressions for the complex

potentials characterizing the equilibrium of the disc with a

rectangular slit of rounded corners are provided. Taking

advantage of these expressions, the stress field is obtained

along strategic loci permitting quantification of the stress

concentration around the slit’s corners as a function of its

width. Moreover, two particular configurations which are

considered equivalent to each other (disc with a central slit

either under compression along the slit’s axis or under

tension normally to the slit’s axis, Fig. 1a) are studied in

juxtaposition. It is revealed that ignoring the actual features

of the configuration can lead to erroneous results especially

in case of rocks for which the ‘‘cracks’’ machined (usually

by rotating cutting discs) are neither ‘mathematical’ cracks

nor even narrow slits.

2 ‘Mathematical’ Cracks vs. Artificial Slits:
A Short Survey

To simulate cracked bodies and quantify the respective

stress fields, scientists, working experimentally, usually

machine artificial slits instead of ‘mathematical’ cracks.

This is due to practical difficulties in preparing ‘mathe-

matical’ cracks, especially in case the orientation of the

crack axis has to be predefined. Unfortunately, the slits

machined artificially are rectangular holes with a finite
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Fig. 1 a The circular disc with

a rectangular slit under

compression along the slit’s

longitudinal axis of symmetry

(left) and under tension normal

to the slits longitudinal axis of

symmetry (right). b Detailed

view of the actual configuration

in case a slit is mechanically

machined by means of a rotating

disc (left) and detailed view of

an elliptically shaped slit (right)
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ratio a/b of their edges and also with a finite radius of

curvature rA at their corners (Fig. 1b), which is assumed to

be very small compared to both a and b. On the contrary,

scientists, working analytically, simulate cracks as mathe-

matical discontinuities considering that the distance

between their lips and the radius of curvature at their tips

(which becomes a single point) are zero. The lips of

‘mathematical’ cracks are separated from each other

exclusively by some kind of failure mechanism (for

example cleavage or slip deformation) (Theocaris and

Petrou 1989); no material is missing between them. In fact,

the lips are in mutual contact, which generates additional

difficulties in case of any loading type other than tension

normal to the crack. On the other hand, for artificially

machined slits an amount of material is removed and their

lips are at a finite distance b apart from each other.

This inconsistency between experimental practice and

theoretical simulations is the origin of quite a few problems.

The most crucial one is the arbitrary transition from the

‘‘Stress Concentration’’ concept to the ‘‘Stress Intensity’’

one, as it was emphatically highlighted by Theocaris and

Petrou (1989) who mentioned that: ‘‘… whereas for a real

crack in an infinite… plate, the order of singularity at the tip

is k = 1/2, in the artificial crack we have a pair of corners for

each tip…’’ creating ‘‘… a doublet of singularities for either

corner, which,… are of an order depending on the angle…
and the material properties… This difference in the

arrangement of singularities… is of primordial interest’’.

An early attempt to bridge this gap was proposed by

Creager and Paris (1967) who simulated the internal cracks

by ellipses with a finite radius of curvature, rt, at their tips

(Fig. 1b) assuming also that the singular points lie on the

ellipse’s major semi-axis at a distance equal to rt/2 from the

tip of the ellipse. Under these assumptions, they provided

the stress field components in the immediate vicinity of the

tip by properly modifying the respective expressions for

the ‘mathematical’ crack through a term depending on rt.

An interesting approach to the problem was presented

by Sinclair and Kondo (1984) who studied the stress con-

centration around sharp corners in two-dimensional plates.

Based on energy arguments, they criticized the concept of

the SIF in case it is used to describe stress fields around

notches. Their main argument is that ‘‘… though SIFs can

be sensibly defined for sharp notches other than cracks and

could conceivably serve as a basis for engineering analy-

ses, the usual energy argument underlying their use for

cracks no longer appears to exist and the physical under-

pinnings of such an approach are in question’’.

Later on, ‘mathematical’ cracks and artificial slits were

studied in juxtaposition by Theocaris and Petrou (1987,

1988) and Theocaris (1991). They quantified the differ-

ences between the two configurations analytically and also

experimentally by employing the method of caustics. They

concluded that ‘‘… the use of artificial cracks in experi-

ments for the study of natural cracks presents several and

important discrepancies concerning the stress and strain

fields of the cracked plate for high levels of loading of the

plate’’.

The common characteristic of the studies mentioned up to

this point is that they are restricted to infinite bodies. The

problem is by farmore complicated in case finite domains are

studied. A typical example is the CSTBD configuration

which is the basis for the determination of the SIFs used in the

CCNBD test. According to our best knowledge, all existing

solutions (Atkinson et al. 1982; Rooke and Tweed 1973;

Awaji and Sato 1978) for theCSTBDconfiguration are based

on the concept of a ‘mathematical’ crack, i.e., the circular

disc is assumed as centrally cracked with a crack of zero

distance between its lips and zero curvature at its tips. Pos-

sible implications due to machining rectangular slits rather

than preparing ‘mathematical’ cracks were discussed by

Shetty et al. (1987) well before the CCNBD geometry was

standardized by ISRM. They stated that ‘‘… in polycrys-

talline ceramics, particularly in fine-grained ceramics,

apparent fracture toughness measured with notches of finite

radius tends to overestimate the true fracture toughness’’.

An effort to quantify the role of the non-zero slit’s width

on the fracture of chevron-notched specimens was reported

by Kolhe et al. (1998). Although three-point bend chevron-

notched specimens were considered, the conclusions drawn

are at least indicative also for the CCNBD specimens. Kolhe

et al. definitely stated that ‘‘…when the notch is wide enough

the SIF vs. crack length… no longer has a clear minimum as

it does for a zero notchwidth sample’’. Since thisminimum is

of crucial importance in the analysis of the test’s results, they

concluded that ‘‘… this analysis clearly will not work when a

minimum inY(a) does not exist’’. To overcome this difficulty

they proposed a certain range of the relative width of the

notch to ensure that a minimum of the normalized stress

intensity factor Y(a) does exist.
Recently, Carolan et al. (2011) discussed quantitatively

the role of the notch root curvature on the fracture tough-

ness of polycrystalline cubic boron nitride and proposed

specific limits beyond which the results obtained for frac-

ture toughness are not reliable.

Taking now into account the previous discussion, it

appears quite necessary to explore the possible influence of

the actual shape and size of the ‘‘crack’’ on the results

obtained from the standardized CCNBD test. This task is of

course very ambitious and necessitates combined action of

working groups of established international scientific

associations (like ISRM or ASTM) rather than of inde-

pendent researchers. In this context, the present study,

devoted to the analytic derivation of the stress field in a

finite circular disc with a rectangular slit (instead of a

natural crack) under parabolic radial pressure, should be
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only considered as a first step rather than as a concluding

contribution.

3 Theoretical Considerations: The Complex
Potentials

3.1 Formulation of the Mathematical Problem

A circular disc (radius RO, thickness w) with a central

rectangular slit L (length a, width b and slightly rounded

corners) is compressed between the jaws of the device

suggested by ISRM for the standardized implementation of

the Brazilian-disc test (ISRM 1978) (Fig. 2). The radius of

curvature of the jaws is RJ = 1.5RO. The overall load

compressing the jaws against the specimen is denoted as

Pframe and, in a first approximation, is considered as

resulting to a parabolically varying distribution of radial

stresses (Markides and Kourkoulis 2012) along two finite

arcs of the outer boundary LO, anti-symmetric with respect

to the disc’s center. The boundary L of the slit is free from

stresses. In general, the axis of the slit L forms an arbitrary

angle /o with respect to the axis of Pframe.

The problem to be solved here is the determination of

the stress field developed all over the disc. The solution of

this first fundamental problem is here achieved within the

frame of classical plane linear elasticity. The main diffi-

culties confronted are related to the finite dimensions of the

disc as well to the fact that the length of the slit is com-

parable to the disc’s radius. The material of the disc is

assumed homogeneous and isotropic and Muskhelishvili’s

complex potentials technique is adopted (Muskhelishvili

1963). To solve the present problem of the disc with the

rectangular slit, advantage is taken of a recently introduced

solution for a circular ring of radii RO and RI (outer and

inner, respectively) under the same as previous overall load

Pframe. The ring was considered to be under parabolic

pressure rr ¼ �P /ð Þ (statically equivalent to Pframe),

along two finite arcs (t1t2 and t3t4) of its outer periphery

(Kourkoulis et al. 2015a); the length of each arc equals

2ROxo (Fig. 3a, before introducing the rectangular slit L).

The cross section of the ring is considered in the z ¼
xþ iy ¼ rei/ complex plane and its geometric center is the

origin of the Cartesian reference. The loading axis forms an

arbitrary angle /o with x-axis. In this case, the complex

potentials characterizing the equilibrium of the circular

ring were obtained as (Kourkoulis et al. 2015a; Markides

and Kourkoulis 2014a, b):

The quantity Pc, which is the maximum value of P /ð Þ,
as well as the complex constants b0, b-2

0
, Bj and Bj

0
,

appearing in Eqs. (1) and (2) are analytically defined by

Markides and Kourkoulis (2014a, b).
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Fig. 2 A circular disc with a rectangular slit compressed between the

jaws of the ISRM device for the standardized implementation of the

Brazilian-disc test
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By removing parts and/or adding patches to the above

ring, its circular hole LI is transformed to the rectangular

slit L as it is shown in Fig. 3a. Clearly, the presence of L,

instead of LI, will induce a disturbance in the ring’s solu-

tion. To properly cope with this problem, the complex

potentials u(z) and w(z) characterizing the disc with a slit

are written in terms of uo(z) and wo(z) (the respective

potentials of the ring) as follows:

u zð Þ ¼ uo zð Þ þ u� zð Þ; w zð Þ ¼ wo zð Þ þ w� zð Þ ð3Þ

where u�ðzÞ and w�ðzÞ are analytic functions (to be deter-

mined) appearing exactly due to the disturbance caused by

the transformation of the ring’s hole to the disc’s slit. When

RO tends to infinity, both u�ðzÞ and w�ðzÞ tend to zero.

It could be anticipated at this point that the presence of a

slit instead of a circular hole will somehow distort the

symmetry of the distribution of P /ð Þ or even more that

normal stresses alone are not enough to describe the actual

boundary conditions. As it was analytically discussed by

Markides and Kourkoulis (2014a, b, 2015a) these aspects

are, in general, of minor importance for practical applica-

tions. Especially in the symmetric case with /o = 0�,
which is of major interest in the present study, this dis-

tortion is definitely eliminated completely while a single

pressure is enough to suffice the required global equilib-

rium of the disc.

3.2 Transition from the Circular Ring to the Finite

Circular Disc with a Central Rectangular Slit

Transitioning from the circular ring to the disc with a

rectangular slit is achieved by considering an imaginary

rectangle L at the center of the ring, Fig. 3a. The area

outside L is then mapped conformally on the area outside

the unit circle c (in the mathematical plane

f ¼ nþ ig ¼ qeih, Fig. 3b) while, in addition, it is

demanded that L is free from stresses. In Fig. 3b, s ¼ eih

denotes the point f (for q = 1) on c. The mapping function

used in this case reads as:

z ¼ x fð Þ ¼ R fþ
X1
‘¼1

c‘

f2‘�1

 !
ð4Þ

where

R ¼ b

2
1þ

X1
‘¼1

�1ð Þ‘c‘

" #�1

ð5Þ

The procedure to obtain Eq. (4) (based on the well-

known Schwarz–Christoffel integral formula), follows

Savin (1970) work. In the same work the expressions for c‘,

‘ = 1, 2,…, 6, appearing in Eq. (4), can be found as:
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Fig. 3 a The transition from the
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parabolically varying radial

pressure to the circular disc

with a central rectangular slit

under the same loading scheme.
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2
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In Eq. (6) it holds that b ¼ ei2kp, where k defines the

location of the images of corner points A1, A2, A3, A4, of L,

on c as follows (Fig. 4): a1 ¼ eikp, a2 ¼ �e�ikp, a3 ¼ �eikp

and a4 ¼ e�ikp, respectively; overbar denotes the complex

conjugate value. As k tends to zero, b tends to zero, also,

and this is the case L approaches a mathematical crack. In

fact, Eq. (4) provides a quadrilateral (a, b) with rounded

corners Aj, j = 1, 2, 3, 4 (rather than a mathematical

rectangle), the radius of curvature rA of which (Fig. 4) is

given by Savin (1970) as:

rA ¼ ox q; hð Þ
oh


 �2

þ oy q; hð Þ
oh


 �2
" #3=2,

ox

oh
o2y

oh2
� o2x

oh2
oy

oh

����
����

ð7Þ

Using Eq. (4), and adopting the notations uðzÞ ¼
uðxðfÞÞ ¼ uðfÞ and wðzÞ ¼ wðxðfÞÞ ¼ wðfÞ, Eq. (3)

becomes:

u fð Þ ¼ uo fð Þ þ u� fð Þ; w fð Þ ¼ wo fð Þ þ w� fð Þ ð8Þ

Accordingly, the boundary condition for zero stresses on

L, reads on c as (Muskhelishvili 1963):

u sð Þ þ x sð Þ
x0 sð Þ

u0 sð Þ þ w sð Þ ¼ 0 ð9Þ

In Eq. (9) prime denotes the first derivative.

In this way, the problem set in Sect. 3.1 has been

transferred to the mathematical f-plane and to the deter-

mination of the analytic functions u(f) and w(f). Substi-
tuting Eqs. (8) into Eq. (9) yields:

u� sð Þ þ x sð Þ
x0 sð Þ

u0
� sð Þ þ w� sð Þ ¼ � uo sð Þ þ x sð Þ

x0 sð Þ
u0
o sð Þ þ wo sð Þ

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f� sð Þ

ð10Þ

which provides u�ðfÞ and w�ðfÞ and in turn, through

Eqs. (1), (2), (4) and (8), the functions u(f) and w(f)
solving the problem.

For the solution of Eq. (10), the convenient assumption

is made that the disc’s radius initially tends to infinity. In

this context, the problem of the infinite plate with a rect-

angular slit should be confronted first. To achieve this

target, the general procedure outlined by Muskhelishvili

(1963) for regions mapped on the inside of the unit circle

with the aid of polynomials is followed. The solution of

this auxiliary problem is described in Sect. 3.3.

3.3 A General Solution for the Infinite Plate

with a Rectangular Slit

Consider an infinite plate with a rectangular slit L. Assume

stresses are zero at infinity whereas L is subject to the most

general kind of in plane external loading under the condi-

tion that the resultant vector is zero (under these assump-

tions displacements will turn out to be zero at infinity, too).

The plate lies in the z complex plane and the origin of the

coordinates is the geometric center of L. The plate’s

material is linearly elastic and isotropic. The problem is to

find Muskhelishvili’s complex potentials u 1ð ÞðzÞ, w 1ð ÞðzÞ
which characterize the plate’s elastic equilibrium (subscript

ð1Þ denotes the infinite plate).

γ

ξ

η

Ο
1

α1=eikπ

–1

1

–1

θ=kπ

α2

α4α3

x

y

Ο

L b/2

a/2

– b/2

– a/2

A1A2

A4A3

rΑ

A1
Fig. 4 The configuration of the

slit in the real plane and the

respective configuration in the

mathematical plane
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To solve this first fundamental problem the infinite plate

with the rectangular slit L is conformally mapped on the

mathematical f-plane with the unit hole c through the

function x(f) given by Eq. (4). Writing u 1ð ÞðzÞ ¼
u 1ð ÞðxðfÞÞ ¼ u 1ð ÞðfÞ, w 1ð ÞðzÞ ¼ w 1ð ÞðxðfÞÞ ¼ w 1ð ÞðfÞ,
the problem reduces to the determination of the analytic

functions u 1ð ÞðfÞ and w 1ð ÞðfÞ. To achieve that, consider

the boundary condition for the stresses on L written as

(Muskhelishvili 1963):

u 1ð Þ sð Þ þ x sð Þ
x0 sð Þ

u0
1ð Þ sð Þ þ w 1ð Þ sð Þ ¼ f 1ð Þ ð11Þ

where f 1ð Þ is the force variation along L which is supposed

to be known. In complex conjugate form Eq. (11)

becomes:

u 1ð Þ sð Þ þ x sð Þ
x0 sð Þu

0
1ð Þ sð Þ þ w 1ð Þ sð Þ ¼ f 1ð Þ ð12Þ

According to the assumptions made in the beginning of

this section, both u 1ð Þ fð Þ and w 1ð Þ fð Þ will be holomorphic

outside c and vanishing at infinity. Then, multiplying

Eq. (12) by 1=2pið Þ ds= s� fð Þ½ �, where f lies outside c, and
integrating along c, one obtains w 1ð Þ fð Þ as:

w 1ð Þ fð Þ ¼ 1

2pi

Z
c

x sð Þ
x0 sð Þu

0
1ð Þ sð Þ ds

s� f
� 1

2pi

Z
c

f 1ð Þ ds

s� f ð13Þ

Similarly, Eq. (11) provides u 1ð Þ fð Þ, for f outside c, as:

u 1ð Þ fð Þ ¼ 1

2pi

Z
c

x sð Þ
x0 sð Þ

u0
1ð Þ sð Þ ds

s� f
� 1

2pi

Z
c

f 1ð Þ ds

s� f ð14Þ

Equation (14) is the general functional equation which

provides u 1ð Þ fð Þ and in turn w 1ð Þ fð Þ through Eq. (13), i.e.,

the general solution of the present problem. To solve

Eq. (14) consider that x sð Þ
.
x0 sð Þ

h i
� u0

1ð Þ sð Þ is the

boundary value of the function x fð Þ
.
x0 1

f

� 	h i
� u0

1ð Þ
1
f

� 	
,

which is holomorphic inside c, except at f = 0, where it

has a pole of nth order. Since u 1ð Þ fð Þ is holomorphic

outside c and vanishes at infinity, it can be written that:

u 1ð Þ fð Þ ¼ d
1ð Þ
1

f
þ d

1ð Þ
2

f2
þ � � � ð15Þ

whence

u0
1ð Þ

1

f


 �
¼ �d

1ð Þ
1 f2 � 2d

1ð Þ
2 f3 � � � � for fj j\1 ð16Þ

Considering only the first six additional terms of x(f) in
Eq. (4), it can be written that:

x fð Þ
�

x0 1

f


 �
¼ c1

f
þ c2

f3
þ � � � þ c6

f11
þ F fð Þ ð17Þ

where F(f) is holomorphic inside c. Combining Eqs. (16)

and (17) it follows that:

x fð Þ
�

x0 1

f


 �� �
� u0

1ð Þ
1

f


 �
¼ K

1ð Þ
1

f
þ K

1ð Þ
2

f2
þ � � � þ K

1ð Þ
9

f9

þ Q fð Þ
ð18Þ

with Q(f) a function holomorphic inside c. K
1ð Þ
j are

expressed as:

K
1ð Þ
1 ¼� d

1ð Þ
1 c2þ3d

1ð Þ
3 c3þ5d

1ð Þ
5 c4þ7d

1ð Þ
7 c5þ9d

1ð Þ
9 c6

� 	
;

K
1ð Þ
2 ¼� 2d

1ð Þ
2 c3þ4d

1ð Þ
4 c4þ6d

1ð Þ
6 c5þ8d

1ð Þ
8 c6

� 	
;

K
1ð Þ
3 ¼� d

1ð Þ
1 c3þ3d

1ð Þ
3 c4þ5d

1ð Þ
5 c5þ7d

1ð Þ
7 c6

� 	
;

ð19Þ

K
1ð Þ
4 ¼ � 2d

1ð Þ
2 c4 þ 4d

1ð Þ
4 c5 þ 6d

1ð Þ
6 c6

� 	
;

K
1ð Þ
5 ¼ � d

1ð Þ
1 c4 þ 3d

1ð Þ
3 c5 þ 5d

1ð Þ
5 c6

� 	
;

K
1ð Þ
6 ¼ � 2d

1ð Þ
2 c5 þ 4d

1ð Þ
4 c6

� 	
;

K
1ð Þ
7 ¼ � d

1ð Þ
1 c5 þ 3d

1ð Þ
3 c6

� 	
;

K
1ð Þ
8 ¼ �2d

1ð Þ
2 c6; K

1ð Þ
9 ¼ �d

1ð Þ
1 c6

Then, using a well-known property of Cauchy-type

integrals, it is obtained that:

1

2pi

Z
c

x sð Þ
x0 sð Þ

u0
1ð Þ sð Þ ds

s� f
¼ �K

1ð Þ
1

f
� K

1ð Þ
2

f2
� � � � � K

1ð Þ
9

f9
ð20Þ

Substituting from Eq. (20) into Eq. (14), u 1ð Þ fð Þ is

obtained as:

u 1ð Þ fð Þ ¼ � 1

2pi

Z
c

f 1ð Þds

s� f
� K

1ð Þ
1

f
� K

1ð Þ
2

f2
� � � � � K

1ð Þ
9

f9

ð21Þ

Similarly, Eq. (13) yields:

w 1ð Þ fð Þ ¼ � 1

2pi

Z
c

f 1ð Þds

s� f
� x

1

f


 �u0
1ð Þ fð Þ
x0 fð Þ þ K

1ð Þ
1 f

þ K
1ð Þ
2 f2 þ � � � þ K

1ð Þ
9 f9

ð22Þ

with u 1ð Þ fð Þ given by Eq. (21). Concerning K
1ð Þ
j ,

appearing in the general solution (Eqs. 21, 22), they can be

obtained according to the following procedure:
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Consider that for sj j ¼ 1\ fj j it holds:
1

s� f
¼ � 1

f
1þ s

f
þ s2

f2
þ � � �


 �
ð23Þ

From Eq. (23) the integral on the right-hand side of

Eq. (21) becomes:

� 1

2pi

Z
c

f 1ð Þds

s� f
¼
X1
j¼1

N
1ð Þ
j

f j
ð24Þ

with N
1ð Þ
j ¼ 1

2pi

R
c
f 1ð Þ s

j�1ds. Then substituting from

Eqs. (15), (19) and (24) into Eq. (21) and comparing terms

of f of the same order up to (1/f9), the following system of

nine linear equations is obtained, which provides the real

and imaginary parts of d
1ð Þ
j :

d
1ð Þ
1 �d

1ð Þ
1 c2�3d

1ð Þ
3 c3�5d

1ð Þ
5 c4�7d

1ð Þ
7 c5

�9d
1ð Þ
9 c6¼N

1ð Þ
1 ;

d
1ð Þ
2 �2d

1ð Þ
2 c3�4d

1ð Þ
4 c4�6d

1ð Þ
6 c5�8d

1ð Þ
8 c6¼N

1ð Þ
2 ;

d
1ð Þ
3 �d

1ð Þ
1 c3�3d

1ð Þ
3 c4�5d

1ð Þ
5 c5�7d

1ð Þ
7 c6¼N

1ð Þ
3 ;

d
1ð Þ
4 �2d

1ð Þ
2 c4�4d

1ð Þ
4 c5�6d

1ð Þ
6 c6¼N

1ð Þ
4 ;

d
1ð Þ
5 �d

1ð Þ
1 c4�3d

1ð Þ
3 c5�5d

1ð Þ
5 c6¼N

1ð Þ
5 ;

d
1ð Þ
6 �2d

1ð Þ
2 c5�4d

1ð Þ
4 c6¼N

1ð Þ
6 ;

d
1ð Þ
7 �d

1ð Þ
1 c5�3d

1ð Þ
3 c6¼N

1ð Þ
7 ; d

1ð Þ
8 �2d

1ð Þ
2

c6¼N
1ð Þ
8 ; d

1ð Þ
9 �d

1ð Þ
1 c6¼N

1ð Þ
9

ð25Þ

Once d
1ð Þ
j have been found, K

1ð Þ
j are directly obtained

by Eqs. (19).

3.4 The Complex Potentials for the Circular Disc

with the Rectangular Slit

To return to the finite circular disc with the rectangular slit,

assume instantly, that its radius tends to infinity. Then,

according to the general solution of the infinite plate with

the rectangular slit (obtained in previous Sect. 3.3), u�ðfÞ
and w�ðfÞ appearing in Eq. (10) will be of the form:

u� fð Þ ¼ � 1

2pi

Z
c

f�ds

s� f
� K�

1

f
� K�

2

f2
� � � � � K�

9

f9
ð26Þ

w� fð Þ ¼ � 1

2pi

Z
c

f�ds

s� f
� x

1

f


 �
u0
� fð Þ

x0 fð Þ þ K�
1fþ K�

2f
2 þ � � � þ K�

9f
9

ð27Þ

In Eqs. (26) and (27) K�
j satisfy formally expressions

exactly similar to those of Eq. (19), which are not repeated

here for obvious brevity reasons. The only difference is that

d
1ð Þ
j are now replaced by d�j (i.e. the coefficients of u�ðfÞ)

which are provided by a system of equations exactly similar

to that of Eqs. (25). Along the same lines, N
1ð Þ
j , appearing

in Eqs. (25), must be substituted by N�
j (which are obtained

from Eq. (24), after simply replacing f 1ð Þ by f�).

Performing the above-mentioned substitutions in

Eqs. (26), (27) and then introducing them into Eqs. (8), the

solution of the problem is finally achieved as:

u fð Þ ¼Pc

p
b0R f� c1

f
� c2

f3
� c3

f5
� c4

f7
� c5

f9
� c6

f11


 �
þ B2R

3f c1 þ
f2

3


 �
� B2R

3

f

�
1þ 2 c21 þ c22

��

þ c23 þ c24 þ c25 þ c26
�
þ c2 c21 þ c2c4

� �
þ 2c1c3 c2 þ c4ð Þ þ 2c1c5 c4 þ c6ð Þ þ 2c2 c3c5 þ c4c6ð Þ þ c23c6

þ c1 1þ c1c3ð Þ þ 2c1c2 1þ c4ð Þ þ 2c2c3 1þ c6ð Þ þ 2c3 c4 þ c1c5ð Þ þ c5 c22 þ 2c4 þ 2c6
� �

þ 2c1c4c6
� ��

f2

þ c2 1þ 2c4ð Þ þ 2c1c3 1þ c6ð Þ þ c4 c21 þ 2c6
� �

þ 2c5 c1c2 þ c3ð Þ þ c22c6
� ��

f4 þ c3 1þ 2c6ð Þð

þ c1 2c4 þ c1c5ð Þ þ 2c2 c5 þ c1c6ð ÞÞ
�
f6 þ c4 þ c1 2c5 þ c1c6ð Þ þ 2c2c6ð Þ

�
f8 þ c5 þ 2c1c6

f10
þ c6

f12

�

� B�2

Rf
c2 þ

c3

f2
þ c4

f4
þ c5

f6
þ c6

f8


 �
� B0

0R

f
� B0

2R
3

f
c1 þ

1

3f2


 �
� B�4n

R3f
c3 þ

c4

f2
þ c5

f4
þ c6

f6


 �����
n¼1

� B�4n

R7f
c5 þ

c6

f2


 �����
n¼2

�
B�2 2nþ1ð Þ

R5f
c4 þ

c5

f2
þ c6

f4


 �����
n¼1

�
B�2 2nþ1ð Þ

R9

c6

f

����
n¼2

þ
X1
n¼1

R4nþ1 B4n

4nþ 1
G

1ð Þ
4nþ1 fð Þ

�

� B4nG
0ð Þ
4n fð Þ � B0

4n

4nþ 1
G

0ð Þ
4nþ1 fð Þ þ R2

B2 2nþ1ð Þ
4nþ 3

G
1ð Þ
4nþ3 fð Þ � B2 2nþ1ð ÞG

0ð Þ
2 2nþ1ð Þ fð Þ �

B0
2ð2nþ1Þ
4nþ 3

G
0ð Þ
4nþ3 fð Þ

 !#)

� K�
1

f
þ K�

2

f2
þ K�

3

f3
þ K�

4

f4
þ K�

5

f5
þ K�

6

f6
þ K�

7

f7
þ K�

8

f8
þ K�

9

f9


 �

ð28Þ
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where

x
1

f


 ��
x0 fð Þ ¼

1
f þ c1fþ c2f

3 þ c3f
5 þ c4f

7 þ c5f
9 þ c6f

11

1� c1
f2
� 3c2

f4
� 5c3

f6
� 7c4

f8
� 9c5

f10
� 11c6

f12

ð30Þ

In the above formulae, G
1ð Þ
j fð Þ and G

ð0Þ
j fð Þ are principal

parts of analytic functions appearing in the solution, at the

points f ¼ 1 and f = 0, respectively, i.e., parts of these

functions spawning poles at the respective points. Their

analytic expressions (for the first six additional terms of

Eq. (4) taken into consideration here) are given, for brevity

reasons, in Appendix, in the order they appear in Eqs. (28)

and (29).

It is mentioned that the above formulae are also appli-

cable in case the disc is subjected to a parabolic distribu-

tion of tensile radial stresses along the loaded rims (instead

of pressure), case which will also be considered later on.

For this case one must only introduce a minus sign before

Pc in Eqs. (28) and (29), directly as a constant multiplier

w fð Þ ¼Pc

p
�b0R

1

f
� c1f� c2f

3 � c3f
5 � c4f

7 � c5f
9 � c6f

11

��
þ 1þ c1

f2
þ 3c2

f4
þ 5c3

f6
þ 7c4

f8




þ 9c5

f10
þ 11c6

f12

�
�x

1

f


 ��
x0 fð Þ

�
� B2R

3

f2
f c1 þ

1

3f2


 ��
þ 1þ 2 c21 þ c22

�
þ c23 þ c24 þ c25 þ c26

��

þ c2 c21 þ c2c4
� �

þ 2c1c3 c2 þ c4ð Þ þ 2c1c5 c4 þ c6ð Þ þ 2c2 c3c5 þ c4c6ð Þ þ c23c6 þ 3 c1 1þ c1c3ð Þð
þ 2c1c2 1þ c4ð Þ þ 2c2c3 1þ c6ð Þ þ 2c3 c4 þ c1c5ð Þ þ c5 c22 þ 2c4 þ 2c6

� �
þ 2c1c4c6

��
f2

þ 5 c2 1þ 2c4ð Þ þ 2c1c3 1þ c6ð Þ þ c4 c21 þ 2c6
� �

þ 2c5 c1c2 þ c3ð Þ þ c22c6
� ��

f4 þ 7 c3 1þ 2c6ð Þð

þc1 2c4 þ c1c5ð Þ þ 2c2 c5 þ c1c6ð ÞÞ
�
f6 þ 9 c4 þ c1 2c5 þ c1c6ð Þ þ 2c2c6ð Þ

�
f8 þ 11

c5 þ 2c1c6

f10
þ 13

c6

f12

�

� �x 1

f


 ��
x0 fð Þ

�
þ B2R

3f 1þ 2 c21 þ c22
�

þ c23 þ c24 þ c25 þ c26
��
þ c2 c21 þ c2c4

� �
þ 2c1c3 c2 þ c4ð Þ

þ 2c1c5 c4 þ c6ð Þ þ 2c2 c3c5 þ c4c6ð Þ þ c23c6 þ c1 1þ c1c3ð Þ þ 2c1c2 1þ c4ð Þð þ 2c2c3 1þ c6ð Þ
þ 2c3 c4 þ c1c5ð Þ þ c5 c22 þ 2c4 þ 2c6

� �
þ 2c1c4c6

�
f2 þ c2 1þ 2c4ð Þ þ 2c1c3 1þ c6ð Þð þ c4 c21 þ 2c6

� �
þ 2c5 c1c2 þ c3ð Þ þ c22c6

�
f4 þ c3 1þ 2c6ð Þð þ c1 2c4 þ c1c5ð Þ þ 2c2 c5 þ c1c6ð ÞÞf6 þ c4 þ c1 2c5 þ c1c6ð Þð

þ 2c2c6Þf8 þ c5 þ 2c1c6ð Þf10 þ c6f
12 � c1 þ f2

f
�x

1

f


 ��
x0 fð Þ

�
þ B0

0Rfþ B0
2R

3f c1 þ
f2

3


 �
þ B�2

R
f c2 þ c3f

2
�

þc4f
4 þ c5f

6 þ c6f
8
�
þ B�4n

R3
f c3 þ c4f

2 þ c5f
4 þ c6f

6
� �����

n¼1

þB�4n

R7
f c5 þ c6f

2
� �����

n¼2

þ
B�2 2nþ1ð Þ

R9
c6f

����
n¼2

þ
B�2 2nþ1ð Þ

R5
f c4 þ c5f

2 þ c6f
4

� �����
n¼1

�
�x 1

f

� 	
x0 fð Þ

B�2

Rf2
c2 þ

3c3

f2
þ 5c4

f4
þ 7c5

f6
þ 9c6

f8


 �
þ B0

0R

f2

2
64 þ B0

2R
3

f2
c1 þ

1

f2


 �

þ B�4n

R3f2
c3 þ

3c4

f2
þ 5c5

f4
þ 7c6

f6


 �����
n¼1

þB�4n

R7f2
c5 þ

3c6

f2


 �����
n¼2

þ
B�2 2nþ1ð Þ

R5f2
c4 þ

3c5

f2
þ 5c6

f4


 �����
n¼1

þ
B�2 2nþ1ð Þ

R9f2
c6

����
n¼2

�

þ
X1
n¼1

R4nþ1 �B4n

G
0ð Þ
4nþ1 fð Þ
4nþ 1

� dG
0ð Þ
4n fð Þ
df

�x
1

f


 ��
x0 fð Þ

" #
� B2 2nþ1ð ÞR

2 G
0ð Þ
4nþ3 fð Þ
4nþ 3

�
dG

0ð Þ
2 2nþ1ð Þ fð Þ
df

�x
1

f


 ��
x0 fð Þ

2
4

3
5

2
4

þ B4n G
1ð Þ
4n fð Þ � 1

4nþ 1

dG
1ð Þ
4nþ1 fð Þ
df

�x
1

f


 ��
x0 fð Þ

" #
þ B2 2nþ1ð ÞR

2 G
1ð Þ
2 2nþ1ð Þ fð Þ � 1

4nþ 3

dG
1ð Þ
4nþ3 fð Þ
df

�x
1

f


 ��
x0 fð Þ

" #

þ B0
4n

4nþ 1
G

1ð Þ
4nþ1 fð Þ þ

B0
2ð2nþ1Þ
4nþ 3

R2G
1ð Þ
4nþ3 fð Þ þ B0

4n

4nþ 1

dG
0ð Þ
4nþ1 fð Þ
df

þ
B0
2ð2nþ1Þ
4nþ 3

R2 dG
0ð Þ
4nþ3 fð Þ
df

" #
�x

1

f


 �,
x0 fð Þ

#)

� K�
1

f2
þ 2K�

2

f3
þ 3K�

3

f4
þ 4K�

4

f5
þ 5K�

5

f6
þ 6K�

6

f7
þ 7K�

7

f8
þ 8K�

8

f9
þ 9K�

9

f10


 �
�x

1

f


 ��
x0 fð Þ

þ K�
1fþ K�

2f
2 þ K�

3f
3 þ K�

4f
4 þ K�

5f
5 þ K�

6f
6 þ K�

7f
7 þ K�

8f
8 þ K�

9f
9

ð29Þ
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factor, and indirectly through K�
j (actually, via N�

j con-

taining Pc and in turn via d�j which provide K�
j ).

4 The Stress Field along Some Characteristic Loci

As a next step, advantage is taken of Muskhelishvili’s

(1963) well-known formulae for the stress field considered

here in the convenient form:

rx � irxy ¼ 2<U fð Þ � x fð Þ
x0 fð Þ U

0 fð Þ �W fð Þ;

rx þ ry ¼ 4<U fð Þ
ð31Þ

providing the Cartesian components of the stress field at

any point of the disc in terms of u(f) and w(f) (Eqs. 28 and

29, respectively), for either compressive (?Pc) or tensile

(–Pc) stresses parabolically distributed along the loaded

rim. In Eq. (31) < is the real part while it holds that:

U fð Þ ¼ u0 fð Þ
x0 fð Þ ; W fð Þ ¼ w0 fð Þ

x0 fð Þ ð32Þ

Alternatively, one may use the traditional formulae

(Muskhelishvili 1963):

rq � irqh ¼ 2<U fð Þ � e2ih

x0 fð Þ
x fð ÞU0 fð Þ þ x0 fð ÞW fð Þ
h i

;

rq þ rh ¼ 4<U fð Þ
ð33Þ

which provide the stress components at any point z ¼ rei/

of the real disc in the curvilinear coordinate system (q, h)
(see Fig. 5).

The explicit expressions for the stress components pro-

vided using the above formulae (Eqs. 31 and 33) are not

given here since they are extremely lengthy. On the other

hand, for the needs of the present paper, attention will be

focused exclusively on specific loci, which are of strategic

importance for practical applications of the cracked

Brazilian-disc test and especially for the determination of

Mode-I fracture toughness KIC.

In the context of the discussion outlined in Sect. 1, the

loci of interest for the determination of the Stress Intensity

(or of the respective Stress Concentration) are:

1. The axis of symmetry of the disc along the slit’s

longitudinal axis.

2. The perimeter L of the slit.

4.1 The Stress Field along the Longitudinal

Symmetry Axis of the Slit for Compression

at /o ¼ 0� and Tension at /o ¼ 90� (Mode-I

Loading Conditions)

For the features of the stress field along the locus with

y = 0 and x 2[a/2, RO] to be enlightened, two configura-

tions are considered. A disc of radius RO = 50 mm and

width w = 10 mm with a central rectangular slit of

dimensions (a 9 b) = (50 mm 9 3 mm), and a second

disc of the same dimensions, but with a much narrower slit

with (a 9 b) = (50 mm 9 0.6 mm). Both discs are loaded

by the same overall load Pframe, which is either of com-

pressive nature, applied parallel (i.e., /o ¼ 0�) to the lon-

gitudinal axis of the slit, or it is of tensile nature applied

normally (i.e., /o ¼ 90�) to the longitudinal axis of the slit

(Fig. 1a).
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for b = 3 mm (a) and b = 0.6 mm (b) for compression parallel

(/o ¼ 0�) to the slit’s longitudinal axis
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For the first case (i.e., compression at /o ¼ 0�), the

stress components along the locus under study for the

above two configurations (b = 3 mm and b = 0.6 mm)

are plotted in Fig. 6. To draw this figure, one can use

either the formulae of Eqs. (31) or those of Eqs. (33) (rx
� rq, ry � rh, rxy � rqh), by setting h = 0�. The values

of the stresses are normalized against the amplitude Pc

of the radial pressure applied along the loaded arcs of

the disc. As it is expected, for obvious symmetry rea-

sons, the shear stress component rxy is zero all along the

specific locus. For the normal stresses rx and ry, the

distributions for the two configurations (shown in Fig. 6a

for b = 3 mm and in Fig. 6b for b = 0.6 mm) are

qualitatively similar: the longitudinal normal stress rx is

negative almost all along the locus considered and only

as x ? a/2 (=RO/2) it becomes positive and is then

suddenly zeroed as x becomes equal to a/2. The trans-

verse normal stress behaves in a different manner: it is

compressive from x = RO until x & 0.8RO and then it

changes sign becoming tensile. Its magnitude keeps

increasing smoothly for both configurations until

x ? a/2 where it starts increasing abruptly. It is worth

emphasizing, however, that its value remains bounded

(i.e., its value does not tend to infinity) contrary to what

happens at the tips of a ‘mathematical’ crack in the

frame of linear elasticity.

From a quantitative point of view, now, things are dra-

matically different for the two configurations considered.

For x = RO both rx and ry are equal to each other

(rx = ry = Pc). For x ? a/2 (i.e., as one approaches the

crown of the slit) ry is equal to about 0.68 Pc for

b = 3 mm while for b = 0.6 mm ry becomes equal to 4.3

Pc. In other words, for the narrower slit the transverse

normal stress is more than 6 times higher from the

respective stress in the wider slit. For the longitudinal

normal stress rx things are equally emphatic: its maximum

value recorded in the immediate vicinity of the slit’s crown

is less than 0.1 Pc for the wide slit while it even exceeds 0.6

Pc for the narrow one.

For the second loading type (i.e., tension at /o ¼ 90�),
the stress components along the longitudinal symmetry

axis of the slit are plotted (normalized again over Pc and

using either Eqs. 31 or 33) in Fig. 7a, b. As it can be seen

from these figures the variation of the normal stresses rx
and ry (the shear ones are obviously zero) is completely

different compared to the previous case (i.e., for com-

pression at /o ¼ 0�) for both the wide and the narrow slits.

Indeed, both stresses are now tensile all along the specific

locus. Moreover, from a quantitative point of view, the

transverse normal stress ry attains considerably higher

values as one approaches the slit’s crown. It is mentioned

characteristically that for b = 0.6 mm the magnitude of ry
is equal to 8.7 Pc, a value which is more than two times

higher compared to the respective one recorded for the

configuration for compression at /o ¼ 0�. Similar conclu-

sions are drawn for the longitudinal normal stress rx which
for the narrow slit (b = 0.6 mm) and as x ? a/2 attains

values exceeding 1.5 Pc, again two times higher from the

respective value attained for the configuration for com-

pression at /o ¼ 0�.

4.2 The Stress Field along the Perimeter of the Slit

for Compression at /o ¼ 0� and for Tension

at /o ¼ 90� (Mode-I Loading Conditions)

The second locus of increased importance is the perimeter

of the slit itself. For practical reasons the exploration of the

stress field along this locus is implemented in terms of

curvilinear (Eq. 33) rather than Cartesian coordinates, as it

is clearly outlined in Fig. 5. Again two characteristic

configurations are considered corresponding to a very

narrow slit (approaching a ‘mathematical’ crack with a

single tip at each end, or in other words with the corner

point A1 almost coinciding with the middle point M(a/2, 0)

of the slit’s short edge (see the sketch embedded in Fig. 8)
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and to a wider one (i.e., with two distinct corner points A4,

A1 and A2, A3 at each one of its ends).

The geometric features of the configuration considered

are similar to the respective ones of Sect. 4.1, apart from

the width b of the wider slit which is now considered equal

to 2 mm (a value which is very close to the average width

of most slits machined mechanically in practice by means

of rotating cutting discs). The respective distributions of

the single non-zero stress component normalized against

Pc, i.e., the transverse normal stress rh (for obvious reasons
it holds that along the locus here considered rq = rqh = 0)

are plotted in Fig. 8a, b. The differences between the two

configurations are striking for both loading modes, i.e., for

compression at /o ¼ 0� and tension at /o ¼ 90�. Besides
the quantitative deviations concerning the magnitude of the

stress (which are more or less expected), impressive qual-

itative differences appear concerning the points at which

the stress is maximized. Indeed, as it can be seen from

Fig. 8a, which corresponds to the wider slit with

b = 2 mm, in case of compression along the slit’s longi-

tudinal symmetry axis (i.e., /o ¼ 0�), the magnitude of the

stress is maximized at point M(a/2, 0) (see the dotted line

in Fig. 8a). The normalized value of rh at pointM(a/2, 0) is

equal to about 0.85 Pc. From this point the stress magnitude

decreases smoothly. At the corner of the slit in the first

quadrant (point A1), which for the specific geometry cor-

responds to an angle h = 12.6o in the f-plane, rh attains a
value equal to about 0.45 Pc, which is almost 50 % lower

from the maximum value attained at point M(a/2, 0). As

one moves away from point A1 towards the slit’s short axis

of symmetry, the stress keeps decreasing and at about

h = 15� it changes sign becoming compressive. A clear

minimum at about h = 20�, of magnitude about equal to

the maximum one attained at h = 0�, characterizes the

distribution.

In case a tensile load (equal in absolute value to the

previous compressive one) is applied normally to the slit’s

longitudinal axis of symmetry (/o ¼ 90�), things are

completely different. The stress is maximized at the corner

point A1 rather that at the mid-point M(a/2, 0). Indeed, at

A1 the value of rh is equal to about 1.45 Pc while at point

M(a/2, 0) the respective value is equal to about 1.10 Pc or

comparatively 30 % lower.

Consider now the narrow slit (b = 0.6 mm), for which

the distribution of rh along the slit’s perimeter is plotted in

Fig. 8b: for both loading modes (i.e., compression at /o ¼
0� and tension at /o ¼ 90�), the stress is maximized at

h = 0�, i.e., at point M(a/2, 0). The magnitude of rh at

M(a/2, 0) is equal to 8.7 Pc and 4.3 Pc, for tension at

/o ¼ 90� and compression at /o ¼ 0�, respectively. The
values corresponding to point A1 (for the specific geometry

it is located at h = 7.2�) are considerably lower. Indeed, at

point A1 rh is equal to about 1.0 Pc and 2.0 Pc, respectively,

i.e., less than one-fourth of the respective ones at point

M(a/2, 0).

The above-outlined features of the stress distribution

around the slit’s perimeter indicate clearly that the ampli-

fication of the stress field in the immediate vicinity of the

slit’s crown strongly depends on the relative dimensions of

the slit, i.e., on the a/b ratio. In this context, an attempt is

described in Sect. 5 to quantify this dependence, since it is

of crucial practical importance, given that it governs the

values of the fracture toughness obtained in case discs with

mechanically machined slits rather than with ‘mathemati-

cal’ cracks are tested.

5 The Stress Concentration Around the Crown
of Rectangular Slits

The amplification of a stress field in the presence of a

geometrical discontinuity is characterized by either the

Stress Intensity Factor—SIF (assuming that the disconti-

nuity is a ‘mathematical’ crack, which in turn results to
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infinite values of the stress component at the crack’s tip) or

by the Stress Concentration Factor—SCF (assuming the

stress field components remain bounded all over the body

including the immediate vicinity of the discontinuity

itself). It is evident that in case the distance between the

discontinuity’s lips is non-zero the concept of the SIF

becomes inapplicable. Therefore, for the configurations

considered in this work one should resort to the SCF

concept to characterize the amplification of the stress field

in the immediate vicinity of the slit’s crown.

In this context, the Stress Concentration Factor, defined

here as the ratio of rh over the amplitude Pc of the para-

bolic distribution of the externally applied load, is plotted

in Fig. 9a, b against the width b of the slit, assuming that

the respective slit’s length is kept constant, equal to

a = RO. The remaining geometric characteristics of the

disc’s configuration are the same as in Sect. 4. The values

considered for the parameter b are within the

0.5 mm\ b\ 10 mm range, which covers most slits

machined in praxis for the determination of fracture

toughness.

Taking into account the conclusions drawn in Sect. 4,

two points of the slit’s perimeter are considered, namely

the mid-point M(a/2, 0) and the corner point A1. In case of

compressive load applied at /o ¼ 0�, i.e., along the slit’s

longitudinal axis of symmetry, the results are plotted in

Fig. 9a. It is seen from this figure that independently of

b the stress field is more intense at the mid-point M(a/2, 0),

rather than at the corners of the slit. Moreover, for

b[ 2 mm the stress concentration appears to be insensitive

to any variation of the distance between the slit’s lips (at

least for the specific disc’s geometrical features). Only for

b\ 2 mm the stress concentration starts increasing

abruptly attaining values equal to about 4.5 for

b = 0.5 mm, remaining in any case bounded. Concerning

the stress concentration at point A1, it increases more or

less smoothly for decreasing b, remaining lower than that

at point M(a/2, 0) for the whole range of b values con-

sidered. What is to be noticed is that for b[ 4 mm the

stress concentration factor at A1 is negative which means

that the stress field at A1 is of compressive nature pre-

venting, perhaps, rather than favoring crack initiation.

In case of tensile load applied at /o ¼ 90�, i.e., normally

to the slit’s longitudinal axis of symmetry, the respective

variation of the stress concentration is plotted in Fig. 9b.

Again, for b values exceeding 2 mm, the role of the dis-

tance between the slit’s lips is not significant, both for the

mid-point M(a/2, 0) and the corner point A1. What is dif-

ferent, however, for the specific loading mode is that for

b[ 2 mm the stress concentration at the corner point A1

exceeds the respective one at point M(a/2, 0), indicating

that crack initiation could be expected from the corner of

the slit rather than from its mid-point, somehow violating

symmetry arguments. From a quantitative point of view,

the stress field amplification is much more pronounced for

tension at /o ¼ 90�, especially for b values lower than

2 mm. It is mentioned characteristically that the stress

concentration factor attains a value equal to about 9 for

b = 0.5 mm. Moreover, for the whole range of b values the

stress concentration factor is positive for both pointsM(a/2,

0) and A1.

Before concluding this section one should consider,

even shortly, what happens for configurations with incli-

nation of the slit’s long axis of symmetry other than /o ¼
90� and /o ¼ 0�, i.e., configurations for which the double

symmetry of geometry and loading is lost. The main

problem now is that due to the non-symmetric shape of the

deformed slit the four corners are not any more equivalent

to each other. For a quantitative exploration of this aspect,

i.e., the determination of stress concentration for
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asymmetric configurations, combined knowledge of the

deformation and stress fields in the immediate vicinity of

the tips is required. Taking advantage of results from an

ongoing research project (Markides and Kourkoulis

2015b), the deformed disc’s shape for a characteristic

geometry with /o ¼ 45� is shown in Fig. 10a together with

the respective stress tensors for tips A1 and A4. It is clearly

seen that the two tips are not equivalent neither concerning

the stress field nor the deformation mode: tip A1 is under

opening mode while tip A4 is under closing mode. There-

fore, a unique SCF cannot be defined for the specific

problem.

Assuming that fracture will probably start from the tip

under opening mode (tip A1 in this case) rather than from

the tip under closing mode or the mid-point of the short

edge b, it would be interesting to consider the stress

amplification at tip A1. Even for a single tip, however, the

problem of defining the SCF remains since the lack of

symmetry does not permit a priori knowledge of the crack

initiation and propagation path. One possible solution

could be to consider the ratio of the equivalent stress at the

specific tip normalized over the parameter Pc. The varia-

tion of this quantity against /o is plotted in next Fig. 10b,

the main characteristic of which is the lack of any sym-

metric feature. In any case, the specific point should be

considered in more details and in combination with a

proper fracture criterion which will definitely indicate the

fracture initiation point.

6 Transitioning from Stress Concentration
to Stress Intensity

Despite its inadequacy to describe the local stress field

around the tips of a slit of finite b/a ratio, the importance of

SIFs remains crucial from a theoretical point of view since

it designates the limiting case for which b/a tends to zero. It

is, therefore, worth providing closed-form expressions for

the SIFs assuming that the slit approaches a ‘mathematical’

crack. In this direction, the formulae of Eqs. (4) and (5),

providing x(f), will first be written in a most appropriate,

for this case, form. Namely, setting z = a/2 in Eq. (4), so

that f = 1, and solving for b, it is obtained:

b ¼ a 1þ
X1
‘¼1

�1ð Þ‘c‘

" #
1þ

X1
‘¼1

c‘

 !�1

ð34Þ

Introducing now Eq. (34) in Eq. (5) it follows that:

R ¼ a

2
1þ

X1
‘¼1

c‘

 !�1

ð35Þ

Substituting Eq. (35) in Eq. (4) an alternative expres-

sion for the conformal mapping is obtained in terms of

parameter a rather than in terms of b [entering in Eq. (4)

through Eq. (5)] as:

z ¼ a

2
1þ

X1
‘¼1

c‘

 !�1

fþ
X1
‘¼1

c‘

f2‘�1

 !
ð36Þ

Consider now that b tends to zero, i.e., that the slit L

tends to the straight cut (‘mathematical’ crack) of length a.

Obviously, k tends to zero and, therefore, b ¼ ei2kp,

appearing in Eq. (6), becomes unity. Then, all coefficients

c‘ in Eq. (6) vanish, except c1 which becomes unity. In this

context, Eq. (36) reduces to the simpler one:

z ¼ a

4
fþ 1

f


 �
ð37Þ

It is now evident that Eq. (37) represents, also, the

limiting case b/2 ? 0 in the well-known transformation:

z ¼ R0 fþ m

f


 �
; R0 ¼ a=2þ b=2

2
; m ¼ a=2� b=2

a=2þ b=2

ð38Þ
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which conformally maps the outside of an elliptical hole of

major and minor semi-axes a/2 and b/2, respectively, on

the outside of the unit circle c. In other words, Eq. (37)

describes also the case when an elliptical hole of total

length a tends to a ‘mathematical’ crack.

The above observation is of utmost importance since it

points out that in the limiting case when b ? 0 the solution

introduced in the present paper for the disc with a rectan-

gular slit of length a completely coincides with that of the

disc with an elliptical hole of major semi-axis a/2 (Mar-

kides and Kourkoulis 2014a, b). Therefore, the expressions

for the SIFs describing the stress field around the crown of

a rectangular slit the width of which tends to zero are

identical to those obtained by Markides and Kourkoulis

(2014b), for the case of a circular disc with an elliptical

hole when its minor semi-axis tends to zero. For the

nomenclature adopted in the present case, these expres-

sions read as:

7 Discussion and Conclusions

An analytic solution for the stress field in a circular finite

disc with a central rectangular slit with rounded corners

was developed. The solution provides the stress compo-

nents at any point on the disc’s surface. The stress field

along two characteristic loci of increased practical impor-

tance was discussed in detail. Moreover, two loading types

were studied, i.e., compression along the slit’s longitudinal

axis of symmetry and tension normal to this axis.

The principal innovative point of the solution described

is that it takes into account the exact geometry of the

discontinuity without resorting to simplifying assumptions

as it is for example the concept of a ‘mathematical’ crack,

or of a relatively short crack with respect to the disc’s

radius. Moreover, the load distribution considered, i.e., a

parabolic distribution of radial stresses along two finite arcs

of the disc’s periphery, approaches very closely the actual

distribution in case a disc is squeezed between metallic

jaws of given finite curvature.

Before recapitulating the conclusions drawn in previ-

ous sections, a few words about the scheme adopted for

validating the solution introduced are necessary. While

the touchstone for an analytic solution is to compare its

results with experimental evidence, it is to be accepted

that the respective tests are very difficult to be imple-

mented. It was, therefore, decided to assess the present

solution against a properly validated numerical model

(Kourkoulis et al. 2015b). In this context, a finite element

model was prepared for both the disc and the jaw, con-

sidering that the test is realized according to the ISRM

suggestions for the intact Brazilian-disc test. Both the disc

and the jaw were simulated using 2D plane stress (with

thickness) finite elements. The geometry and material

properties of the disc and the jaws matched exactly those

considered in the theoretical analysis. The disc was

assumed to be in frictionless contact with the jaws, since

the same assumption was adopted in the analytic solution.

The Finite Element model was meshed using about 7000

4-node elements (Plane182). The density of the mesh was

calibrated to eliminate any mesh dependency phenomena.

The simulations were performed using the commercially

available software ANSYS12.

Prior to using the numerical model for the needs of the

present study, its outcomes were compared (for validation

reasons) with the analytic results obtained by Markides

et al. (2011) for the stress field in a circular disc with a

short central ‘mathematical’ crack (in fact a very small

value was assigned to b, b = 0.1 mm) under uniform radial

pressure along a predefined arc of the disc’s periphery. The

comparison was satisfactory for the whole range of crack

inclination angles for which no contact forces appear

(0� �/o � 29:3�) and, therefore, the model can be con-

sidered reliable.
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As a next step, the above-validated numerical model

was used for the calculation of the stress field components

in a circular disc with a central rectangular slit

(a = Ro = 50 mm and b = 3 mm) oriented along the

vertical axis of symmetry of the configuration (i.e.,

/o ¼ 0�). The results for the stresses developed along the

locus with / ¼ 0� (i.e., along the longitudinal symmetry

axis of the slit) are plotted (normalized against the ampli-

tude of the pressure induced by the jaw on the disc) in

Fig. 11 in juxtaposition to the respective results of the

analytic solution. The agreement can be considered quite

satisfactory. Some discrepancies, not exceeding 5 %, can

be well attributed to the fact that the length of the loaded

arc adopted in the analytic solution is obtained from the

solution of the intact disc–jaw contact problem and it is

somehow smaller from the arc developed during the

compression of the disc weakened by a rectangular slit.

Although this difference is relatively small [in accordance

with a previous study for the contact arc in case circular

rings with small inner radius are compressed between the

ISRM jaws (Kourkoulis et al. 2015a)], it should not be

ignored (especially for a values exceeding half of the disc’s

radius length, as it is the case considered here).

The main conclusion drawn from the present study is

related to the role of the slit’s width b on the stress field in the

immediate vicinity of the slit’s crown and also to the quan-

tification of the variation of the stress concentration factor

from the slit’s corner A1 to the slit’s mid-point M(a/2, 0). It

was revealed that the maximum stress concentration (and,

therefore, the potential crack initiation point) ‘travels’ from A1

to M(a/2, 0) and vice versa depending on the exact combi-

nation of b and /o. In other words, depending on the distance

between the slit’s lips, the superposition of the ‘action’ of the

concentration due to the two adjacent corner points A4 and A1

can result in either amplification or weakening of the stress

field on the mid-point M(a/2, 0) of the slit. It should be

emphasized at this point that the above conclusions are drawn

for a disc with specific geometric characteristics and also with

a relatively ‘‘long’’ contact rim. Things could change (at least

quantitatively) in case of discs made of stiffer materials. This

is clearly depicted in Fig. 12 where the components of the

stress tensor are shown as they are calculated for two discs

made of materials with significantly different stiffness:

Fig. 12a corresponds to a disc made of PMMA which results

to a half contact rim xo = 11.88� while Fig. 12b corresponds
to a disc made of Dionysos marble which results to half

contact rim xo = 2.84�.
Besides the role of b and its paramount influence on the

stress field amplification, it was also revealed that the two

loading types studied (i.e., compression at /o ¼ 0� and

tension at /o ¼ 90�) are not equivalent although this is the

underlying principle for adopting the validity of results

concerning the Mode-I fracture toughness as they are

obtained from tests with either CSTBD and CCNBD

specimens. To further enlighten the specific point, the

variation of the equivalent stress along the slit’s longitu-

dinal symmetry axis (a/2\ x\RO, y = 0, with a = RO),

normalized against Pc, is plotted in Fig. 13a for both

loading types and for a relatively wide slit with b = 3 mm.
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Fig. 12 The stress tensor at the

slit’s crown for two discs made

of materials with different

stiffness. Disc made of:

a PMMA and b Dionysos
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Fig. 11 Numerical versus analytic results for the stress field along

the longitudinal slit’s axis of symmetry
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It is seen from this figure that all along the specific locus

the two distributions are critically different from each

other. Moreover, the compressive loading type results in

considerably lower equivalent stress as one approaches the

notch crown. It could be, therefore, suggested (despite the

fact that the present analysis is purely linear elastic and,

therefore, no conclusions about fracture and crack initiation

should be drawn) that the values of KIC determined by

compressing a disc parallel to the slit will overestimate the

actual fracture toughness of the material (considering that

KIC characterizes the resistance of a material to the initia-

tion and propagation of a crack under Mode-I loading

conditions, i.e., under tensile loads).

The above conclusions can be further supported by

plotting the stress concentration factor at the mid-point

L(a/2, 0) for compression at /o ¼ 0� and tension at

/o ¼ 90�, against the slit width b. These plots, shown in

Fig. 13b, reveal again that only for slit’s widths exceeding

5 mm the two loading types are more or less equivalent.

However, slits with b[ 5 mm can be hardly considered as

representing in a satisfactory manner actual cracks. On the

contrary, for b\ 5 mm the stress concentration factor for

tensile loading mode increases more abruptly compared to

the respective increase for compressive loading mode.

Finally, it is emphasized again that the present study

should be only considered as a first step in the direction of

assessing the standardized tests used for the experimental

determination of KIC. There are two reasons for this: firstly,

there are some critical assumptions adopted. For example, the

material is assumed to be linear elastic and no fracture criteria

were incorporated in the analysis. Moreover, only a finite

number of terms of the infinite series were taken into account

for manageable formulae to be obtained for the complex

potentials and the stress components. Secondly, there are

quite a few additional parameters that should be taken into

account and quantified, before a definite assessment of the

transition from the CSTBD configuration to that of the

CCNBD, so that one could take into account the actual role of

the finite distance between the lips of the discontinuity.

The above discussion by no means deteriorates the value

of the analysis described in the present paper. The closed-

form formulae introduced for the complex potentials and the

stress field could be proven valuable, for example, in the

direction of validating sophisticated numerical models per-

mitting thorough parametric analyses. Clearly, the crucial

step in the direction of definitely assessing the results of the

above-mentioned standardized tests necessitates huge effort

and combined analytic, experimental and numerical inves-

tigations, well beyond the isolated attempts of independent

researchers. This decisive step could be only implemented as

team work of working groups or technical committees under

the auspices of prestigious international scientific societies

as it is for example ISRM and ASTM.
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Appendix

Principal parts of the following functions in brackets,

appearing in Eqs. (28), (29), (39) and (40)
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Fig. 13 a Variation of the equivalent stress along the slit’s longitu-

dinal symmetry axis and b the stress concentration for compression at

/o ¼ 0� and tension at /o ¼ 90� against the slit’s width b
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