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Abstract Blast-induced ground vibration has received

much engineering and public attention. The vibration is

often represented by the peak particle velocity (PPV) and

the empirical approach is employed to describe the rela-

tionship between the PPV and the scaled distance. Differ-

ent statistical methods are often used to obtain the

confidence level of the prediction. With a known scaled

distance, the amount of explosives in a planned blast can

then be determined by a blast engineer when the PPV limit

and the confidence level of the vibration magnitude are

specified. This paper shows that these current approaches

do not incorporate the posterior uncertainty of the fitting

coefficients. In order to resolve this problem, a Bayesian

method is proposed to derive the site-specific fitting coef-

ficients based on a small amount of data collected at an

early stage of a blasting project. More importantly,

uncertainty of both the fitting coefficients and the design

formula can be quantified. Data collected from a site for-

mation project in Hong Kong is used to illustrate the per-

formance of the proposed method. It is shown that the

proposed method resolves the underestimation problem in

one of the conventional approaches. The proposed

approach can be easily conducted using spreadsheet cal-

culation without the need for any additional tools, so it will

be particularly welcome by practicing engineers.

Keywords Bayesian analysis � Blasting � Explosions �
Ground vibration � Monte Carlo simulation � Reliability �
Scaled distance

Abbreviations

dof Degrees of freedom

PPV Peak particle velocity

SD Scaled distance

List of symbols

a, b Fitting coefficients of charge weight scaling

laws

c0 Normalizing constant

d Distance between the blasting source and

the receiver

D Database

N Number of measurements in the dataset

Ns Number of Monte Carlo samples

v Peak particle velocity (PPV)

v84 %, v95 % 84 and 95 % confidence values of the PPV,

respectively

W Charge weight per delay

R Covariance matrix

v Level of confidence

e Model output error

q Correlation coefficient

r Standard deviation

Functions

E Expected value

Jg Goodness-of-fit function

p Probability density function

SE(y, x) Standard error of predicted y with varying x
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t Student’s t distribution

Var Variance

U Inverse of quantile function

Subscripts

i, j Index

m Measured value

a Confidence level

Superscripts

^ Optimal value

- Mean

1 Introduction

Modern cities are usually congested and the supply of

space becomes an emerging issue. The use of underground

spaces, rock caverns, or partial removal of rocky hills

becomes attractive to society. The drill-and-blast method is

commonly adopted to break the rock mass, turn it into

fragments of handleable size, and, therefore, to create

spaces. Records showed that the discovery of explosives,

also known as ‘‘gunpowder’’ or ‘‘black powder’’, could be

traced back to the 9th century in China (Needham 1987).

Despite its long history, the well-documented use of

explosives to replace mechanical digging in mining engi-

neering can only be traced back to about 400 years ago

(Persson et al. 1993). Nowadays, a wide variety of explo-

sives having different compositions and performance

characteristics are used for rock blasting, e.g., ammonium

nitrate/fuel oil (ANFO), dynamite, emulsion, etc. With the

advances in science and technology, the efficiency and

safety of explosives no longer remains the sole concern. On

the other hand, blast-induced vibrations and, thus, damage,

particularly in densely populated urban areas, arouses more

public attention. Excessive vibration does not only cause

human annoyance but also leads to cracks or even the

collapse of nearby structures. A huge amount of insurance

claims could be a big concern.

In blast engineering practice, vibration is usually descri-

bed simply by the peak particle velocity (PPV). Based on the

consideration of energy decay, the empirical relationship

among the PPV, the charge weight per delay, and the dis-

tance from the blast source to the receiver can be formulated.

Engineers use the established relation to make a decision on

the amount of explosives subject to a given PPV limit, which

is often specified either by the client or governing bodies. In

a blasting project, site-specific fitting coefficients would be

preferable, as they include more precise site-specific geo-

logical and blasting information (such as rock quality, type of

explosive, delay time, etc.). However, they can only be

obtained in a progressive manner, since vibration records are

gradually collected at different stages of the project. How to

use limited site-specific data to obtain reliable PPV predic-

tion becomes a burning issue. In recent years, probabilistic

analysis has aroused more and more attention in geotechnical

engineering in order to deal with various types of modeling

error and uncertainty (Griffiths and Fenton 1998; Zhang et al.

2004, 2009; Fenton and Griffiths 2005, 2008; Phoon and

Kulhawy 2005; Yuen and Katafygiotis 2005; Griffiths et al.

2009; Huang et al. 2010; Ching et al. 2010, 2012; Phoon

et al. 2010; Wang 2011; Wang et al. 2010; Yuen 2010a, b;

Blair 2011a, b; Yuen and Mu 2011; Ching and Phoon 2012;

Chiu et al. 2012a, b; Yan et al. 2012, 2013; Cao and Wang

2012, 2014; etc.). In this study, a methodology which

employs the Bayesian probabilistic approach to shed light on

the prediction of the PPV is presented.

The main objective of this paper is to demonstrate the

process of deriving a probabilistic-based blast design for-

mula using site-specific vibration records. A reliable con-

fidence level of the PPV can be constructed by the

proposed techniques with different computational efforts. It

will be shown that a simple spreadsheet can be developed

by the users to perform the calculation, without the need

for any add-on tools. The proposed method is extremely

useful and friendly to engineers to better predict the mag-

nitude of blast-induced vibration when site-specific data

are particularly limited at an early stage of a project.

2 Empirical Design Formula

Blair (2011a) has comprehensively reviewed two broad

categories of vibration prediction methods being

employed in blast engineering: the waveform superposi-

tion technique and the charge weight scaling technique,

respectively. The study concluded that the charge weight

scaling technique remains the most widely used approach

to predict vibrations due to rock blasting. Over the past

several decades, many different empirical formulas have

been proposed to estimate the PPV from the amount of

charge weight per delay W and the distance between the

blasting source and the receiver d (Duvall and Petkof

1959; Langefors and Kihlström 1963; Davies et al. 1964;

Ambraseys and Hendron 1968; Bureau of Indian Stan-

dards, BIS 1973; Ghosh and Daemen 1983; Pal Roy

1993). Nevertheless, basic flaws in the charge weight

scaling laws have been discussed by Blair (2004) in

detail. Among these formulas, two of them proposed by

Duvall and Petkof (1959) and Ambraseys and Hendron

(1968), respectively, are the most common ones. They

are often referred to as the square- and cube-root atten-

uation formula, respectively. The functional forms of

these formulas are obtained from the consideration of

energy decay:
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v ¼ a2 SD2ð Þ�b2 ¼ a2

d
ffiffiffiffiffi

W
p
� ��b2

ð1Þ

v ¼ a3 SD3ð Þ�b3 ¼ a3

d
ffiffi

½
p

3�W

 !�b3

ð2Þ

where v is the PPV value in mm/s; d and W are the distance

in m and charge weight per delay in kg; SDk ¼ d=
ffiffi

½
p

k�W
(k ¼ 2; 3) is called the scaled distance; and ak and bk

(k ¼ 2; 3) are two positive fitting constants calibrated from

a given database of blast records. Traditionally, the cube-

root scaling law is used for airblast and is rarely used to

describe ground vibration. It is worth noting that the for-

mulas are empirical. Therefore, the coefficient values

cannot be derived in an analytical manner.

To estimate the regression coefficients, the vibration

records of a project are collected and plotted in the ln v�
ln SD space. Data points are always scattering severely due

to the fact that each blast is carried out under different

conditions. In other words, there are other influencing

factors not being incorporated into the formula. They

include the difference in geology, the type of explosives,

the geometry of the explosions, the blast timing, etc. A

simple linear regression technique has been used to derive

the ‘‘best-fitted’’ line for the collected data. Various sta-

tistical approaches can then be undertaken to derive the

confidence level of the blast-induced vibration. By

assuming a log-normal occurrence of the PPV at any par-

ticular scaled distance, Dowding (1985, 1996) presented an

approximate statistical method to derive the 84 and 95 %

confidence lines of the PPV using the standard error of the

prediction (Benjamin and Cornell 1970). The 95 % confi-

dence line refers to the PPV value that will not be exceeded

in 95 out of 100 blasts. In other words, the 95 % confidence

line can be viewed as the 95th percentile line. Equations

(3a) and (3b) summarize the respective confidence lines:

v84 % ¼ 10v̂ â;b̂;SDð ÞþSE log vð Þ;log SDð Þð Þ ð3aÞ

v95 % ¼ 1:645� 10v̂ â;b̂;SDð ÞþSE log vð Þ;log SDð Þð Þ ð3bÞ

where v84 % and v95 % are the 84 and 95 % confidence lines,

respectively; v̂ â; b̂; SD
� �

is the predicted v at SD based on

the best-fitted parameters â and b̂ derived from regression

analysis; and SE log vð Þ; log SDð Þð Þ is the standard error of

the predicted log vð Þ; which is given by:

SE log vð Þ; log SDð Þð Þ ¼ SE Y ;Xð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 2

X

Y � �Yð Þ2 �
P

X � �Xð Þ Y � �Yð Þ½ �2
P

X � �Xð Þ2

" #

v

u

u

t ð4Þ

in which Y ¼ log vð Þ and X ¼ log SDð Þ for brevity, and N is

the total number of datasets. This is referred to as Method I

in this investigation. It is worth noting that a set of com-

monly used empirical fitting coefficients in Hong Kong was

derived based on this approach (Li and Ng 1992).

Statistically, a confidence interval for a new observation

Ya can be evaluated by the following equation (Draper and

Smith 1981):

Ya ¼ Ŷ � t 0:5þ a
2
; dof

� �

� SE Y ;Xð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

N
þ X � �Xð Þ2
P

X � �Xð Þ2

s

ð5Þ

where Y and X is assumed to be linearly related; Ŷ is the

prediction based on the best-fitted parameters resulting

from linear regression analysis; a denotes the confidence

interval, say 0.9; t represents the Student’s t distribution;

dof denotes the degrees of freedom, which is N - 2 in this

case; and SE Y;Xð Þ is the standard error of the prediction

referring to Eq. (4). This is referred to as Method II in this

study.

Finally, engineers can use the confidence line as a

design curve to determine the appropriate amount of

explosives for each blast operation, as illustrated in the

following. A horizontal line at a prescribed PPV limit cuts

the design curve at a scaled distance. This scaled distance

can be used to calculate the charge weight per delay of the

blasts when the distance between the blast source and the

sensitive receiver is known. As a result, the amount of

charge weight per delay can be determined.

Recently, Blair (2011a) presented a probabilistic ana-

lysis in which the probability of exceeding a prescribed

PPV limit can be directly computed using a simple

spreadsheet when the set of site-specific vibration data is

given. The strength of this method is that only the recorded

data are needed and the only assumption involved is that

the scatter in data in forthcoming blast activities will be

similar to that of the previously recorded blasts. The

method offers a simple yet robust way to plan a blast.

3 Blasting Projects and Vibration Limits in Hong Kong

In Hong Kong, the use of explosives is controlled by the

Hong Kong Ordinance Chapter 295: Dangerous Goods

Ordinance. The regulations are monitored and controlled

by the Mines Division of the Civil Engineering and

Development Department (CEDD). A blasting assessment

report should be prepared in accordance to the guidelines/

requirements given by the Geotechnical Engineering Office

(GEO 2006) and Buildings Department (2007). Various

guidelines have been provided in Hong Kong when blast-

ing is adopted for site formation/foundation works (Wong

and Pang 1992; Buildings Department 2004, 2007, 2009;

Hong Kong Special Administrative Region, HKSAR 2006;
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etc.). In general, a prescribed PPV limit of 25 mm/s is

adopted regardless of the vibration frequency. However,

this limit could become more stringent when other stake-

holders are involved. For instance, the PPV limit for water-

retaining structures, electric power stations, and historical

monuments could drop to 13, 11, and 5 mm/s, respectively,

as specified by different parties. Furthermore, a no-blast

zone can be set up depending on the nature of the sensitive

receivers. For example, blasting is generally not permitted

to be carried out within 3 m of a tunnel owned by the Mass

Transit Railway Corporation Limited or within the pro-

tective zones of the Water Supplies Department unless

prior approval is obtained.

In recent years, there has been a sharp increase in the

number of infrastructure projects in Hong Kong. These

projects can be broadly divided into three main categories

according to their functions: (1) transportation systems,

mainly due to the extension lines of the underground

transits and some other road tunnels; (2) drainage systems,

which were designed to relieve the flooding risk of some

low-lying urban areas in Hong Kong; and (3) site forma-

tion, the restoration of quarry or hilly terrain for land

development. Furthermore, the HKSAR Government has

been promoting the development of rock caverns as an

option with great potential to increase the land supply in

Hong Kong, whereas other options like reclamation,

redevelopment, and land rezoning and resumption are more

controversial and difficult to be implemented. Therefore,

increasing rock drill-and-blast activities have taken place in

the past few years and this trend is expected to continue in

the coming years or even decades. In Hong Kong, at the

early stage of a blasting project when insufficient field

monitoring records are available to establish a more precise

site-specific fitting formula, the fitting coefficients (and,

thus, formula) suggested by Li and Ng (1992) are often

referred. Li and Ng (1992) summarized 520 sets of blasting

data which were collected between 1984 and 1991. The

database contained blast records taken from various types

of projects, including site formation, quarrying, tunneling,

caisson sinking, excavation, and submarine blasting.

Blasting can be categorized into confined and free-face

blasts. Confined blasting includes most of the tunnel blasts

and sink blasts, while free-face blasting includes site for-

mation and excavation.

Linear regression analysis of the records was undertaken

to determine the best-fitted coefficients a2 and b2 in Eq. (1)

and, thus, the best-fitted line. As mentioned in the previous

section, Li and Ng (1992) then constructed the 84 and 95 %

confidence lines following the method suggested by

Dowding (1996), as shown in Eqs. (3a) and (3b). Table 1

summarizes the fitting constants from their study. Before

sufficient site-specific vibration records are available, the

Hong Kong Government accepts the 84 % confidence line

as proposed by Li and Ng (1992) to be adopted in the blast

design of a different project. As presented earlier, the

amount of explosive charge per delay can then be deter-

mined based on the known physical distance between the

blast source and the receiver, and the prescribed PPV limit.

Nevertheless, the use of the fitting coefficients provided

by Li and Ng (1992) in a different project is definitely not

ideal. The coefficients simply miss out any site-specific

characteristics of the project, such as the geological setting

and material properties. It is, therefore, highly desirable to

obtain site-specific fitting coefficients and, thus, to use the

design formula containing these coefficients for subsequent

blasting activities. However, site-specific measurements can

only be obtained in a progressive manner. The reliability of a

PPV-scaled distance relation often becomes questionable

when very few data are used to calibrate the fitting coeffi-

cients. In Hong Kong, the number of minimum blast records

required to derive the site-specific fitting constants is advised

by the Mines Division on a case-by-case basis.

More importantly, the modeling uncertainty is not

explicitly taken into account in the construction of the

confidence line in either Methods I or II. The modeling

uncertainty becomes more critical when site-specific fitting

coefficients are derived at the early stage of a project where

only very limited monitored data are available. In this case,

the uncertainty of the model parameters, and, hence, the

model output, is so large such that negligence of the

modeling uncertainty induces substantial error in estab-

lishing the confidence interval. A Bayesian probabilistic

method is presented in this study to resolve this problem.

Details of the method are presented next.

4 Bayesian Framework

Consider a database D with N blast records that comprise

the measurements of v, d, and W. The scaled distance SD2

can then be computed from d and W. With the Bayesian

probabilistic approach, the following objectives can be

achieved: (a) to estimate the optimal model parameters a2

and b2 in the empirical relation; (b) to quantify their

associated uncertainty by evaluating their posterior distri-

bution; and (c) to quantify the uncertainty of the empirical

formula output for the construction of the confidence

interval of any prescribed reliability levels.

Table 1 Fitting coefficients suggested by Li and Ng (1992)

Description a2 b2

Best-fitted line 310 1.22

84 % Confidence level line 644 1.22

95 % Confidence level line 1,032 1.22
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The square-root formula shown in Eq. (1) is used here to

illustrate the computational concept of the proposed

method. It should be noted that the same procedure is also

valid for Eq. (2) when airblast is concerned. First, Eq. (1) is

rewritten as a linear regression problem:

ln vm ¼ ln vþ e ¼ ln a2 � b2 ln SD2 þ e ð6Þ

where vm is the measured PPV value and e represents the

model output error in the logarithmic scale. In the ln v�
ln SD2 space, the term ln a2 represents the vertical intercept

of the fitting line at SD2 ¼ 1; while �b2 gives its slope. The

model output error, which is a collective quantity of the

measurement noise and the modeling error, is assumed to be

Gaussian with zero mean and variance r2
e : In this case, the

modeling error includes the deficiency of this simple

empirical formula in considering the underlying problem.

This includes the negligence of the characteristics of wave-

transmitting media, the geometric setting of the blast area,

the blast-hole configurations, the type of explosives, etc.

The variable r2
e represents the variance of the model output

error and it is an unknown parameter to be estimated using

the measurements. The updated/posterior probability

density function (PDF) of the model parameters given

database D can be expressed as (Yan et al. 2009):

pðln a2; b2; rejDÞ ¼ c0pðln a2; b2; reÞð2pÞ�N=2r�N
e

� exp � N

2r2
e

Jgðln a2; b2jDÞ
	 


ð7Þ

where c0 is the normalizing constant such that the volume

under the updated PDF is unity and pðln a2; b2; reÞ is the

prior PDF of the uncertain parameters to express the user’s

judgment about the relative plausibility of the values of

these parameters before the data are obtained. In this study,

a non-informative prior distribution is employed so that the

prior PDF can be absorbed into the normalizing constant.

As a result, the Bayesian inference will rely solely on the

likelihood of the measurements. The function

Jgðln a2; b2jDÞ is the goodness-of-fit function which

indicates how well the model fits the data (Yuen and

Kuok 2011) and it takes the following form:

Jgðlna2;b2jDÞ ¼
1

N

X

N

i¼1

lnv a2;b2;SD2ðiÞ
� �

� lnvmðiÞ
� �2 ð8Þ

where vða2; b2; SD2ðiÞÞ is the model output of the ith record

with parameters ln a2 and b2; and vm ið Þ is the corresponding

measured value. This function gives the variance of the

fitting error between the measurements and the corre-

sponding model outputs. The optimal model parameters

ln â2 and b̂2 can be obtained by maximizing the updated

PDF pðln a2; b2; rejDÞ in Eq. (7) (the symbol x̂ is used to

denote the optimal value of the variable x).

There are three unknowns (ln a2; b2; and r2
e ) for the

empirical model considered in Eq. (1). Nevertheless, with a

non-informative prior distribution, the optimization prob-

lem can be decomposed into two sub-problems: (i) to

minimize the objective function Jg with respect to the

model parameters ln a2 and b2; and (ii) to maximize the

updated PDF in Eq. (7) with respect to r2
e given the model

parameters from step (i). The first optimization problem

can be tackled by solving simultaneously oJg=o ln a2 ¼ 0

and oJg=ob2 ¼ 0; and this yields the following closed-form

solution of the optimal parameters (Yuen 2010a):

ln â2

b̂2

	 


¼
N �

P

N

i¼1

ln SD2 ið Þ

�
P

N

i¼1

ln SD2 ið Þ
P

N

i¼1

ln SD2 ið Þ
� �2

2

6

6

6

4

3

7

7

7

5

�1

�

P

N

i¼1

ln vm ið Þ

�
P

N

i¼1

ln SD2 ið Þ ln vm ið Þ

2

6

6

6

4

3

7

7

7

5

ð9Þ

After obtaining the optimal model parameters ln â2 and

b̂2; the fitting error variance r̂2
e can be found by solving

opðln a2; b2jDÞ=ore ¼ 0: By Beck and Katafygiotis (1998),

it is equal to the minimum of the goodness-of-fit function:

r̂2
e ¼ min

ln a2;b2

Jgðln a2; b2jDÞ ¼ Jgðln â2; b̂2jDÞ ð10Þ

Furthermore, the posterior covariance matrix Rln a2;b2
for

the model parameters can be computed as follows (Yuen

2010a):

Rln a2;b2
¼ r̂2

e

N �
P

N

i¼1

ln SD2ðiÞ

�
P

N

i¼1

ln SD2ðiÞ
P

N

i¼1

ln SD2ðiÞ
� �2

2

6

6

4

3

7

7

5

�1

ð11Þ

This allows for the computation of not only the posterior

variance of ln a2 and b2; but also the correlation coefficient

between them. In the following sections, two different

approaches, Monte Carlo simulation and direct computa-

tion, respectively, involving different degrees of compu-

tational effort, to derive the confidence intervals of the

vibration formula will be presented.

5 Reliability Analysis

5.1 Monte Carlo Simulation

Instead of obtaining a single empirical relationship using

the optimal values for ln a2 and b2; the posterior PDF

pðln a2; b2; rejDÞ in Eq. (7) is used to generate numeric

On The Proper Estimation of Confidence Interval 365

123



samples of the parameters for the quantification of the

modeling uncertainty. Specifically, a large number of

samples Ns of these parameters (ln a2ðjÞ; b2ðjÞ; reðjÞ;

j ¼ 1; 2; . . .;Ns) can be simulated efficiently by the Markov

chain Monte Carlo simulation (Metropolis et al. 1953;

Hastings 1970). Then, the jth PPV sample can be estimated

by Eq. (6), as shown below:

ln vðjÞ ¼ ln a2ðjÞ � b2ðjÞ ln SD2 þ eðjÞ ð12Þ

where the measurement noise eðjÞ can be generated by

the Gaussian generator with zero mean and variance

r̂2
eðjÞ: By doing so, a large collection of Ns PPV samples

at any values of scaled distance can be generated. Then,

at any particular scaled distance, the PPV values are

sorted to identify the corresponding value at a prescribed

percentile level. For example, the 5th and 95th percentile

levels are used in this study. Therefore, the lower and

upper bounds of the PPV for the desired confidence

levels can be obtained under such a scaled distance (e.g.,

the 5th and 95th percentiles give a 90 % confidence

interval). These steps are repeated for different scaled

distances and, thus, a confidence region for different

scaled distance values can be obtained. It is referred to

as Method III in this study.

5.2 Direct Computation

Alternatively, a direct approach can be used with less

computation. First, Eq. (6) can be rewritten as follows:

ln vm ¼ 1 � ln SD2½ � ln a2

b2

	 


þ r̂e�e ¼ XTCþ r̂e�e ð13Þ

where X ¼ 1 � ln SD2½ �T; C ¼ ln a2 b2½ �T; and �e
follows the standard Gaussian distribution (denoted by

N 0; 1ð Þ). The variance of e is taken as the optimal value r̂2
e

in Eq. (10) to simplify the calculation. The variance of the

first term on the right-hand side of Eq. (13) can be written

as:

Var ln vð Þ ¼ XTE C� Ĉ
� �

C� Ĉ
� �T

	 


X ð14Þ

where Ĉ is the optimal parameter vector. By definition, the

term E½ðC� ĈÞðC� ĈÞT� is the posterior covariance

matrix Rln a2;b2
as shown in Eq. (11) (Yuen 2010a).

Therefore, the variance of ln vm can be evaluated as

follows.

Var ln vmð Þ ¼ XTRln a2;b2
Xþ r̂2

e ð15Þ

Therefore, it can be seen clearly that the confidence

interval bounds are in general parabolic curves instead of

straight lines.

The standard deviation rln vm
of ln vm can then be

quantified (i.e., rln vm
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ln vmð Þ
p

). The upper and

lower bounds of ln vm (ln v�) with various degrees of

confidence levels can be formulated by:

ln v� ¼ ln v ln â2; b̂2

� �

� vrln vm
ð16Þ

where v is associated with the confidence level specified by

the user. For a confidence level of a, it is given by v ¼
U�1ð0:5þ a=2Þ; where U�1 is the quantile function [i.e.,

the inverse function of the cumulative distribution function

(CDF) of the standard Gaussian random variable]. For

instance, v = 1.645 and 1.96 give curves enclosing 90 and

95 % of the probability for the prediction of ln vm;

respectively. This is referred to as Method IV. Both

Methods III and IV originate from the same Bayesian

approach, but Method IV is much simpler than Method III

(Monte Carlo simulation), as less computational effort is

required. It is favorable to practicing engineers in com-

parison with Method III since the analysis can be done

simply by a standard package of spreadsheets without the

need for any add-on tools. The ‘‘Appendix’’ shows the

template of such a spreadsheet for readers’ reference.

Detailed steps of the procedure are also given.

6 Case Study

Blast-induced vibration data collected from a site forma-

tion project in Hong Kong are used to demonstrate the

performance of the proposed methods. The project com-

prises the formation of a *20-ha platform and the con-

struction of infrastructure facilities, including roads,

bridges, retaining structures, and drainage works for resi-

dential and community uses. The site is a rocky rugged

area developed on granite. The site works commenced on

Jan 31, 2008 and the tasks are expected to be completed

between 2011 and 2014 in stages. A large amount of rock

blast activities have been carried out in the three major

blasting zones inside the site. Both cartridge and bulk

emulsion are used as explosives and the blasts are initiated

by the Austin non-electric detonator. A total of 194 sen-

sitive receivers have been identified in the vicinity of the

site, including high-rise residential blocks, slopes, roads,

schools, transformer room, water reservoir, etc.

Ground vibration is monitored using a NOMIS 7000

seismograph. The sensor is able to record vibration in the

range 0.127 and 254 mm/s (0.005 and 10 in/s). The

vibration data recorded on slopes (identified as one of the

sensitive receivers) are used for the analyses presented in

this paper. Note that the same procedure is applicable to

other sensitive receivers. In a blast record, the maximum

vibration among the vibrations in three orthogonal
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directions is used as the PPV in the analysis. A total of 957

vibration records of bench blasting using cartridge emul-

sion were collected for blasts that had taken place from

November 2008 to February 2011. In this study, the records

are first separated into two groups. The first group contains

only the blast records collected at the early stage of the

project (N1 data points), while the second group contains

the remaining records (N2 data points). As a result,

N1 ? N2 = 957. Later in this paper, the effect of N1 on the

prediction of vibration will be examined.

The records in the first group are used to estimate the

fitting coefficients of the empirical formula and, thus, to

provide an estimation of the PPV with the scaled distance

according to the methods shown in Eqs. (3a), (3b), and (5),

Methods I and II, respectively. Furthermore, the same N1

data points are fed into the proposed Bayesian methods and

the confidence interval can be constructed based on the

aforementioned reliability analyses. The effect of N1 on the

prediction performance of the formula can be studied. The

entire database (957 data) is then used to assess the

prediction performance of these approaches. Table 2

summarizes the number of blast records and ranges of

parameters at different stages of the project. It is noted that

the database for N1 = 119 and N1 = 153 contain the same

ranges of PPV, W, d, and SD2. However, the data distri-

butions are slightly different, as the latter contains more

data points. The analyses will be carried out for the cases of

N1 = 40, 82, 119, 153, and 196, corresponding to the first

few stages of the project.

7 Results

7.1 Fitting Coefficients for N1 = 82

In this section, the results obtained by analyzing the data-

base with N1 = 82 (records collected up to Feb 27, 2009;

3 months of blasting) are used to demonstrate the proposed

Bayesian methods. Note that similar analyses are per-

formed also for other values of N1, namely, 40, 119, 153,

and 196 (see Table 2) to investigate the effect of N1 and the

results will be shown in a later section. Figure 1 shows the

82 PPV records plotted against the corresponding scaled

distance. Figure 2 shows the conditional posterior PDF

pðln a2; b2jD; r̂eÞ computed using Eq. (7) and its contours.

The optimal coefficients are found to be ln â2 ¼ 8:216 and

b̂2 ¼ 1:884 (for N1 = 82), at which the goodness-of-fit

function Jgðln a2; b2jDÞ is minimized. The solid line shown

in Fig. 1 represents this ‘‘best-fitted’’ line which is asso-

ciated with the optimal coefficients. Table 3 summarizes

the optimal values (^), and covariance (r2) of the estimated

parameters ln a2; b2; and e for different N1. Furthermore,

the column q ln a2; b2ð Þ shows the correlation coefficients

between ln a2 and b2 for different cases. One can see that

the two model parameters are highly correlated (q[ 0:99).

7.2 Confidence Interval for N1 = 82

The confidence line (CL) or confidence interval (CI) is

constructed by the four different approaches previously

mentioned: (Method I) approximate method by Dowding

Table 2 Summary of data

records

a Bayesian analysis is carried

out on this database to derive

the PDF of the fitting

coefficients (ln a2 and b2) and

the fitting error variance r2
e :

Confidence intervals will then

be derived

Data collection: from

May 11, 2008 to:

Number of

data (N1)

Range [minimum, maximum]

PPV (mm/s) Charge weight

per delay, W (kg)

Distance, d (m) Scaled distance,

SD2 (m=
ffiffiffiffiffi

kg
p

)

Dec 30, 2008 40a [1.27, 30.1] [4, 23] [43.1, 248.8] [15.3, 57.1]

Feb 27, 2009 82a [1.1, 30.1] [3, 23] [43.1, 257.3] [15.3, 72.2]

Mar 30, 2009 119a [1.1, 30.1] [1.4, 23] [43.1, 257.3] [15.3, 105.7]

Apr 30, 2009 153a [1.1, 30.1] [1.4, 23] [43.1, 257.3] [15.3, 105.7]

Jul 31, 2009 196a [1.1, 30.1] [1.4, 23] [43.1, 376.2] [15.3, 146.5]

Feb 28, 2011 957 [0.5, 33.4] [1.1, 33.2] [23.9, 376.2] [10.0, 183.9]

Fig. 1 Vibration data collected at the site (N1 = 82)
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(1996) [see Eqs. (3a) and (3b)], which derives CL; (Method

II) statistical approach shown in Eq. (5), which gives CI;

(Method III) Monte Carlo simulation for CI; and (Method

IV) direct computation for the CI. Details of each method

are shown as follows.

In Method I, the best-fitted line is first obtained by linear

regression analysis with N1 data points (82 in this case,

represented by diamonds in Fig. 3). It gives a2 ¼
3699; b2 ¼ 1:884 , and R2 ¼ 0:677: The 95 % CL, which

is represented by the dotted line in Fig. 3, is then con-

structed using Eq. (3b). All 957 blast data points (denoted

by the triangles) are then plotted in the same figure. Except

for two data points, they appear to show a minimum PPV

of about 1.1 mm/s (1.143 mm/s by reading from the

monitoring records). This is actually not the minimum

detectable vibration as specified by the sensor, which is

0.127 mm/s, as mentioned earlier. The vibration magnitude

of 1.143 mm/s is simply the maximum among the vibra-

tions in three orthogonal directions recorded in the studied

slopes, and this maximum is adopted for the analysis.

When other sensitive receivers are studied (for instance,

transformer rooms), smaller maximum PPV (\1.1 mm/s)

can be found. However, the reason why many blasts tend to

give a maximum PPV of about 1.1 mm/s on the studied

slopes in an individual blast remains unclear. The perfor-

mance of Method I is evaluated when the dotted line in

Fig. 3 is compared to all the collected data. Among the

total of 957 records, it is found that 51 points fall above this

95 % CL. It may give an impression that the result is,

Fig. 2 Posterior probability density function (PDF) of ln a2 and b2 (N1 = 82)

Table 3 Statistics of the

obtained fitting coefficients for

different N1

N1 ln â2 r2
ln a2

b̂2 r2
b2

r ln a2; b2ð Þ q ln a2; b2ð Þ r̂2
e

40 8.3581 0.3824 1.9630 0.0300 0.1066 0.9951 0.1486

82 8.2157 0.2667 1.8840 0.2021 0.0738 0.9956 0.1940

119 8.0229 0.1963 1.8167 0.0147 0.0534 0.9956 0.2039

153 7.7790 0.1648 1.7332 0.0122 0.0447 0.9956 0.2215

196 7.4509 0.0991 1.6361 0.0072 0.0265 0.9944 0.2178

Fig. 3 Vibration data collected at the site. The best-fitted line (solid

line) is obtained by linear regression, whereas the 95 % confidence

line (dotted line) is derived according to Eq. (3b) (Method I)
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indeed, very good (51/957 = 5.3 % = 5 %) and Method I

performs well. This issue will be revisited later when the

results from all four methods of analysis with different N1

are ready.

The performance of Method II is then investigated.

Figure 4 shows the best fitted line (solid line) and the 5th

and 95th percentile lines (dotted lines), which offer a 90 %

confidence interval, derived according to Eq. (5) based on

N1 = 82. It is found that 81 (81/957 = 8.5 %) and 87

(9.1 %) data points, among the 957 data records, fall below

and above the two percentile lines, respectively.

Next, the results obtained using the proposed Monte

Carlo approach is presented. First, note that the best-fitted

line of the proposed approach is identical to conventional

linear regression and the difference is in the confidence

interval. According to the posterior PDF of the model

parameters obtained from the Bayesian analysis, Markov

chain Monte Carlo simulation is carried out to generate

500,000 samples of the uncertain parameters (Ns ¼
500;000). In other words, 500,000 sets of ln a2; b2; and e
can be obtained. For any scaled distance value, the corre-

sponding values of ln v (and, thus, PPV) can be computed

by using Eq. (12). In other words, 500,000 samples of the

PPV value are obtained for any particular scaled distance

value. The PPV values are then sorted to determine the

percentile positions (i.e., the PPV values for the 5th and

95th percentiles in this application). Finally, by drawing

the two curves to connect these percentile positions at

different scaled distances, the confidence interval can be

obtained. In this problem, it is found that the bounds of the

CI are slightly curved in the ln v� ln SD2 space, and they

are depicted in Fig. 5. The solid line represents the 50th

percentile line of the 500,000 simulated PPV values, while

the dotted lines (5th and 95th percentiles, respectively)

enclose 90 % of the simulated vibration records. It is found

that 83 and 96 records (i.e., 8.6 % and 9.8 % of the total of

957 records) fall below and above the 5th and 95th per-

centile lines, respectively.

Lastly, results of the direct computation method are

presented. Equation (15) is used to quantify the variance of

ln vm; which is summarized in Table 4. The term

XTRln a2;b2
X; which quantifies the uncertainty of the model

parameters, decreases with increasing N1 at any scaled

distance. It is expected because the uncertainty of the

model parameters should decrease when more data are

collected for the analysis. As shown in the table, r2
ln vm

decreases noticeably with increasing N1 at extreme SD2

(SD2 ¼ 1 or 1000 m/
ffiffiffiffiffi

kg
p

). At intermediate values of SD2,

the change of r2
ln vm

with N1 is minor. In fact, most of the

collected data fall into the range 10� SD2� 100 m/
ffiffiffiffiffi

kg
p

:

With a choice of v ¼ 1:645; the 5th and 95th percentiles of

ln vm (i.e., enclosing 90 % of the data) can be computed. It

is worth noting that a different choice of v will give bounds

CL for 90% 
data

Fig. 4 Vibration data collected at the site. The dotted lines represent

the 90 % confidence interval evaluated by Eq. (5) based on the first 82

data records (Method II)

CL for 
90% data

Fig. 5 Vibration data collected at the site. The dotted lines represent

bound curves enclosing 90 % of the data from the Monte Carlo

simulation (Ns = 500,000) based on the first 82 data records (Method III)
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with different confidence intervals. Figure 6 shows the

results of direct computation. The obtained percentile lines

locate in essentially the same position as those derived

from the Monte Carlo simulation. The results should be

expected, as the two methods are essentially equivalent. It

is found that 8.6 and 9.7 % of the data lie below and above

the 5th and 95th percentile lines, respectively, when all

blast records are used to quantify the performance of this

direct computation method. The ‘‘Appendix’’ illustrates

how a spreadsheet can be developed to carry out the study

easily.

7.3 Effect of the N1 Value

It is expected that the reliability of the confidence interval

can be enhanced by using more data points for the

Bayesian analysis to update the posterior PDF of the fitting

coefficients. This is because more information about the

model can be reflected by a larger number of data points

N1. The effect of N1 on the reliability of the model pre-

diction is studied and summarized as follows. As shown in

Table 3, the number of data points, N1, used to evaluate the

confidence intervals varies from 40 to 196, corresponding

to about 4 to 20 % of the entire dataset. Note that, in a real

project, the data are collected in a progressive manner.

Increasing N1 results in the reduction of the standard

deviation of both fitting parameters (ln a2 and b2). The

trend is expected, as more measurements in a database give

more information about the model and can, thus, reduce the

uncertainty of the model prediction. Table 5 summarizes

the effect of N1 on the performance of the reliability of CL

or CI. Method III (Monte Carlo simulation) and Method IV

(direct computation) give essentially the same results. For

brevity, only the results of Method IV are shown in the

table. The following observations can be made:

1. At N1 = 40, all methods give rather poor predictions.

Yet, Method I, among all, appears to give the best

performance: 10.9 % PPV of the 957 blasts fall above

the 95 % CL, in comparison with 18.4 and 19.9 % for

Methods II and IV, respectively.

2. By increasing N1, all methods show a decreasing

amount of PPV falling above the 95 % CL and the

95th percentile line. In particular, Method I shows only

2.4 % of data lying above the 95 % CL when N1

becomes 196, in comparison with 10.9 % at N1 = 40.

3. Methods II and IV give very similar results, particu-

larly when N1 becomes large. The amount of data lying

above the 95th percentile line decreases from about 19

to 5 % when N1 increases from 40 to 196.

7.4 Performance of Various Methods

As shown in Table 5, it can be seen that there are always

more than 5 % PPV measurements falling below the 5th

percentile of both Methods II and IV. The number has an

increasing trend with N1. It is due to the fact that more

conservative blast design is made occasionally in a blasting

Table 4 Variance of the peak

particle velocity (PPV) derived

from different N1 records

N1 r̂2
e XRln a2 ;b2

XT and (r2
ln vm

)

SD2 ¼ 1 SD2 ¼ 10 SD2 ¼ 100 SD2 ¼ 1000

40 0.1486 0.3824 (0.5310) 0.0506 (0.1992) 0.0369 (0.1855) 0.3414 (0.4900)

82 0.1940 0.2667 (0.4607) 0.0361 (0.2301) 0.0239 (0.2179) 0.2301 (0.4240)

119 0.2039 0.1952 (0.3991) 0.0275 (0.2313) 0.0159 (0.2197) 0.1605 (0.3644)

153 0.2215 0.1648 (0.3863) 0.0237 (0.2453) 0.0125 (0.2340) 0.1311 (0.3526)

196 0.2178 0.0991 (0.3169) 0.0151 (0.2329) 0.0070 (0.2248) 0.0748 (0.2926)

Fig. 6 Vibration data collected at the site. The dotted lines represent

bound curves enclosing 90 % of the data from direct computation

based on the first 82 data records (Method IV)
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project, where less explosive is used in some planned

blasts. As a result, only small vibration is then recorded in

some blasts, which explains the data scattering below the

5th percentile line. In practice, engineers are more con-

cerned with the amount of vibration records which show

the PPV exceeding the design limit, rather than those

falling below a certain percentile line. When one examines

the amount of PPV records lying above the 95 % CL or

95th percentile line predicted by N1 = 82, Method I gives a

close to 5 % prediction, which appears to outperform the

other methods. However, it does not imply that Method I is

a robust approach. The overconservatism of this method

can be readily seen when N1 increases (less than 3 % of

data falling above the 95 % CL at N1 = 153 and 196). An

increase in N1, yet, does not improve the performance of

this method. In other words, the method cannot learn from

additional data. On the contrary, Methods II and IV

(including Method III) show a clear improvement when an

increasing amount of data are used to compute the pre-

diction (i.e., close to 5 % of data is predicted to fall above

the 95th percentile line with increasing N1). Despite the

fact that Method II gives very similar results to Method IV,

the Bayesian-based Method IV is recommended. This is

because, in this newly proposed method, the contribution

of uncertainty from fitting parameters and modeling error

can be clearly quantified, which offers better understanding

of the model prediction.

8 Conclusion

Blast-induced vibration has received much attention

over the last several decades. Determination of the

explosive charge weight subject to a prescribed

vibration limit is an important task. In this paper, two

existing methods for the construction of confidence

intervals of the blast design formula are reviewed. The

problem is then revisited from a Bayesian probabilistic

perspective, where uncertainty of the formula output

can be explicitly quantified. By using the proposed

methods, blast design formula with different confidence

intervals can be obtained. Detailed computation of the

methods and their performance are illustrated by a

recent site formation project in Hong Kong where

many rock blasting activities have been undertaken.

First, both proposed methods are useful at the early

stages of a blasting project when only limited site-

specific data are available. They provide reliable con-

fidence intervals of blast-induced vibrations and their

results are essentially the same. Furthermore, the direct

computation approach is extremely useful, as simple

spreadsheet calculation can be developed by the users

to conduct the analysis. Neither add-on tools nor

complicated iterations are required for the analysis,

and this would be very favorable to practicing

engineers.
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Table 5 Effect of N1 on

prediction reliability

a The results obtained from

Methods III and IV are very

close. Therefore, only the

results obtained from Method

IV are shown in the table for

brevity

N1 Method I Method II Method IVa

Number of data

falling above

95 % CL

Number of data

falling below 5th

percentile line

Number of data

falling above 95th

percentile line

Number of data

falling below 5th

percentile line

Number of data

falling above 95th

percentile line

40 104 (10.9 %) 66 (6.9 %) 176 (18.4 %) 74 (7.7 %) 190 (19.9 %)

82 51 (5.3 %) 81 (8.5 %) 87 (9.1 %) 82 (8.6 %) 93 (9.7 %)

119 38 (4.0 %) 88 (9.2 %) 64 (6.7 %) 90 (9.4 %) 70 (7.3 %)

153 28 (2.9 %) 93 (9.7 %) 50 (5.2 %) 94 (9.8 %) 51 (5.3 %)

196 23 (2.4 %) 97 (10.1 %) 45 (4.7 %) 97 (10.1 %) 45 (4.7 %)
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Appendix: A Template for Spreadsheet Analysis

Columns for 
raw data 

Entries to calculate the 
optimal fitting coefficients 
– Eq. (9) 

Eq. (9) 

Eq. (11) 

Eq. (8)  
& (10) 

User specify 

Graph displaying the results 

Eq. (6)  

Eq. (16) 

Eq. (15) 
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Summary of the procedure:

1. Input the raw data, including measurements of vm; W,

and d (columns A–D).

2. Calculate the following parameters: ln vmð Þ; SD2 [see

Eq. (1)], ln SD2ð Þ; ln SD2ð Þ½ �2; and ln SD2ð Þ � ln vmð Þ½ �;
as required in Eq. (9). List them in columns F–J.

3. Evaluate the optimal fitting coefficients (cells M11–

M18) according to Eq. (9).

4. Calculate Ĵg and r̂2
e according to Eqs. (8) and (10)

(cells M20–M21).

5. Evaluate the covariance matrix [see Eq. (11)] (cells

M25–M27).

6. Compute ln v ln â2; b̂2

� �

for each blast based on

Eq. (6) (column O).

7. Calculate e2 based on e2 ¼ ln vm � ln v ln â2; b̂2

� �� �2

[see Eq. (6)] (column P).

8. Specify v according to v ¼ U�1ð0:5þ P=2Þ (see cell

S10).

9. Calculate Var ln vmð Þ at different SD2 [see Eq. (15)]

(column T).

10. Evaluate the upper and lower bounds of v based on

Eq. (16).
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