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Abstract Many abandoned room and pillar mines have

been excavated not far from the surface of large areas of

important European cities. In Rome, these excavations took

place at shallow depths (3–15 m below the ground surface)

in weak pyroclastic soft rocks. Many of these cavities have

collapsed; others appear to be in a stable condition,

although an appreciable percentage of their structural

components (pillars, roofs, etc.) have shown increasing

signs of distress from both the morphological and

mechanical points of view. In this study, the stress–strain

behaviour of soft rock pillars sustaining systems of cavities

under vertical loads was numerically simulated, starting

from the in situ initial conditions due to excavation of the

cavities. The mechanical behaviour of the constituent

material of the pillar was modelled according to the

Modified Cam-Clay constitutive law (elasto-plastic with

strain hardening). The influence of the pillar geometry

(cross-section area, shape, and height) and mechanical

parameters of the soft rock on the ultimate compressive

strength of the pillar as a whole was parametrically

investigated first. Based on the numerical results, an ori-

ginal relationship for pillar strength assessment was

developed. Finally, the estimated pillar strengths according

to the proposed formula and well-known formulations in

the literature were compared.

Keywords Room and pillar mines � Shallow cavities �
Pillar strength � Soft rocks � Roman pozzolana � Numerical

parametric study � Analytical relationship

List of symbols

v Pillar safety factor

rr Pillar compressive strength

rp Average pillar stress

rcp Average pillar stress contribution due to the

weight of coating soils

ry
p Pillar yield stress on the (rp; ep) curve

ep Average pillar strain

ey
p Average pillar strain at yielding

dvgs Imposed vertical ground surface displacements

A Pillar cross-section area

b Small side of pillar cross-section

l Large side of pillar cross-section

d Pillar diameter

h Pillar height

beq Side of equivalent square section pillar

b=h Pillar width-to-height ratio

beq=h Pillar average width-to-height ratio

r1 Material uniaxial compressive strength

ru Unconfined compressive strength of a cubical

pillar specimen

klp Pillar shape term (Lunder and Pakalnis’s

formulation)

cpav Pillar average confinement (Lunder and

Pakalnis’s formulation)

p Equivalent pressure

q Deviator stress

f ðp; qÞ Yield function

gðp; qÞ Plastic potential

eplðelÞ
ij

Plastic (elastic) strain tensor
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eplmag
Plastic strain magnitude

eplðelÞ
p

Plastic (elastic) volumetric strain

eplðelÞ
q

Plastic (elastic) deviator strain

p�c Current size of the yield surface

Jpl Plastic volume change

pc Preconsolidation pressure

M Slope of the critical state line on the (p; q)-plane

k Logarithmic hardening constant in pure

compression

k Logarithmic bulk modulus in pure compression

E Young’s modulus

/ Shear angle

c Cohesion

m Poisson’s ratio

G Elastic shear modulus

e Void ratio

V Specific volume

1 Introduction

Systems of abandoned room and pillar mines have been

found in several European cities at shallow depths. The

need for large amounts of building materials has histori-

cally led to the digging of extended underground mines,

especially in areas bordering the oldest and most extended

European cities (Rome, Naples, Paris, London, Maastricht,

etc.), which today belong to the urban fabric. At present,

these mines are tourist attractions or have been converted

to other uses, such as growing of mushrooms.

In Rome, these cavities (rooms) have usually been

excavated at shallow depths (3 � 15 m from the ground

surface) in weakly cemented pozzolana (pillars), under a

layer of consistent tuffs (roofs or vaults). These rooms

compose approximately regular grids, at one or more

levels; the pillars are generally quadrangular in shape

(Fig. 1). Multiple pillar failures and vault collapses are

recurrent (Federico and Screpanti 2002, 2003b), which

often lead to subsidence and localised depressions (i.e.

sink-holes).

In room and pillar mines, pillars sustain the weight of

coating soils and the overcharges applied on the ground

surface. Their stability is often threatened by the mining

operation itself (e.g. robbing on retreat) and the progressive

degradation of soil properties. As a consequence, the pillar

strength is reduced to a limit value, at which point some

pillars could no longer support the overburden stress.

Under this condition, the ratio v of the pillar strength rr to

the average vertical stress rp, acting on the pillar due to its

own weight and the external loads, becomes equal to unity:

v ¼ rr

rp

¼ 1: ð1Þ

In general, assessing the stability of abandoned mines is

very complex (Federico and Screpanti 2002). The failure of

a single pillar induces a load transfer to adjacent pillars,

which can cause them to fail too. Sometimes, a domino-

type failure mechanism occurs (Martin and Maybee 2000).

However, the interaction between adjacent pillars is

extremely difficult to analyse, as plano-altimetric irregu-

larity and material inhomogeneities should be considered.

Therefore, pillars are usually considered as isolated and the

working average stress rp is computed according to the so-

called tributary area method (Bieniawski 1984; Brady and

Brown 2004).

The pillar strength rr is estimated by means of empirical

and semi-empirical formulas (Martin and Maybee 2000;

Brady and Brown 2004). More advanced techniques are

based on probabilistic approaches (Griffiths et al. 2002),

analytical solutions (Qin et al. 2006; Wang et al. 2006) and

Fig. 1 Typical geometry of geotechnical system: representative plan

of system of shallow cavities found in Roman subsoil
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numerical methods (Murali Mohan et al. 2001; Mortazavi

et al. 2009; Jaiswal and Shrivastva 2009).

Mainly developed in the context of mining engineering

of hard rocks, conventional pillar strength formulas

(Table 1) take the form of either power (Salamon and

Munro 1967; Hedley and Grant 1972) or linear-type

equations (Obert and Duvall 1967; Lunder and Pakalnis

1997). They may be summarised in the following unified

mathematical form:

rr ¼ rc aþ b
bn

hm

� �
ð2Þ

where a, b, n[ 0 and m[ 0 are dimensionless parameters,

b is the length of the small side of the pillar cross-section, h

is the pillar height and rc is a measure of the compressive

strength of the pillar material. Some useful summaries on

pillar performances and strength formulas have been pro-

vided, among others, by Bieniawski (1984), Brady and

Brown (2004) and González-Nicieza et al. (2006).

Because of the complex mechanical behaviour of soft

rocks, such conventional approaches cannot be directly

applied to pillars in pyroclastic materials. Therefore, their

validation and adaptation to soft rock pillars play a key role

in the development of proper procedures to estimate the

safety conditions of abandoned urban mines.

To the best of the authors’ knowledge, little experi-

mental/numerical research on this topic is available in the

literature. Therefore, in this study, finite element analyses

(FEA) were performed to evaluate the resistance (com-

pressive crushing) of soft rock pillars sustaining cavity

systems. Pillar failure conditions were numerically simu-

lated through increases in the vertical displacements of the

ground surface, up to pillar collapse (Murali Mohan et al.

2001; Federico et al. 2010).

The behaviour of the soft rock was modelled according

to an elastic–plastic strain-hardening constitutive law,

specifically the Modified Cam-Clay model (Roscoe and

Burland 1968; Schofield and Wroth 1968).

Based on the main features of the corresponding ana-

lytical formulations, the effect of the pillar geometry (area

and shape of the horizontal cross-section, height) on the

compressive strength rr, and the role of mechanical

parameters of the constitutive law used to model the

behaviour of the pillar material were investigated.

Based on a proper reorganisation of the numerical

results, an original formula for estimating the strength of

soft rock pillars was developed.

2 Simplified Modelling of Soft Rocks Using

the Modified Cam-Clay Model

Structured soils and soft rocks constitute a wide class of

materials deriving from different geological processes (e.g.

cementation, ageing and over-consolidation) and/or the

progressive degradation of intact rocks due to weathering

and/or temperature effects.

Because of intergranular bonds, their mechanical

response is strongly dependent on the confining stress

(Cecconi 1999). Under small confining pressures, the

material behaviour is brittle-dilatant (i.e. rock-like); the

stress–strain relationship is almost linear until a peak,

which corresponds to the breaking of interparticle bonds

(Airey 1993). In this phase, compressibility curves may

exceed the normal compression line of the corresponding

destructured material (Leroueil and Vaughan 1990); this

condition is attained after yielding and is due to progressive

degradation of interparticle bonds and granular crushing

(Airey 1993; Coop and Atkinson 1993). At higher levels of

confinement pressure, their behaviour becomes ductile-

contractant (i.e. soil-like). In some cases, it is possible to

identify a range of confinement pressures in which a brittle

response with a marked peak corresponds to a contractant

response (Lagioia and Nova 1996; Aversa and Evangelista

1998). Furthermore, if the response is dilatant, the condi-

tion of maximum rate of dilation does not correspond to the

peak strength (Elliott and Brown 1985; Maccarini 1987).

Although the modified Cam-Clay (MCC) model (Ros-

coe and Burland 1968; Schofield and Wroth 1968) is not

able to predict all of these aspects, its ability to represent

the progressive transition from a brittle-dilatant response to

a ductile-contractant response as the confining stress

increases gives it the potential to represent soft rock

behaviour. The main limitations are associated with the

impossibility of representing some features proper to soft

Table 1 Some conventional formulations to assess the compressive

strength of hard rock pillars (r1 ¼ material uniaxial compressive

strength; ru ¼ unconfined compressive strength of a cubical pillar

specimen)

References Formula Unit

Bieniawski (1984) rr ¼ ru 0:64 þ 0:36 b
h

� �
MPa

Obert and Duvall (1967) rr ¼ r1 0:778 þ 0:222 b
h

� �
MPa

Salamon and Munro (1967) rr ¼ ru
b0:46

h0:66
MPa

Hedley and Grant (1972) rr ¼ r1 0:578 b0:5

h0:75

� �
MPa

Von Kimmelmann et al.

(1984)
rr ¼ r1 0:691 b0:64

h0:66

� �
MPa

Lunder and Pakalnis (1997) rr ¼ 0:440 ru 0:68 þ 0:52klp
� �

MPa

where

klp ¼ tan cos�1 1�cpav
1þcpav

� �� �

and

cpav ¼ 0:46 log b
h
þ 0:7

� �1:4
b=h

� �
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rocks and, in general, to structured soils: (1) the tensile

material strength is neglected; (2) the peak in the stress

ratio (Rowe 1962) is always attained at the maximum

dilatancy, and no peak stress ratio can be predicted for

contractant regime (Elliott and Brown 1985; Cecconi et al.

2002; Coop and Atkinson 1993; Rouainia et al. 2000; (3)

the change in slope of the compressibility curve in one-

dimensional and isotropic compression, due to progressive

material degradation, is not taken into account.

To overcome these limitations, many authors have

introduced minor improvements to the original mathe-

matical formulation, to account for cementation effects and

thermo-hygro-chemo-mechanical degradation processes

associated with grain collapse (Cecconi et al. 2002;

DeSimone and Tamagnini 2005), de-bonding and weath-

ering (Nova and Wood 1979; Nova et al. 2003).

However, the safe application of such advanced models

for engineering purposes may reveal rather complex, with

the main concern being parameter identification. For this

reason, the MCC constitutive model was applied in the

present study.

In the implementation of the model through the Abaqus

FEA software (Simulia 2009), the material response in the

plastic regime is defined by:

• a yield function f ðp; qÞ, which depends on the equiv-

alent pressure p and deviator stress q:

f ðp; qÞ ¼ 2p

p�c
� 1

� �2

þ 2q

Mp�c

� �2

�1 ¼ 0; ð3Þ

where M is the slope of the critical state line in the

(p; q)-space, and p�c defines the current size of the yield

surface (i.e. the diameter of the yield locus on the (p; q)-

plane);

• an associated flow rule gðp; qÞ ¼ f ðp; qÞ, which defines

the plastic volumetric depl
p and shear depl

q strain rates:

depl
p ¼ ogðp; qÞ

op
dp depl

q ¼ ogðp; qÞ
oq

dq; ð4Þ

• an exponential strain-hardening law, which modifies

the size of the yield locus according to the plastic

volume change Jpl:

p�cðJplÞ ¼ pc exp 1 þ e0ð Þ 1 � Jpl

k� kJpl

� 	
; ð5Þ

where pc is the initial size of the yield surface, e0 is the

initial void ratio, k is the logarithmic bulk modulus and

k is the logarithmic hardening constant for the elasto-

plastic response in pure compression.

In the elastic regime, any recoverable change in the volu-

metric/shear strain is assumed to correspond to mean/

deviator stress variations according to the following

incremental relations:

dee
p ¼ �k

dp

Vp
dee

q ¼
dq

3G
ð6Þ

where V is the specific volume and G denotes the elastic

shear modulus, computed using k and the Poisson’s ratio m.

Wood et al. (1992), Navarro et al. (2007) and Simulia

(2009) presented some useful instructions concerning the

identification of soil parameters for use with the MCC

model. In general, at least two conventional experiments are

required: an isotropic compression test to calibrate the val-

ues of pc, k and k; a triaxial test to calibrate the value of M.

The present study considered the set of parameters (k, k,

m, M, pc) identified by Federico and Screpanti (2003a)

through an inverse analysis approach based on FEA sim-

ulated tests and experimental data for black Roman poz-

zolana (Cecconi 1999). For the stability analysis of

abandoned mines, however, note that the model parameter

identification carried out at the material scale is not suffi-

cient (i.e. it only obtains the first estimate). The spatial

variability of the mechanical properties of the involved

materials, and the influence of their unknown history of

loading call for a proper case-by-case parameter calibra-

tion. This, in turn, should be carried out through an inverse

analysis approach based on the in situ analysis of some

unstable/stable pillars.

For this reason, in the present research, the pillar sta-

bility conditions were numerically analysed through a

parametric modelling approach. Finite element analyses

were repeatedly performed considering the typical ranges

of variation in the model parameters.

3 Numerical Simulation of Pillar Response

The mechanical response of a geotechnical system com-

prising coating soils, a vault, a pillar and its base (vertically

loaded) was numerically analysed. Isolated pillars were

schematically charged by the weight of overlying soil

layers composing a tributary volume and the loads applied

on the ground surface. According to this geometrical and

mechanical modelling assumption, interactions between

adjacent pillars and the loading history of each pillar were

neglected. For the design of new mines, this may represent

a quite strong simplification. However, in abandoned

underground mines, pillars have often been mined for

centuries; so, the realistic simulation of the pillar excava-

tion phases and their loading history is extremely difficult.

Three-dimensional (3D) finite element (FE) models

were developed by taking into account geometric, loading

and material symmetries. Only one-quarter of the whole

system beneath the tributary area was modelled. The roof

of the cavity was 12 m below the ground surface and the

base of the cavity parametrically varied between 15.5 and

2080 G. Rastiello et al.
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17.5 m below the ground surface; consequently, the pillar

heights ranged between 3.5 and 5.5 m. The total thickness

of the model was limited to 30.5 m, as preliminary anal-

yses had shown that, at grater depths, the increase in ver-

tical stress induced by external loads was less than 5 % of

the initial overburden pressure.

The simulated stratigraphy represents a typical strati-

graphic sequence of the Roman area (see Fig. 2). The soil

layers were assumed to be homogeneous, and the consti-

tuting materials were assumed to be isotropic with respect

to the mechanical response. The relevant mechanical

models and the corresponding characteristic parameters

were chosen according to typical values of materials in the

Roman area (Table 2).

Because of the strain-softening material behaviour, the

numerical results could be non-objective with respect to

the computational mesh (i.e. mesh-dependent). Thus,

preliminary analyses were performed to evaluate the

effect of the FE size on the stress–strain behaviour of the

pillar and to estimate optimal meshes. For the represen-

tative model depicted in Fig. 2, the optimal mesh com-

prised approximately 250,000 linear hexaedrical finite

elements (FEs). Their density increased near the pillar and

roof, where high gradients of stresses and strains were

expected.

Final FE models were obtained through a preliminary

simulation of the excavation of rooms adjacent to the pillar.

The simultaneous enlargement of the four galleries con-

touring the pillar was modelled through the progressive

deactivation of groups (rows) of finite elements, starting

from symmetry axes of the rooms and for their whole

height. This modelling strategy allowed the description of

Fig. 2 Representative finite element model and definition of FE groups to be removed to simulate excavation for consecutive rows

New Soft Rock Pillar Strength Formula Derived Through Parametric FEA 2081

123



pillars for which the size may progressively vary, and the

estimation of the in situ (initial, after excavation)

conditions.

Pillar failure conditions were analysed through the

increase of vertical loads, from imposing vertical dis-

placements (dvgs) acting on the ground surface (g.s.).

Although real pillars are loaded by a force, this displace-

ment controlled loading technique was preferred for load

control to explore the pillar behaviour in both pre- and

post-peak strength phases. This second phase must not be

neglected because collapsed pillars (beyond the peak

value) actually continue to bear a non-negligible portion of

the external loads, influencing the load transfer to adjoining

pillars. Note that the displacement controlled loading

technique does not sensibly influences the simulated global

response of the pillar and the maximum ‘‘equivalent’’

overcharge that the system can sustain (i.e. pillar collapse

condition).

The structural responses of 67 pillar models that differed

in the shape of the horizontal cross-section (square, cir-

cular, rectangular) and the height were numerically simu-

lated (see Table 3). Further analyses were carried out to

evaluate the influence of the mechanical parameters of the

pillar-constituent material on the mechanical response as a

whole.

4 Numerical Results

The prescribed displacements of the ground surface

shortened the height of the pillar and widened its cross-

sectional area (orthogonal to the pillar axis). However,

because of the roof stiffness, the pillar was not uniformly

loaded; thus, during the excavation phases, non-uniform

stresses and strains occurred both in the roof and pillar. The

reduced confinement allowed the maximum strains to

affect the external regions of the pillar. At the roof-pillar

and base-pillar connections, the shear stresses further

increased the local material confinement and prevented

transversal dilatations, for which the maximum values were

observed at the pillar mid-height. Because of the non-

homogeneous confinement, material yielding first occurred

in the more stressed pillar regions and then developed

throughout the whole pillar. The stress distribution in the

pillar evolved according to the progressive material

yielding. Because of this complex behaviour, the global

pillar response cannot be described solely on the basis of

local information; instead, representative global variables

have to be defined and examined.

4.1 Global Response Variables

The pillar loading state is represented by the average ver-

tical stress rp acting on a horizontal cross-section at the

mid-height of the pillar:

rp ¼ rpðdvgsÞ ¼ rcp þ DrpðdvgsÞ ð7Þ

where rcp is the mean vertical stress deriving from the

weight of coating soils (tributary area) and Drp is the

average stress increment due to external loads variations

(i.e. imposed dvgs).

The deformation state is characterised through the pillar

average axial strain:

ep ¼ epðdvgsÞ ¼
Dh
hi

¼ hi � hðdvgsÞ
hi

ð8Þ

where hi represents the pillar height after excavation and

Dh denotes its shortening (computed along its symmetry

axis).

Strains occurring with excavation are referred to the

reference undeformed configuration of the pillar (ep ¼ 0),

while associated stresses (rcp 6¼ 0) are considered in the

successive steps of the analysis.

The ðrp; epÞ curve represents the constitutive relation-

ship of the whole pillar, which is considered as a macro-

element loaded vertically. Note that the mechanical prop-

erties of the upper soil layers affect the response of the

whole geotechnical system. In turn, this may attain a global

ultimate limit state due to a possible failure of different

structural elements (e.g. the roofs); however, the variation

in the upper soils does not affect the ðrp; epÞ response of a

single pillar nor its failure state.

4.2 Influence of Pillar Cross-Section Area

The influence of the area A of the pillar cross-section on the

pillar strength rr was examined through the simulation of

several virtual load tests on square-shaped pillars.

Table 2 Physical and mechanical parameters characterising involved materials

Mat. Model E (MPa) m / (�) c (MPa) k k M pc (MPa)

1 Linear-elastic 100 0.25 – – – – – –

2 Elastic–plastic 1,000 0.30 30 1.00 – – – –

3 Modified Cam-Clay – 0.25 – – 2.00 0.003 1.50 6.00

E Young’s modulus, m Poisson’s ratio, / shear angle, c cohesion, k logarithmic hardening constant for plastic response in pure compression, k

logarithmic bulk modulus, pc initial size of yield surface

2082 G. Rastiello et al.
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Table 3 Geometrical properties of analysed pillars

Id. Shape b (m) l (m) d (m) beq (m) h (m) b
l

b
h

A (m2)

1 C – – 9,00 7.98 3.50 – – 63.62

2 C – – 8.00 7.09 3.50 – – 50.27

3 C – – 7.00 6.20 3.50 – – 38.48

4 C – – 6.00 5.32 3.50 – – 28.27

5 C – – 5.00 4.43 3.50 – – 19.63

6 C – – 4.00 3.54 3.50 – – 12.57

7 C – – 3.00 2.66 3.50 – – 7.07

8 S 7.98 7.98 – 7.98 3.50–4.50–5.50 1.00 2.28 63.62

9 S 7.09 7.09 – 7.09 3.50–4.50–5.50 1.00 2.03 50.27

10 S 6.20 6.20 – 6.20 3.50–4.50–5.50 1.00 1.77 38.48

11 S 5.32 5.32 – 5.32 3.50–4.50–5.50 1.00 1.52 28.27

12 S 4.43 4.43 – 4.43 3.50–4.50–5.50 1.00 1.27 19.63

13 S 3.54 3.54 – 3.54 3.50–4.50–5.50 1.00 1.01 12.57

14 S 2.66 2.66 – 2.66 3.50–4.50–5.50 1.00 0.76 7.07

15 R 7.08 7.97 – 7.51 3.50 0.89 2.02 56.43

16 R 6.2 7.97 – 7.03 3.50 0.78 1.77 49.41

17 R 5.31 7.97 – 6.51 3.50 0.67 1.52 42.32

18 R 4.43 7.97 – 5.94 3.50 0.56 1.27 35.31

19 R 3.54 7.97 – 5.31 3.50 0.44 1.01 28.21

20 R 2.65 7.97 – 4.60 3.50 0.33 0.76 21.12

21 R 1.77 7.97 – 3.76 3.50 0.22 0.51 14.11

22 R 6.2 7.08 – 6.63 3.50 0.88 1.77 43.90

23 R 5.31 7.08 – 6.13 3.50 0.75 1.52 37.59

24 R 4.42 7.08 – 5.59 3.50 0.62 1.26 31.29

25 R 3.54 7.08 – 5.01 3.50 0.50 1.01 25.06

26 R 2.65 7.08 – 4.33 3.50 0.37 0.76 18.76

27 R 1.76 7.08 – 3.53 3.50 0.25 0.50 12.46

28 R 5.31 6.2 – 5.74 3.50 0.86 1.52 32.92

29 R 4.43 6.2 – 5.24 3.50 0.71 1.27 27.47

30 R 3.54 6.2 – 4.68 3.50 0.57 1.01 21.95

31 R 2.66 6.2 – 4.06 3.50 0.43 0.76 16.49

32 R 1.77 6.2 – 3.31 3.50 0.29 0.51 10.97

33 R 4.43 5.31 – 4.85 3.50 0.83 1.27 23.52

34 R 3.54 5.31 – 4.34 3.50 0.67 1.01 18.80

35 R 2.65 5.31 – 3.75 3.50 0.50 0.76 14.07

36 R 1.77 5.31 – 3.07 3.50 0.33 0.51 9.40

37 R 3.54 4.43 – 3.96 3.50 0.80 1.01 15.68

38 R 2.66 4.43 – 3.43 3.50 0.60 0.76 11.78

39 R 1.77 4.43 – 2.80 3.50 0.40 0.51 7.84

40 R 2.65 3.54 – 3.06 3.50 0.75 0.76 9.38

41 R 1.77 3.54 – 2.50 3.50 0.50 0.51 6.27

42 R 6.91 9.21 – 7.98 3.50 0.75 1.97 63.64

43 R 6.14 8.19 – 7.09 3.50 0.75 1.75 50.29

44 R 5.37 7.16 – 6.20 3.50 0.75 1.53 38.45

45 R 4.6 6.14 – 5.31 3.50 0.75 1.31 28.24

46 R 3.84 5.12 – 4.43 3.50 0.75 1.10 19.66

47 R 3.07 4.09 – 3.54 3.50 0.75 0.88 12.56

48 R 2.3 3.07 – 2.66 3.50 0.75 0.66 7.06
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Figure 3 shows the global responses of square pillars

with an area A ranging between 7.1 and 63.6 m2. For these

pillars (h ¼ 3:5 m), the width-to-height ratios b=h varied in

the range between 0.8 and 2.3.

The average pillar stress rp non-linearly increased from

the initial value rcp up to the yielding stress ryp. The only

exception was the smallest pillar (A ¼ 7:1 m2), which was

strongly affected by plastic strains that arose during the

excavation phase. The yielding condition was identified by

the stress–strain state (ryp; e
y
p) at which the pseudo-linear

trend ends and the slope of the curve ðrp; epÞ changes. In

conventional analytical methods, ryp represents the ultimate

pillar strength rr. The most slender pillars (small A values,

� 20 m2) exhibited a peak strength ryp coupled with a

brittle post-peak behaviour. For larger pillars, ductile

behaviours were observed. In this case, because of the

displacement controlled loading technique, ryp did not

correspond to the maximum stress on the ðrp; epÞ plane.

Based on a vertical section along the diagonal of a

representative pillar (A ¼ 28:3 m2, h ¼ 3:5 m, b=h ¼ 1:5),

Fig. 4 depicts the vector representation of principal

stresses and the associated evolution of plastic strains

corresponding to the six phases through which the test

developed.

The stress distribution inside the pillar evolved accord-

ing to the progressive local yielding. After excavation

(dvgs ¼ 0), the greatest stresses occurred at the corners of

the base-pillar and roof-pillar connections. The internal

regions, close to the symmetry axis of the pillar, bore small

stresses. High shear stresses at the roof-pillar and pillar-

base connections induced appreciable rotations, with

respect to the external reference system, of the principal

stresses. The rotations progressively decreased (for the

whole pillar height) in proximity to the symmetry axis,

along which the maximum principal stresses coincided

with the vertical ones. In this phase, referring to the hori-

zontal cross-section at the mid-height of the pillar, the

greatest principal stress approximately coincided with the

vertical stress for each volume element.

The progressive increase in the imposed vertical g.s.

displacements dvgs initially induced an increase in stresses

of the most stressed elements (upper and lower corners),

until yielding. Stress redistribution then took place: new

plastic strains developed first affecting large sub-horizontal

volumes of materials near the base of the pillar and the

roof-pillar connection. Then, the plastic strains affected the

external parts of the mid-height pillar; at the peak-strength

condition, this section fully yielded; additional displace-

ments dvgs further increased the plastic strains in the

internal parts of the pillar. During this final phase, most of

the applied load was borne by the internal and better

confined volumes of the pillar. Principal stresses within the

pillars tended to align according to a hourglass-shaped

configuration.
Fig. 3 Global responses of square section pillars with constant height

(h ¼ 3:5 m) and cross-section area of 7.1–63.6 m2

Table 3 continued

Id. Shape b (m) l (m) d (m) beq (m) h (m) b
l

b
h

A (m2)

49 R 5.64 11.28 – 7.98 3.50 0.50 1.61 63.62

50 R 5.01 10.03 – 7.09 3.50 0.50 1.43 50.25

51 R 4.39 8.77 – 6.20 3.50 0.50 1.25 38.50

52 R 3.76 7.52 – 5.32 3.50 0.50 1.07 28.28

53 R 3.13 6.27 – 4.43 3.50 0.50 0.89 19.63

54 R 2.51 5.01 – 3.55 3.50 0.50 0.72 12.58

55 R 1.88 3.76 – 2.66 3.50 0.50 0.54 7.07

b small side of cross-section, l large side of cross-section, d cross-section diameter (for cylindrical pillars), A cross-section area, h height,

beq ¼
ffiffiffi
A

p
side of equivalent square section pillar; shape of cross-section: C = circular, S = square, R = rectangular
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The numerical results, particularly the plastic strain evo-

lution in the pillar, appreciably agreed with the experimental

observations of Martinetti and Ribacchi (1964). In particular,

the simulation results and in situ observations showed a

strong fitness for phases close to the conventional pillar

collapse. Under this condition, the external and less confined

parts of the pillar became highly plasticized and bore very

small loads. The peculiar hourglass-shaped configuration

assumed by the principal stress distribution may be related to

the similar observations of highly damaged pillars.

Fig. 4 Evolution of principal stresses and yielding in a vertical

section crossing the diagonal of a representative squared pillar (six

phases of the virtual load test). The yielding process is represented

through the plastic strain magnitude epl
mag ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 epl

ij : e
pl
ij =3

q
, where epl

ij

is the plastic strains tensor
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4.3 Influence of Pillar Geometry: Shape and Height

Circular (2D axi-symmetric analyses) and rectangular pil-

lars were analysed to examine the role of the cross-sec-

tional shape on the pillar’s mechanical response. The

rectangular pillars were first obtained from square pillars

by reducing one side width (b) and keeping the other one

unchanged (l[ b). This procedure allowed the same FE

mesh used for the square pillars to be maintained for an

objective evaluation (i.e. absence of possible approxima-

tions deriving from mesh differences) of the combined

effects of A, b and l on the pillar strength. The stability

conditions of rectangular pillars were then investigated for

different cross-section ratios b=l. This approach allowed

the parameter A to be fixed and isolated the influence of the

pillar shape.

Figure 5a compares the simulated responses of circular

and square pillars. Figure 5b compares the responses of

rectangular and square pillars. In both cases, the pillar

responses were compared to homogeneous groups in terms

of the cross-sectional area A and height (h ¼ 3:5 m).

The numerical results showed that the pillar response

was not significantly influenced by the shape of the pillar

cross-section, but mainly depended on the area A. For a

given value of A, the global responses ðrp; epÞ were anal-

ogous over the whole range of the simulated pillar defor-

mations ep. This was true even for the circular pillars,

although the axi-symmetric modelling assumption intro-

duced strong simplifications both from the geometrical and

mechanical points of view.

The height h was also found to significantly influence

the pillar mechanical response. This was examined through

the simulation of square pillars with h variable in the range

between 3.5 and 5.5 m. For a given cross-section area A,

the taller pillars showed a less stiff pseudo-elastic response

and a more pronounced brittleness in post-peak phase

(Fig. 5c). In some cases, this led to a transition from ductile

to brittle behaviour. As expected, a taller pillar generally

led to a lower ultimate resistance rr.

Figure 6a plots the strength values obtained from the

above virtual load tests against the pillar width-to-height

ratio b=h. Although rr increased with b=h, the numerical

results demonstrated an appreciable dispersion (correlation

coefficient R2 ¼ 0:70). Therefore, the standard (original)

analytical formulations could not be applied to the present

case. Based on the obtained results, however, their formal

validity can be restored if one observes that the average

width-to-height ratio:

beq

h
¼

ffiffiffi
A

p

h
ð9Þ

is a proper geometric parameter to represent the evolu-

tion of rr. In other words, rectangular pillars can be

Fig. 5 Comparison of global responses: a three couples of square and

cylindrical (axi-symmetric) pillars; b two triplets of square and

rectangular pillars having the same cross-section area and ratio of the

sides b=l ¼ 0:5 and 0.75; c three pillars having equal area and height

h variable in the range between 3.5 and 5.5 m
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schematised as equivalent square section pillars with sides

beq ¼
ffiffiffi
A

p
in length. Once this variable is applied, a linear

regression characterised by a high correlation coefficient

(R2 � 0:97) can represent, as a whole, the numerically

computed strength values for all simulated (circular, square

and rectangular) pillars (Fig. 6b):

rr ¼ a1 þ a2

beq

h
ð10Þ

Parameters a1 and a2 in Eq. (10) assume constant values in

computations: a1 ¼ 0:99 and a2 ¼ 3:17. However, they

depend on the mechanical properties of the pillar material,

specifically the preconsolidation pressure pc and slope of

the critical state line M on the ðq; pÞ plane:

a1 ¼ a1ðpc;MÞ; a2 ¼ a2ðpc;MÞ: ð11Þ

4.4 Influence of Mechanical Parameters of Pillar Material

The role of the mechanical parameters of soft rock was

investigated by simulating virtual load tests (further 144

simulations) on square cross-section pillars with a variable

h. According to previous results, the influence of the shape

of the pillar cross-section was neglected.

The preconsolidation pressure pc and slope of the critical

state M varied for nine combinations (Table 4). The

remaining parameters (k, k and m) required to define the

modified Cam-Clay model were kept constant, as their

variability has been observed to be limited in experiments

(Cecconi 1999). Conversely, many authors (Cecconi et al.

2002; Nova et al. 2003) have shown that the size of the yield

locus and the critical state conditions may significantly vary

according to mechanical (e.g. grain crushing and debond-

ing) and non-mechanical (e.g. chemical weathering) mate-

rial degradation.

Figure 7 shows the global responses of representative

pillars. Numerical analyses showed that the pillar response

was appreciably influenced by pc and M over the whole

range of simulated deformations ep. In particular, variations

in pc mainly induced variations in the pillar strength but did

not directly influence the post-peak behaviour (Fig. 7a).

When pc was kept constant, a change in M changed both

the resistance of the pillar and the post-peak behaviour

(Fig. 7b). The pillar brittleness gradually decreased with

increasing M; for slender pillars (i.e. lower average width-

to-height beq=h ratios), a transition from ductile to brittle

behaviour sometimes occurred.

As shown in Fig. 8, when beq=h and M were fixed, the

relationship between the pillar compressive strength and

the preconsolidation pressure was approximately linear. A

simple linear regression model without the intercept term

fits the numerical results:

Fig. 6 Numerically computed pillar strength values rr (for square,

circular and rectangular pillars and different pillar heights h) against

width-to-height b=h and average width-to-height beq=h ratios

Table 4 Mechanical parameters assigned to pillar material for ana-

lysis of their influence on the pillar behaviour

Id. Mat. k k m M pc (MPa)

MCC1 0.13 0.0032 0.25 1.20 3.00

MCC2 0.13 0.0032 0.25 1.30 3.00

MCC3 0.13 0.0032 0.25 1.50 3.00

MCC4 0.13 0.0032 0.25 1.20 4.50

MCC5 0.13 0.0032 0.25 1.30 4.50

MCC6 0.13 0.0032 0.25 1.50 4.50

MCC7 0.13 0.0032 0.25 1.20 6.00

MCC8 0.13 0.0032 0.25 1.30 6.00

MCC9 0.13 0.0032 0.25 1.50 6.00
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rr ¼ a3 M; beq=h
� �

pc: ð12Þ

The angular coefficient a3 increased with M (i.e. material

shear resistance) and beq=h (i.e. area of the cross-section).

This dependency can be better explained by plotting the

ratio rr=pc against M for different values of beq=h (Fig. 9).

This representation easily shows the family of linear

regressions:

rr=pc ¼ a3 M; beq=h
� �

¼ a4 beq=h
� �

þ a5 M;
ð13Þ

where a5 ¼ 0:66 provided the best fit for the data points.

As shown in Fig. 9, the intercept a4ðbeq=hÞ was almost

independent of the parameter M, while it monotonically

increased with beq=h.

The next section provides functional forms allowing a

proper representation of the pillar strength evolution according

to the three considered parameters (beq=h, M and pc).

5 Novel Pillar Strength Formula

As shown in Fig. 10, the results presented in the previous

sections demonstrate the following linear regression:

rr ¼ a1ðpc;MÞ þ a2ðpc;MÞ beq

h
ð14Þ

which fits with high correlation coefficients (R2 � 0:97) the

computed strength values rr for all simulated pillars.

Fig. 7 Influence of pc and M on the global response of a

representative square pillar (A ¼ 63:52 m2; h ¼ 3:5 m): a pc is

variable and M is fixed; b pc is fixed and M is variable

Fig. 8 Evolution of rr with respect to preconsolidation pressure pc: a
for fixed value of average width-to-height ratio beq=h and three values

of M; b for fixed M and three values of beq=h
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The numerical results can be easily reworked to clarify

the relations a1ðpc;MÞ and a2ðpc;MÞ in Eq. (14). In par-

ticular, the linear regressions proposed in Fig. 10 directly

show that the slopes of the ðrr; beq=hÞ curves are quite

independent of the parameter M, while a very simple linear

regression approximates (R2 ¼ 0:98) their dependency

on pc:

a1ðpcÞ ¼ 0:17 pc ð15Þ

Furthermore, a2ðpc;MÞ can be easily expressed as:

a2ðpc;MÞ ¼ 0:62M � 0:41ð Þpc: ð16Þ

Substituting Eqs. (15) and (16) into Eq. (14) obtains the

following relationship:

rr ¼ pc 0:62M � 0:41 þ 0:17
beq

h

� 	
; ð17Þ

where rr and pc are expressed in MPa. Note that by relying

rr to the preconsolidation pressure instead of the uniaxial

strength, as in conventional analytical formulations, the

pillar strength is implicitly related to the material resistance

along all of the spatial directions. Furthermore, the material

shear resistance is directly considered through the slope of

the critical state line M, which in turn is related to the shear

resistance angle /.

Figure 11 compares the predictions of the proposed

original formulation and three well-known conventional

empirical formulas (Salamon and Munro 1967; Obert and

Duvall 1967; Lunder and Pakalnis 1997). For the sake of

simplicity, only square section pillars were considered.

Figure 11a shows the results when b ¼ beq was varied and

the pillar height h was fixed at 4 m, while Fig. 11b shows

Fig. 9 Pillar strength to preconsolidation pressure rr=pc ratio plotted

against M for four values of average width-to-height ratio beq=h

Fig. 10 Pillar strength evolution in function of average pillar width-

to-height ratio and comparison with values predicted by the proposed

original formulation (17)
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the results when b was fixed at 6 m and h was varied. The

mechanical parameters of the pillar material were assigned

according to typical values for Roman pozzolana (Cecconi

1999) (uniaxial compressive strength: r1 ¼ 2 MPa;

unconfined compressive strength: ru ¼ 1:9 MPa; pc ¼
3 MPa and M ¼ 1:4).

For typical geometries of the pillars in the Roman area,

the formulas predicted similar strength values rr. However,

the proposed expression (17) was less conservative than the

traditional ones for all pillars. This was partly because the

conventional pillar strength formulas neglect the effect of

the confining stress and relate the pillar strength only to the

uniaxial compressive strength r1. The only exception is the

formula presented by Lunder and Pakalnis (1997), which

accounts for the confinement effect through the parameter

klp defined in Table 1.

The role of the confining stress should become signifi-

cant for larger pillars, dealing to higher strength values.

However, as shown in Fig. 11, the Lunder and Pakalnis’s

formulation predicted lower strength values for all the

considered pillar dimensions.

Note that these comparisons only provide qualitative

information because the values of the parameters figuring

in the conventional formulas were derived from the ana-

lysis of hard rock mines. Therefore, their application to

other mines and materials (e.g. soft rocks) require proper

parameter identification, based on in situ observations of

failed/stable pillars.

6 Concluding Remarks

The global stress–strain behaviour of soft rock pillars in

systems of shallow cavities, under vertical loads, was

numerically simulated through FEA. The features of the

soft rock were simulated with a Modified Cam-Clay model

to represent the transition from brittle-dilatant to ductile-

contractant behaviour with increasing preconsolidation

pressure. The effects of the pillar geometry (cross-section

area, shape, height, slenderness) and the mechanical

parameters characterising the constitutive model were

numerically evaluated.

The results showed that the pillar strength rr mainly

depends on the area A of the pillar horizontal cross-section,

the height h, and the mechanical properties of the constit-

uent material. The shape of the cross-section does not play

an appreciable role on the pillar strength, despite what is

commonly stated by conventional analytical formulations.

Based on the results, a geometrical parameter which

describes the influence of the pillar geometry on its com-

pressive resistance is the average width-to-height ratio

beq=h, where beq ¼
ffiffiffi
A

p
. With regard to the mechanical

parameters of soft rocks, rr was observed to be strongly

dependent on the preconsolidation pressure pc and slope M

of the critical state line on the ðp; qÞ plane.

Finally, a novel formula that directly relates rr to the

pillar geometry and the mechanical parameters of the

composing materials (pc, M) was developed. In this for-

mulation, the pillar strength directly relies on the precon-

solidation pressure, instead of the uniaxial strength as in

conventional analytical formulas. This allows the increase

in rr due to the material resistance along all spatial

directions to be considered implicitly. The material shear

resistance is also considered, as the slope of the critical

state line M can be related to the friction angle / (e.g. in

triaxial compression conditions, M ¼ 6 sin/=ð3 � sin/Þ).

Fig. 11 Comparison of pillar strengths from proposed original

formulation and three well-known formulations: a h ¼ 4 m is fixed

and b varies in the range between 3 and 14 m; b b ¼ 6 m is fixed and h

ranges between 1 and 6 m
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Further research efforts are still needed to experimen-

tally validate the proposed formulation and analyse its

dependency on the constitutive model representing the

mechanical behaviour of the soft rock.
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