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1 Introduction

Soils and rocks are commonly characterized as a porous or

fractured medium, with liquid and gaseous fluids occupy-

ing and moving in the void space. The presence of water in

the void space remarkably influences the deformation be-

haviors, mechanical properties and stress states of soils and

rocks. It has been well recognized that the induced volume

change, deformation and shear strength decrease of soils

and rocks do not depend on the total stress applied, but on

the effective stress defined at the saturated state due to the

difference between the total stress and the fluid pressure in

the pore space. The deformation of soils and rocks further

alters the pore or fracture network and induces a non-

negligible variation in hydraulic properties (Kirby 1991;

Chen et al. 2007; Li et al. 2014a). Therefore, the concept of

effective stress plays a dominant role in understanding the

coupled hydromechanical behaviors of soils and fractured

rocks.

Von Terzaghi (1923) pioneered the principle of effective

stress for saturated soils, in which the effective stress was

defined as the difference between the total stress and the

pore water pressure:

r0 ¼ r� uw ð1Þ

where r denotes the total stress, uw the pore water pressure,

and r0 the effective stress.

The pores and voids of an unsaturated soil, however, are

only partially occupied by water, with the rest being oc-

cupied by air, which leads to a different stress state in the

soils. A modification of Terzaghi’s effective stress princi-

ple is therefore required for unsaturated soils. Bishop

(1959) proposed the principle of effective stress for un-

saturated soils by introducing an effective stress parameter

into Eq. (1):

r0 ¼ r� uað Þ � v uw � uað Þ ð2Þ

where v denotes the effective stress parameter under par-

tially saturated conditions, and ua the pore air pressure.

From then on, various effective stress principles were

proposed for porous and fractured media (e.g. Tuncay and

Corapcioglu 1995; Laloui and Nuth 2009; Ghabezloo et al.

2009). The development of the effective stress models

enhances our understanding on the theory of consolidation

and shear strength of soils. For partially saturated rock

fractures, however, few efforts are made to examine the

applicability of the effective stress principle originally

developed for unsaturated soils, given the apparent differ-

ences of the void structure between soils and rock fractures.

This results in a difficulty in properly characterizing the

deformation, strength and permeability of rock fractures at

partially saturated states (Zandarin et al. 2013; Li et al.

2014b). The theory of effective stress should therefore be

improved for partially saturated rock fractures.
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In this note, the partially saturated rock fractures are

regarded as a three-phase system, with the void space

bounded by two opposite walls (solid phase) and occupied

by both water (liquid phase) and air (gas phase). The

equation of force balance among the solid, liquid and gas

phases in the partially saturated fractures is established

based on the microstructures of the void space and the

interactions among the three phases. An effective stress

equation is then proposed for smooth parallel fractures

under partially saturated conditions. By virtue of the cap-

illary law stating that the local area with smaller apertures

is preferentially occupied by the wetting phase (water), the

effective stress equation is derived for partially saturated

rough-walled fractures with any aperture distributions. The

proposed effective stress model is found to share the same

form with Bishop’s effective equation at partially saturated

states, with the effective stress parameter being equated to

the surface saturation of fractures, and it reduces to

Terzaghi’s effective stress equation at fully saturated state.

Illustrative examples show that the effective stress pa-

rameter nonlinearly depends on the degree of saturation for

rough-walled fractures, and the nonlinearity increases as

the surface roughness of the fractures increases. Also,

discussed in this note is the effect of surface contact on the

effective stress of partially saturated rock fractures.

2 Surface Morphology of Rock Fractures

The surface roughness and aperture distribution of a frac-

ture have strong influences on its mechanical and hydraulic

properties. Early fracture models commonly assumed that

the fractures are composed of two smooth parallel rock

surfaces, which is an extremely rough approximation of

real fracture geometries. The aperture distribution of

rough-walled fractures has been proved to mostly follow a

Gaussian, lognormal, Gama or truncated-Gaussian distri-

bution, with the truncated distribution function being ca-

pable of describing the aperture distribution of fractures

under normal loads (Walsh et al. 2008; Weerakone et al.

2012; Bertels et al. 2001; Liu et al. 2013). Photoelectric

techniques, such as 3-D laser scanning and CT (computed

tomography) scanning, were used to obtain the aperture

distribution of rock fractures with sufficiently high

resolution (Lanaro 2000; Bertels et al. 2001). Besides the

fitted continuous distributions, discrete distributions can

also properly describe the aperture distribution of rough-

walled fractures. As an advantage over the fitted con-

tinuous distributions, a discrete distribution preserves any

details of local apertures experimentally measured. If a

rough-walled rock fracture is assumed to be composed of

numerous infinitesimal parallel plates, the discrete aperture

distribution can be expressed as:

f xð Þ ¼ ni ð3Þ

where x is the aperture, and ni the fraction of local plates

with an aperture of x.

3 An Effective Stress Principle for Smooth
Parallel Fractures

As mentioned above, the state of stress in a partially

saturated fracture is fundamentally different from the state

of stress at fully saturated state. The liquid or gas saturation

of the fracture may significantly influence its mechanical

properties. Under partially saturated conditions, suction is

commonly introduced and defined as the net interface force

acting on the fracture surfaces for representing the com-

bined effects of negative pore water pressure and surface

tension. The macroscopic consequence of suction is a

bonding force that tends to pull the opposite fracture walls

closer, similar to the effect induced by an extra normal

compression.

To describe this effect, we assume for simplicity that a

fracture is composed of two parallel rock blocks, as shown

in Fig. 1a. Each rock block has the same size with a radius

of b. Also, shown in Fig. 1a, is a typical distribution of the

fluid phases (water and air) in the fracture at partially

saturated states. The void space on the concave side is

occupied with air and the water pressure is lower than the

air pressure. The water meniscus formed between the fluid

phases is described with two radii a and r, the fracture

aperture e and the contact angle h. The magnitude of the

capillary force arising from the water meniscus in the

fracture can be represented as a function of water content

by considering the local geometry of the air–water–solid

interface.
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Fig. 1 Force analysis of a fracture under partially saturated condition
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A free-body diagram for the forces acting on the frac-

ture, including the actions of air pressure ua, pore water

pressure uw, surface tension Ts and the applied external

force Fe, is plotted in Fig. 1b. The positive, isotropic air

pressure ua exerts a compressive force on the fracture wall.

The total force induced by the air pressure, Fa, is equal to

the product of the magnitude of the air pressure and the

area of the air–solid interface over which it acts:

Fa ¼ ua pb2 � pa2
� �

: ð4Þ

The total force induced by the surface tension, Ft, acts

along the perimeter of the water meniscus, and it reads:

Ft ¼ �Ts � 2pa: ð5Þ

The projection of the total force induced by the water

pressure acting on the water–solid interface in the vertical

direction, Fw, reads:

Fw ¼ �uw � pa2: ð6Þ

The resultant capillary force, Fr, is the sum of the above

three forces:

Fr ¼ uapb
2 � uapa

2 � Ts2paþ uwpa
2: ð7Þ

In the case of free ofmechanical loading on the fracture, the

air pressure is the unique contribution to the external force

acting on the outer boundary of the rock block, which yields:

Fe ¼ uapb
2 � ua � uwð Þpa2 � Ts2pa ð8Þ

where Fe is the net interface force due to the interfacial

interaction.

The stress resulting from the balance of the interfacial

forces can be evaluated by accounting for the area over

which it acts. Therefore, the magnitude of stress con-

tributed by the capillary interface force over the area pb2 is:

rw ¼ ua � ua � uwð Þ a
2

b2
� Ts � 2

a2

b2
: ð9Þ

The capillary law states that an aperture of smaller

opening is preferentially occupied by water in the wetting

process, and it is adopted in this note to establish the re-

lationship between the capillary pressure and the degree of

saturation in a single smooth parallel fracture. The capil-

lary pressure, Pc, defined as the difference between the air

and water pressures is given by the Young–Laplace equa-

tion for a double curvature interface:

Pc ¼ ua � uw ¼ Ts
1

R1

þ 1

R2

� �
ð10Þ

where the difference ua � uw is the capillary pressure, and

R1 and R2, the two principal radii of the curvature of the

interface. Specifically, R1 is the radius of the in-plane

curvature, and R2 the one perpendicular to the fracture

plane, which is determined by local aperture and contact

angle.

As Kueper and Mcwhorter (1991) discussed, if a frac-

ture is assumed to be composed of two parallel plates, the

force balance yields the following entry pressure:

Pc ¼
2Ts cos h

e
: ð11Þ

If the fracture opening is assumed to be circular in

shape, then the entry pressure should be expressed as:

Pc ¼
4Ts cos h

e
ð12Þ

In this note, Eq. (11) is adopted for smooth parallel

fractures or rough-walled fractures assumed to be com-

posed of numerous infinitesimal parallel plates, which

represents the lower one of the above two extremes. Sub-

stituting Eq. (11) into Eq. (9) yields:

rw ¼ ua � ua � uwð Þ a
2

b2
� ua � uwð Þ ae

b2 cos h
: ð13Þ

The effective stress of a smooth parallel fracture sub-

jected to an external total stress r can then be expressed as:

r0 ¼ r� rw ¼ r� ua �
a2

b2
þ ae

b2 cos h

� �
uw � uað Þ

¼ ðr� uaÞ � vðuw � uaÞ ð14Þ

Equation (14) has the same form with Bishop (1959)

effective stress equation for unsaturated soils [Eq. (2)], but

with the effective stress parameter v defined as:

v ¼ a2

b2
þ ae

b2 cos h
ð15Þ

4 An Effective Stress Principle for Rough-Walled
Fractures

The fluid distribution in partially saturated rough-walled

fractures is different from that in smooth fractures. Ac-

cording to the capillary law, for any aperture distribution

f(x), when water starts to enter the fracture space with a

local aperture X, the corresponding degree of water

saturation of the fracture, Sr, can be expressed as:

Sr ¼
R X

xmin
xf ðxÞdx

R xmax

xmin
xf ðxÞdx

ðfor continuous distributionsÞ ð16Þ

Sr ¼
PX

xmin
xniPxmax

xmin
xni

ðfor discrete distributionsÞ ð17Þ

where xmin and xmax are the minimum and maximum

apertures of the fracture, respectively.

Effective Stress Principle… 1093

123



The liquid saturation can be alternatively expressed by

the surface saturation, ASr , defined as the fraction of frac-

ture surface wetted by water:

ASr ¼
R X

xmin
f ðxÞdx

R xmax

xmin
f ðxÞdx

ðfor continuous distributionsÞ ð18Þ

ASr ¼
PX

xmin
niPxmax

xmin
ni

ðfor discrete distributionsÞ ð19Þ

Obviously, the surface saturation of a partially saturated

fracture varies from 0 to 1, which properly approximates

the first term a2

b2
on the right-hand side of Eq. (15). Given

that the aperture is commonly much smaller than the length

of a fracture, the second term on the right-hand side of

Eq. (15) is close to 0. Therefore, the surface saturation can

be used to describe the effective stress parameter for

smooth parallel fractures (v ¼ ASr ).

In a rough-walled fracture, the total force induced by the

air pressure, Fa, is equal to the product of the magnitude of

the air pressure and the area of the air–solid interface over

which it acts:

Fa ¼ ua 1� ASrð Þ ð20Þ

The total force resulting from the surface tension, Ft,

acts along the perimeter of the water menisci between the

infinitesimal parallel plates:

Ft ¼ �Ts � B ð21Þ

where B is the total perimeter of water menisci between

two fracture walls.

The projection of the total force induced by the water

pressure acting on the water–solid interface in the vertical

direction, Fw, is:

Fw ¼ uwASr ð22Þ

The resultant capillary force, Fr, is the sum of the above

three forces:

Fr ¼ ua 1� ASrð Þ � Ts � Bþ uw � ASr : ð23Þ

At the stress-free state, the air pressure is the unique

contribution to the external force acting on the outer

boundary of the rock block, which results:

Fe ¼ ua 1� ASrð Þ � Ts � Bþ uw � ASr : ð24Þ

The stress resulting from the capillary interface force

over a unit area is:

rw ¼ ua 1� ASrð Þ � Ts � Bþ uw � ASr ð25Þ

Substituting Eq. (11) into Eq. (25) yields:

rw ¼ ua � ua � uwð ÞASr � ua � uwð Þ e�B

2 cos h
ð26Þ

where e* is the maximum local aperture currently occupied

by water.

The effective stress of a rough-walled fracture subjected

to an external total stress r is:

r0 ¼ r� rw ¼ r� ua þ ASr þ
e�B

2 cos h

� �
ua � uwð Þ

¼ r� uað Þ þ v ua � uwð Þ ð27Þ

Equation (27) is again reduced to the form of Bishop

(1959) effective stress equation, with the effective stress

parameter v defined as:

v ¼ ASr þ
e�B

2 cos h
ð28Þ

Similarly, if we ignore the second term on the right-hand

side of Eq. (28), the effective stress parameter of rough-

walled fractures can also be expressed as:

v ¼ ASr ð29Þ

Equations (14) and (27), together with Eqs. (15) and

(28), imply that both smooth parallel fractures and rough-

walled fractures share the same form with Bishop’s ef-

fective stress principle. Smooth parallel fractures are an

idealized approximation of rough-walled fractures, and

correspondingly, Eq. (15) can be regarded as a highly-

simplified version of Eq. (28). It can be further observed

that the surface saturation of a fracture attains 1 as the

fracture is fully saturated with water, and at this state,

Eqs. (14) and (27) reduces to Terzaghi’s effective stress

equation for saturated fractures (Eq. 1).

5 Illustrative Examples

As stated before, the effective stress of partially saturated

rock fractures plays an important role in understanding the

coupled hydromechanical behaviors of fractured rocks in

various engineering practices, such as landslide mitigation,

oil and gas exploitation, underground oil storage, and nu-

clear waste disposal. Existing studies commonly borrowed

the relationship between the effective stress parameter and

the degree of saturation developed for soils for convenient

application in rock fractures (Lu and Likos 2004). The

relationships presented in Eqs. (16), (18) and (29) provide

a first approximation for estimating the effective stress

developed in a partially saturated fracture. As an illustra-

tive example, we consider a group of fractures of normal

aperture distribution, with a uniform mean aperture being

0.1 mm and the standard deviation taking the values of 0,

0.01, 0.02, 0.04 and 0.06 mm, respectively. The relation-

ship between the effective stress parameter (v) and the

degree of saturation [Sr, which is connected to the surface

saturation ASr by Eqs. (16) and (18)] is plotted in Fig. 2.

One observes that the effective stress parameter of the

smooth parallel fracture (with standard deviation s = 0) is
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equal to its saturation degree, while the curves for rough-

walled fractures are nonlinearly dependent on the degree of

saturation. The nonlinearity increases with the increase of

the standard deviation or surface roughness of the fractures.

Figure 3 illustrates another example for rough-walled

fractures, with the mean aperture being 0.1, 0.2 and

0.4 mm and the coefficient of variation (s/e) being 0.2 and

0.4, respectively. It is demonstrated from the plots that the

nonlinearity of the curves is mainly determined by the

coefficient of variation and less dependent on the mean

aperture of fractures. The increase of fracture roughness

results in an increase in nonlinearity of the relationship

between the effective stress parameter and the degree of

saturation.

Alterations of the surface contact area and aperture dis-

tribution of partially saturated rock fractures induced by

normal or shear loading may significantly influence their

mechanical and hydraulic properties (Li et al. 2014b). The

influence of the surface contact on the effective stress can be

represented using the ratio of surface contact area, a. In

Eq. (20), if the ratio of the surface contact area increases from

0 to a, the total force resulting from the air pressure, Fa, reads:

Fa ¼ ua 1� a� ASrð Þ: ð30Þ

The resultant capillary force becomes:

Fr ¼ ua 1� a� ASrð Þ � Ts � Bþ uw � ASr : ð31Þ

Correspondingly, the effective stress is rewritten as:

r0 ¼ r� rw ¼ r� 1� að Þua � ASr uw � uað Þ ð32Þ

where r� ð1� aÞua is the net normal stress, and the ef-

fective stress parameter here, which is equal to the surface

saturation, varies from 0 to 1–a.

6 Conclusions

In this note, a new effective stress principle for partially

saturated rock fractures was proposed. The proposed model

shares the same form with Bishop’s effective stress equa-

tion in unsaturated soil mechanics. However, the effective

stress parameter is different from the traditional effective

stress parameter for unsaturated soils. A simplified effec-

tive stress parameter equal to the surface saturation of

fractures was suggested. At fully saturated state, the ef-

fective stress principle for partially saturated fractures re-

duces to Terzaghi’s effective stress principle. The aperture

distribution, especially the surface contact area, has a

strong influence on the relationship between the effective

stress parameter and the degree of saturation, because the

surface contact reduces the areas of the air–solid and liq-

uid–solid interfaces. The nonlinearity of the effective stress

parameter versus the saturation degree curves is found to

be mainly determined by the surface roughness (or the

coefficient of variation), rather than the mean aperture of

the fractures.
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Ghabezloo S, Sulem J, Guédon S, Martineau F (2009) Effective stress

law for the permeability of a limestone. Int J Rock Mech Min Sci

46(2):297–306

Kirby JM (1991) The influence of soil deformations on the

permeability to air. J Soil Sci 42(2):227–235

Kueper BH, Mcwhorter DB (1991) The behavior of dense, nonaque-

ous phase liquids in fractured clay and rock. Ground Water

29(5):716–728

Laloui L, Nuth M (2009) On the use of the generalised effective stress

in the constitutive modelling of unsaturated soils. Comput

Geotech 36(1):20–23

Lanaro F (2000) A random field model for surface roughness and

aperture of rock fractures. Int J Rock Mech Min Sci Geomech

Abstr 37:1195–1210

Li Y, Chen YF, Jiang QH, Hu R, Zhou CB (2014a) Performance

assessment and optimization of seepage control system: a

numerical case study for Kala underground powerhouse. Comput

Geotech 55:306–315

Li Y, Chen YF, Zhou CB (2014b) Hydraulic properties of partially

saturated rock fractures subjected to mechanical loading. Eng

Geol. doi:10.1016/j.enggeo.2014.06.019

Liu HH, Wei MY, Rutqvist J (2013) Normal-stress dependence of

fracture hydraulic properties including two-phase flow proper-

ties. Hydrogeol J 21(2):371–382

Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, Hoboken

Tuncay K, Corapcioglu MY (1995) Effective stress principle for

saturated fractured porous media. Water Resour Res

31(12):3103–3106

von Terzaghi K (1923) Die Berechnung der DurchIässigkeit des
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