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Abstract The diametrical compression of a circular disc

(Brazilian test) or cylinder with a small eccentric hole is a

simple but important test to determine the tensile strength

of rocks. This paper studies the failure mechanism of cir-

cular disc with an eccentric hole by a 3D numerical model

(RFPA3D). A feature of the code RFPA3D is that it can

numerically simulate the evolution of cracks in three-

dimensional space, as well as the heterogeneity of the rock

mass. First, numerically simulated Brazilian tests are

compared with experimental results. Special attention is

given to the effect of the thickness to radius ratio on the

failure modes and the peak stress of specimens. The effects

of the compressive strength to tensile strength ratio (C/T),

the loading arc angle (2a), and the homogeneity index

(m) are also studied in the numerical simulations. Sec-

ondly, the failure process of a rock disc with a central hole

is studied. The effects of the ratio of the internal hole radius

(r) to the radius of the rock disc (R) on the failure mode and

the peak stress are investigated. Thirdly, the influence of

the vertical and horizontal eccentricity of an internal hole

on the initiation and propagation of cracks inside a speci-

men are simulated. The effect of the radius of the eccentric

hole and the homogeneity index (m) are also investigated.

Keywords Rock � Brazilian test � Eccentricity � 3D

numerical simulation � Crack initiation and

propagation

1 Introduction

Since the tensile strength of rock is much lower than its

compressive strength, many failures in rock engineering

are caused by the initiation, propagation and coalescence of

tensile fractures inside a rock mass. The Brazilian test is

widely adopted to determine the tensile strength of rock as

an alternative to the direct uniaxial tensile test due to its

simplicity in preparing samples (Berenbaum and Brodie,

1959; Bieniawski and Hawkes 1978). According to ISRM

(1978), the indirect tensile strength of a disc sample

(Fig. 1) is given by

rt ¼
2P

pdt
ð1Þ

where d is the diameter, t is the thickness, and P is the

applied diametrical load.

If the rock is assumed to be elastic and isotropic, the

elastic solution of Jaeger and Cook (1979) can be used to

determine the stress field inside the disc. The three-

dimensional correction to this two-dimensional solution

has been given by Wijk (1978). However, since rock is a

heterogeneous material which has non-linear stress/strain

characteristics, the actual stress field that causes tensile

failure in a Brazilian test is not easy to determine by

analytical methods. Thus, there may be serious discrepan-

cies between the theoretical predictions and actual values

for the tensile strength (Mellor and Hawkes 1971).

According to the Griffith criterion (Griffith 1920), the

uniaxial strength can be determined accurately from the
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Brazilian test when the tensile failure occurs at the centre

of the disc. Fairhurst (1964), however, reported that failure

may occur away from the centre of the test disc when small

loading arc angles are considered or when the compressive

strength is not dramatically greater than the tensile

strength. Fairhurst’s empirical generalization of the frac-

ture criterion for the Brazilian tensile test overcomes the

criticism of the Griffith criterion that the predicted ratio of

the uniaxial compressive strength to the uniaxial tensile

strength (8:1) is usually lower than that observed. Erarslan

et al. (2012) conducted both experimental and numerical

tests to investigate the influence of loading arc angles in

Brazilian tests. Their results indicate that the ultimate

failure load increases with increasing loading arc angles,

with angles of 20o or more resulting in diametric splitting

fractures at the disc centre. These observations support the

results of Fairhurst (1964).

Mellor and Hawkes (1971) claim that the Brazilian test

is capable of giving a good measure of the uniaxial tensile

strength for Griffth-type materials when it is performed

carefully, i.e. special attention should be paid to the control

of contact stresses and accurate load measurement, as well

as other factors such as the specimen dimensions, load

rates, and contact zones. Otherwise, the results obtained

using this technique are questionable because wedge-

shaped fractures frequently form beneath the loading

platens rather than tensile failure occurring along the loa-

ded diameter (Hobbs 1965). To overcome this shortcom-

ing, ring specimens have also been developed where a disc

with a central hole is subjected to diametric compression

(Ripperger and Davids 1947; Hobbs 1964; Hudson 1969).

In ring tests, failure initiates in a uniaxial stress field, but

steep stress gradients are required to propagate the result-

ing crack. For ring tests, the calculated tensile strength for

Griffith-type materials is much larger than the uniaxial

tensile strength when the hole size is very small. As the

hole size is increased, the calculated strength tends

asymptotically towards the modulus of rupture (flexural

strength) (Mellor and Hawkes 1971). According to Hobbs

(1965), the maximum tensile stress rt is given by

rt ¼
P

pRt
6þ 38

r

R

� �2
� �

ð2Þ

while the maximum compressive stress rc is

rc ¼
P

pRt
10þ 10

r

R

� �2
� �

ð3Þ

where r is the internal radius, R is the external radius of the

disc, and t is the thickness of the disc (see Fig. 2). The

eccentricity of the internal hole influences the inferred

estimate of the tensile strength. (Hobbs 1965). When the

centre of the hole lies on the line of the vertical diametric

load, as shown in Fig. 2, the maximum tensile stress

around the hole is given by

rtv ¼
P

pRt
2þ 2R

R� e
þ 2R

Rþ e

� �
ð4Þ

where the eccentricity e is the distance between the centre

of the hole and the centre of disc. In contrast, when the

centre of the hole lies on the diameter perpendicular to the

line of loading, the maximum tensile stress is given by

rth ¼
P

pRt

2ð3R2 � e2ÞðR2 � e2Þ
ðR2 þ e2Þ2

ð5Þ

Based on this analysis, discs tested with a concentric

hole probably give rise to an error in the tensile strength of

around 5 % (Hobbs 1965).

Van De Steen et al. (2005) carried out both experimental

and numerical tests to study the fracture pattern for a loa-

ded disc with an eccentric hole. Their results indicate that

changing either the diameter of the hole or its eccentricity

x

R

P

t

y

r

e

Fig. 2 Diametrically loaded disc with a hole: geometrical

configuration
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Fig. 1 Geometrical parameters and loading conditions for standard

Brazilian disc
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affects the tensile stress and the stress gradient at the hole

surface. Whether the final failure intersects the hole or

occurs by diametral splitting depends on the radius and

eccentricity of the hole.

The fracture process of rock at the laboratory (macro-

scale) scale can be simulated numerically using the

Boundary Element Method (BEM), the Finite Element

Method (FEM) or the Discrete Element Method (DEM).

Chen et al. (1998) developed a new BEM code to simulate

the failure process of an anisotropic rock disc with a pre-

existing crack at the centre. The maximum tensile stress

failure criterion was adopted to predict the crack initiation

direction and propagation path. Lavrov et al. (2002) used

the DIGS simulation code to study the Kaiser effect in

cyclic Brazilian tests with disc rotation. The micro-frac-

tures and associated acoustic emission evolutions were

reproduced. Cai and Kaiser (2004) applied a coupled FEM/

DEM approach to simulate crack initiation and propagation

in Brazilian tests, considering both isotropic and aniso-

tropic behaviour. Zhu and Tang (2006) used the RFPA

(Rock Failure Process Analysis) code to simulate the

deformation and failure of a Brazilian disc subjected to

static and dynamic loading, taking into account the heter-

ogeneity of the rock mass. Yu et al. (2006) adopted the 3D-

FEM to calculate the tensile stresses in a Brazilian disc

with a thickness to diameter ratio (t/D) varying from 0.2 to

1. For specimens with a high ratio (0.5 \ t/D \ 1), they

found that the tensile stresses at the two end surfaces are

relatively high and it is easy to exceed the tensile strength

leading to breakage of the specimen (Yu et al. 2006).

Furthermore, Yu et al. (2009) conducted a modified Bra-

zilian test to solve the problems of stress concentration and

higher t/D ratios existing in the traditional Brazil test.

Lanaro et al. (2009) used the BEM to numerically simulate

the influence of cracks initiation on the stress distribution

within a Brazilian disc. Erarslan and Williams (2012a)

employed the numerical tool RFANC2D to investigate the

effect of a pre-existing crack on the stress distribution

within Brazilian test specimen, where the material was

assumed to be homogenous and isotropic. Bahrani et al.

(2012) used the code PFC2D (a two-dimensional particle

flow code) with a grain-based model to predict the failure

process of a Brazilian test on Brisbane tuff. The stress–

strain curve, as well as inter-grain tensile cracking and

shear cracking, were simulated. Finally, Van de Steen et al.

(2005) used the boundary element code DIGS to study the

fracturing behaviour of a diametrically loaded disc with an

eccentric hole. Jiao et al. (2012) developed a new contact

constitutive model and incorporated it into the discontin-

uous deformation analysis (DDA) code to investigate the

fractures’ evolution in a Brazilian disc with an eccentric

hole. Sun et al. (2013) used particle manifold method

(PMM), which is an extension and improvement of the

numerical manifold method (NMM) to numerically simu-

late the failure mode of Brazilian disc. However, most of

these models were limited to two-dimensional situations.

Moreover, the heterogeneity of rock was not considered,

and the evolution of cracks in the specimen was not well

captured.

In this study, the code RFPA3D, which is an extension

of RFPA2D, is applied to investigate the 3D fracturing

processes of Brazilian specimens with/without a central/

eccentric hole. First, the numerical predictions for

Fig. 3 Numerical model for standard Brazilian disc

Fig. 4 Numerical model for diametrically loaded disc with a hole
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Brazilian tests are compared with previously published

experimental results. Special attention is given to the effect

of the thickness to radius ratio on the failure mode and peak

stress of the specimens. The effects of the ratio of the

compressive strength to the tensile strength, as well as the

loading arc angle, are considered, together with the influ-

ence of the homogeneity index (m). Secondly, the failure

process of a rock disc with a central hole is simulated

numerically, and the effect of the ratio r/R on the failure

mode and peak stress is evaluated. Thirdly, the influence of

the vertical and horizontal eccentricity of an internal hole

on the initiation and propagation of cracks inside a speci-

men are simulated. The effect of the radius of the eccentric

hole and the homogeneity index (m) are also investigated

2 Brief Description of RFPA3D

RFPA3D is based on the two-dimensional code RFPA2D

(Tang 1997). Similar, to the latter, RFPA3D assumes that

Table 1 Weibull distribution parameters used for RFPA3D to simulate Brisbane tuff (Erarslan and Williams 2012b)

Materials Homogeneity

index m

Mean of Young’s modulus

(GPa)

Poisson’s

ratio

Mean of uniaxial compressive

strength (MPa)

Mean of uniaxial tensile

strength

Rock 2 25 0.26 190 15

Cardboard Homogeneous 10 0.3 500 1

A 20% peak stress

B 60% peak stress

C 80% peak stress

D100% peak stress

E Post 30% peak stress

F Post 10% peak stress

Fig. 5 3D numerically simulated failure process of Brazilian discs: maximum principal stress distribution and acoustic emission distribution
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the domain consists of elements with the same shape and

size and that there is no geometric priority in any orien-

tation (Tang 1997; Wang et al. 2006). The elemental

mechanical parameters (i.e. uniaxial compressive strength,

the elastic modulus and Poisson’s ratio) are described by a

certain statistical distribution such as the Weibull distri-

bution function (Weibull 1951) as follows:

WðxÞ ¼ m

x0

x

x0

� �m�1

exp � x

x0

� �m� �
ð6Þ

where x is a given mechanical property (such as the

strength or elastic modulus), x0 is a scaling parameter, and

m is defined as the homogeneity index that determine the

shape of the distribution function. As the homogeneity

index increases, the material becomes more homogeneous

(Tang 1997).

A linear elastic damage law is adopted to model the

mechanical behaviour of the meso-scale elements. For each

element, the material is assumed to be linear elastic, iso-

tropic and damage-free before loading. After the initiation

of damage, the elastic modulus of an element is supposed

to degrade monotonically as the damage evolves according

to the relation (Tang et al. 2007; Wang et al. 2011, 2012a):

E ¼ ð1� DÞE0 ð7Þ

where D represents the damage variable, and E and E0 are

the elastic modulus of the damaged and the undamaged

material, respectively.

The constitutive relationship of a mesoscopic element

under uniaxial tension is expressed as (Zhu and Tang 2006;

Wang et al. 2012b):
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strain curves with experimental
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Williams 2012b)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.000 0.001 0.002 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.012 0.013 0.014 0.015

Strain

A
E

 c
ou

nt
s 

(n
)

0

10000

20000

30000

40000

50000

60000

70000

80000
A

cc
um

ul
at

ed
 A

E
 c

ou
nt

s 
(n

)AE counts
Accumulated AE counts

D

E

F

A 
B

C

Fig. 7 Numerically simulated

acoustic emission counts and

accumulated acoustic emission

counts during the failure process

of standard Brazilian tests

Three-Dimensional Numerical Investigations of the Failure 2121

123



D ¼
0

1� ftr
E0e

1

e\et0

et0� e� etu

e [ etu

8<
: ð8Þ

where ftr is the residual tensile strength, which is given as

ftr ¼ kft0 ¼ kE0et0; ft0 and k are the uniaxial tensile strength

and residual strength coefficients, respectively; et0 is the

strain at the elastic limit, which is termed the threshold

strain; and etu is the ultimate tensile strain at which the

element would be completely damaged. The ultimate

tensile strain is defined as etu = get0, where g is the

ultimate strain coefficient. Equation (8) can also be

expressed as (Zhu and Tang 2006; Wang et al. 2011):

D ¼
0

1� ket0

e
1

e\et0

et0� e� etu

e [ etu

8<
: ð9Þ

In addition, it is assumed that the damage to mesoscopic

elements under multiaxial stress conditions is also isotropic

and elastic (Tang 1997). Under multiaxial stress states, the

element can still be damaged in the tensile mode when the

equivalent major tensile strain �e exceeds the threshold

strain et0. The equivalent principal strain �e is defined as

(Wang et al. 2011):

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1h i2þ e2h i2þ e3h i2

q
ð10Þ

where e1, e2 and e3 are the principal strains and hi denotes

Macaulay’s function:

xh i ¼ x x� 0

0 x\0

	
ð11Þ

The constitutive law for an element subjected to

multiaxial stresses can be obtained by substituting the

equivalent strain �e for the strain e in Eqs. (8) and (9). The

damage variable then becomes (Wang et al. 2011, 2012a):

D ¼
0

1� ket0

�e
1

�e\et0

et0� �e� etu

�e [ etu

8<
: ð12Þ

In the shear failure mode, the damage variable D can be

described as follows (Wang et al. 2012b):

D ¼ 0 �e\ec0

1� rrc

E0 �e �e� ec0

	
ð13Þ

where rrc is the peak strength of the element subjected to

uniaxial compression and rc0 is the compressive stress at

the point of shear failure.

In addition, the failure (or damage) in every element is

assumed to be the source of an acoustic event because the

failed element must release its elastic energy stored during

the deformation. Therefore, by recording the number of

damaged elements and the associated amount of energy

release, RFPA3D is capable of simulating acoustic emis-

sion (AE) activities, including the AE event rate, magni-

tude and location. The accumulative damage, D is

calculated using the following equation:

D ¼ 1

N

Xs

i¼1

ni ð14Þ

where s is the number of calculation steps, ni is the dam-

aged elements in the ith step, and N is the total number of

elements in the model (Tang et al. 2007).

In RFPA3D, the specified displacement (or load) is

applied to the specimen incrementally. If some elements

are damaged in a particular step, their reduced elastic

modulus at each stress or strain level is calculated using the

above damage variable D as well as Eq. (7). The calcula-

tion is then restarted under the current boundary and

loading conditions to redistribute the stresses in the spec-

imen until no new damage occurs. Finally, the external

load (or displacement) is increased and is used as input for

the next step of the analysis. Therefore, the progressive

failure process of a brittle material subjected to gradually

increasing static loading can be simulated. A user-friendly

pre- and post-processor is integrated in RFPA3D to prepare

the input data and display the numerical results (Liang

et al. 2012).

3 Numerical Model Setup

Figure 3 shows the numerical model. The size of the

specimens matches those in the experimental tests of Er-

arslan and Williams (2012b), with the radius (R) and

thickness (t) of the cylindrical specimen both being 26 mm.

Figure 4 shows the numerical model for a diametrically

loaded disc with a hole. The radius of the disc (R) is 26 mm

while, initially, its thickness (t) is 5.2 mm and the radius of

Fig. 8 Observed failure modes in the Brazilian test on Brisbane tuff

(after Erarslan and Williams 2012b)
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the hole (r) is also 5.2 mm. The latter quantities, as well as

the eccentricity (e) of the hole, are also varied to study their

influence on the evolution of fracture inside the disc. The

specimens in Figs. 3 and 4 were meshed using 3.14 9

602 9 10 = 113,040 elements and 3.14 9 (602 - 102) 9

10 = 109,900 elements, respectively. Figure 3 shows the

3D hexahedral element distribution in the numerical

model. The basic properties of the rock and steel platens

are presented in Table 1 (Erarslan and Williams 2012b). To

obtain the overall stress–strain response, a displacement

control of 0.002 mm per step was applied axially to the top

platen while the bottom platen was fixed.

4 Numerical Results and Discussions

4.1 Numerically Simulated Standard Brazilian Disc Tests

Figure 5 shows the numerically predicted crack evolution

during the failure of a Brazilian disc. The left figures show

the maximum principal stress distribution, while the right

figures show the AE distribution with red and blue circles

indicating shear and tensile failure of the elements. Fig-

ure 6 compares the predicted stress–strain curve with the

stress–strain curve obtained from laboratory experiments

(Erarslan and Williams (2012b)).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Fig. 9 Numerically simulated failure modes for Brazilian disc divided into nine slices of equal thickness, from front to the back, at the peak

stress point D in Fig. 5
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C/T=6 C/T=7 C/T=8

C/T=9 C/T=10 C/T=11

C/T=12 C/T=13 C/T=14

Fig. 10 3D numerically simulated failure modes of Brazilian rock disc for different ratios of compressive strength to tensile strength (C/T)
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Fig. 11 3D numerically

simulated stress–strain curves

for different ratios of

compressive strength to tensile

strength (C/T)
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Figure 6 shows that the stress–strain curve is almost

linear up to the peak stress level (Point D). Not until Point

A (20 % of peak stress), did micro-cracks occur in the

simulation (Fig. 5a). During this stage, very few tensile

cracks are observed around the vertical diameter of the

disc, but shear cracks occur near the loading platens (see

red circles in right AE figures). As the uniaxial loading

increases to 60 % of peak stress, more micro-tensile cracks

are observed but these are concentrated in a narrow zone

around the vertical diameter of the disc (see the blue circles

in right AE figures). When the stress level reaches 80 % of

the peak stress, many of the micro-cracks have coalesced to

m=1.5 m=2 m=3

m=4 m=5 m=10

Fig. 12 3D numerically simulated failure modes for Brazilian rock discs with different homogeneity indices (m)
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Fig. 13 3D numerically

simulated stress–strain curves

for specimens with different
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form longer cracks. It is interesting to note that there is one

shear crack occurring among many tensile cracks in the AE

figure. This is caused by the rock bridge being damaged

between the bigger tensile cracks. When the stress level

passes the peak stress, Fig. 6 shows that the stress–strain

curve drops suddenly to Point E, causing a rapid increase in

AE events as illustrated in Fig. 7. Examining Fig. 5d, e, we

see that a major crack is formed, which shows good

qualitative agreement with the fracture paths observed in

the laboratory results (see Fig. 8) of Erarslan and Williams

(2012b).

Figure 6 indicates that the numerically predicted peak

stress is almost the same as the observed test result, though

the post-peak responses are different. Though the numeri-

cal simulation gives a sudden drop in the stress–strain

response, just like the experimental observation, it under-

estimates the residual strength. This is possibly due to the

choice of input parameters for the numerical model, such

as the ratio of the compressive strength to the tensile

strength or the homogeneity index (m). The effects of these

parameters will be discussed later in the paper. Figure 9

shows the numerical failure modes, along nine slices of

equal thickness through the specimen, at the peak stress

point D in Fig. 5. This shows that the main crack is not the

same in different slices due to the heterogeneity of the

rock, so that the failure mode is not symmetrical through

the thickness of the specimen.

Figure 10 shows the numerical failure modes of a Bra-

zilian rock disc for different ratios of the compressive

(C) and tensile (T) strengths of the rock, while Fig. 11

illustrates the corresponding stress–strain curves. From the

latter, we see that the peak stress increases gradually with

decreasing values of C/T, while the corresponding strain at

the peak stress also increases when C/T [ 7. This is

because with a decrease in C/T, the mean tensile strength

increases although the mean compressive strength of the

elements remains the same. It is important to note, how-

ever, that the mean tensile strength is also much lower than

the mean compressive strength, and hence failure of the

specimen is mainly caused by tensile damage to the ele-

ments. When C/T is less than or equal to 7, the post-peak

stress–strain curves show obvious softening, without the

brittle type of failure shown for the other cases where C/

T C 8. Consequently, the residual strengths for the samples

with C/T B 7 are much higher than those with C/T C 8,

while the residual strengths are almost the same when C/

T C 9. Interestingly, when C/T = 6, the peak stress is

lower than that when C/T = 7, but the residual strength is

higher. This can be explained by examining Fig. 10, which

shows that the failure mode for these cases is very different

from that of the other samples. Only a few micro-cracks

occur around the vertical diameter of the disc, with most of

the fractures appearing in the vicinity of the loading plat-

ens. The final failure is not dominated by tensile splitting,

and is comprised chiefly of compressive/shear cracking.

This suggests that the Brazilian test should not be used to

determine the tensile strengths for rocks when the ratio of

C/T is low.

Figure 12 shows the numerically predicted failure

modes for Brazilian tests on samples with various homo-

geneity indices (m). For a low homogeneity index of

m = 1.5, many micro-cracks are observed around the

major macro-crack which develops along the diameter of

the disc. With increasing values of m, which correspond to

(2α = 10o)

(2α = 15o)

(2α = 20o)

(2α = 25o)

(2α = 30o)

Fig. 14 3D numerically simulated failure modes of Brazilian rock

discs with different loading arc angles (2a)
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more homogeneous samples, fewer micro-cracks occur

around the main macro-crack. From Fig. 13, which shows

the stress–strain curves for various values of m, we see that

the peak stress increases gradually as m increases. For

example, when m is set equal to 1.5, 2, and 3, the respective

peak stresses are 9.81, 12.00 and 15.50 MPa. The associ-

ated residual strengths for these cases, however, decrease

and is equal to 1.67, 0.87 and 0.14 MPa. Interestingly, for

the samples with m equal to 4, 5 and 10, the residual

strengths are close to zero, which indicates that the Bra-

zilian disc has split in two.

Figure 14 shows the numerically simulated failure

modes for Brazilian rock tests with different loading arc

angles (2a). As shown in Fig. 1, a is the half central

angle of the applied distributed load which is applied

using curved platens. A, B, C, and D are the four contact

points between the curved platens and the disc. Figure 15

shows the numerically simulated stress–strain curves for

various loading arc angles, ranging from 10� to 30�.

From this figure, we see that the peak stress increases

with increasing loading arc angle, which agrees with the

experimental observations of Erarslan and Williams

(2012a). For relatively low values of 2a, such as 10� to

15�, the stress–strain response is quite brittle with a rapid

drop off after the peak stress has been passed. For values

of 2a C 20�, the post-peak response shows a secondary

plateau prior to reaching the residual strength. This can

be explained by noting that the stresses concentrate at

the four contact points A, B, C and D shown in Fig. 1.

Although tensile cracks usually start at the centre of the

disc and then propagate along the vertical loading

diameter, they veer towards these four contact points as

they approach the loading platens (Fig. 14). For lower

loading arc angles of 10� and 15�, there is only one

major fracture to split the sample and the response is

therefore quite brittle. However, for higher loading arc

angles, greater than or equal to 20�, one major macro-

crack typically connects the diagonal A–O–D or B–O–C,

and then connects O–C or O–D. This generates a plateau

in the sample strength, prior to reaching the residual

strength.

Figure 16 shows the numerically predicted failure

modes for various sample thicknesses, represented by the

normalized ratio (t/R). Figure 17 shows the correspond-

ing stress–strain curves. From Fig. 17, we see that the

peak stresses and residual strengths are almost the same

for values of t/R of 0.2, 0.4, 0.6, 0.8 and 1, respectively.

Theoretically, the controlling stresses are the same for

plane stress and plane strain, so that there is no explicit

restriction on specimen thickness (Mellor and Hawkes

1971). However, considering the heterogeneity of rock

and the probable local stress concentration, the stress

distribution will not be uniform along the compressed

diameter (Yu et al. 2006). This numerical result agrees

with the experimental and numerical results of Yu et al.

(2006) who considered cases with t/R \ 0.5, i.e. for

specimens with a low ratio (t/R \ 1) the stress distri-

bution mostly accords with the theoretical solution (see

Eq. 1). The dominant mode of failure for the five cases

above, shown in Fig. 16, involves splitting along the

loaded diameter. This suggests that the thickness of the

sample in a Brazilian test does not have a substantial

effect on the failure mode and the inferred tensile

strength when the normalized thickness ratio (t/R) \1.

The situation for cases with much higher ratios will be

discussed in a separate paper.
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Fig. 15 3D numerically

simulated stress–strain curves

for Brazilian rock discs with

different loading arc angles (2a)
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4.2 Numerically Simulated Failure Mechanism

of a Disc with a Central Hole

The aim of this section is to gain a better insight into the

failure mechanism of a disc with a central hole, subjected

to diametric compression. The geometry of the ring spec-

imen and the loading conditions are given in Fig. 2. To

study the effect of the size of the hole, the ratio of the

internal to external radius, r/R, is taken as 0.083, 0.167,

0.25, 0.333, 0.417 and 0.5. The Weibull distribution

parameters for the numerical tests are the same as those for

Brazilian specimens, and are listed in Table 1.

Figure 18 shows the numerically simulated failure pat-

terns for a rock disc with a hole in the centre and r/

R = 0.33, m = 2, 2a = 10� and t/R = 0.4. Figure 19 is the

corresponding stress–strain curve with a comparison of that

to a disc without a hole. Stages A–H in Fig. 18 are related

to the points A–H in the stress–strain curve in Fig. 19.

Firstly, we note that, due to the existence of the central

hole, the peak stress of the ring specimen is much lower

than that of the disc specimen. At Stage A in Fig. 18, when

the vertical applied strain is 0.002, primary cracks are

observed near the top and bottom walls of the hole. As the

loading is increased, these primary cracks propagate along

the loading diameter toward the loading platens (see Stage

B). However, these primary cracks cease to propagate

when they reach the contact zone between the platen and

the sample at a vertical strain of 0.004 (Stage C). Stage C

corresponds to the peak point C in the stress–strain curve in

Fig. 19, and precedes the propagation of secondary tensile

cracks along the horizontal diameter towards the surface of

the central hole (Stage D). When the strain reaches 0.0059,

these secondary cracks reach the edge of the central hole

and the right half of the ring loses most of its capacity to

bear load. This causes the load to be transferred to the left

half of the sample which, in turn, results in the formation of

cracks along the radius that propagate toward the surface of

the internal hole (See Stage F). Stage F corresponds to the

second peak stress point F in Fig. 19. Increasing the

applied load from points F to G causes another drop in

stress–strain response, indicating that the left half of the

sample has also lost its capacity to bear load. Finally, the

specimen splits into four parts after reaching its residual

load capacity (Stage H). Overall, although the input geo-

metrical and material properties in Table 1 are not com-

pletely the same as those in the laboratory tests of Mellor

and Hawkes (1971), the numerical simulations capture well

the typical failure patterns that are observed in the labo-

ratory tests, which are shown in the first row in Fig. 20.

This Figure shows that as the diameter of the hole is

decreased, secondary cracks are not observed along the

horizontal diameter. The effect of the diameter of the hole

on the failure modes and the peak stress of the specimen

are discussed in the next paragraph.

Figure 21 shows the numerically predicted failure

modes of ring specimens with holes of various sizes, as

measured by the dimensionless quantity r/R. Figure 22

shows the corresponding stress–strain curves. From

Fig. 21, we see that when r/R B0.25, only a single vertical

micro-cracking zone is formed which passes through the

central hole and eventually splits the specimen. However,

when r/R is higher such as 0.333, 0.417 and 0.5, second

cracks are observed and the specimen is divided into four

(t/R=1/5)

(t/R=2/5)

(t/R=3/5)

(t/R=4/5)

(t/R=5/5)

Fig. 16 3D numerically simulated failure modes for different

normalized thickness of disc (t/R) (R is the radius of disc)
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parts. It is noted that due to the heterogeneity of the rock,

these cracks are not completely aligned along the hori-

zontal diameter of the specimen. From Fig. 22, it is clear

that the peak stress decreases with the increasing values of

r/R. For the three cases with r/R being 0.083, 0.167 and

0.25, respectively, there is an obvious stress drop after the

first peak stress, but there is not a subsequent stress drop

because secondary cracking does not occur. For the other

three cases of r/R = 0.333, 0.417 and 0.5, there is no

clearly defined stress drop after the first peak stress but,

instead, a distinct stress drop after the second peak stress is

reached. This is caused by the occurrence of secondary

cracking in these three cases.

4.3 Numerically Simulated Failure Mechanism

of a Disc with an Eccentric Hole

Figures 23 and 24 show the experimental results for a

diametrically loaded disc with an eccentric hole of two

different radii (Van de Steen et al. 2005). Figure 23 shows

that for the case with a small hole and eccentricity, failure

occurs by splitting along the diameter without intersecting

the hole. In contrast, for a sample with a larger hole and the

same eccentricity, shown in Fig. 24, two primary cracks

intersect the hole from the top and bottom platens. How-

ever, in these experimental tests, the effect of the eccen-

tricity on the failure mode of the specimens was not

considered. Therefore, in this section, the effects of both

the radius and eccentricity of the hole will be simulated

numerically.

Figure 25 shows the numerically simulated failure pro-

cess of a rock disc with an eccentric hole. In this case, the

normalized horizontal eccentricity is e/R = 0.333, r/

R = 0.167, m = 2, 2a = 10, and t/R = 0.4. Figure 26

shows the corresponding stress–strain curve with a com-

parison of results for a disc without a hole. As expected the

peak stress for the sample with an eccentric hole is much

lower than that of a standard disc specimen. The points A–

H in Fig. 26 correspond to the stages A–H in Fig. 25. From

the latter figure we see that when the vertical applied strain

is 0.002 (stage A), two primary cracks are initiated from

the surface of the hole and propagate towards the top and

bottom loading platens. When the strain is 0.004 (Stage C),

these primary cracks cease to grow, but two secondary

cracks initiate in the vicinity of the top and bottom platens.

From Stages C to E, these two secondary cracks start to

propagate towards the top and bottom contact zones

between the platens and the disc. Simultaneously, the pri-

mary cracks also continue to grow, but very slowly, and do

not coalesce with the secondary cracks. When the applied

vertical strain reaches 0.0066 (Stage F), the secondary

cracks coalesce to form a major fracture which bends

towards the surface of the eccentric hole. With further

loading, a third crack initiates at the right edge of the disc

along the horizontal diameter. This horizontal crack

eventually propagates to the surface of the hole, but there is

no distinct stress drop at the corresponding point H in

Fig. 26.

Figure 27 shows the numerically predicted failure

modes of specimens with various horizontal hole eccen-

tricities (e/R) of 0, 0.167, 0.333, 0.5, 0.666 and 0.833.

Figure 28 shows the corresponding stress–strain curves.

When e/R B 0.167, only two primary cracks reach the

hole, while for cases with e/R = 0.333 and 0.5, additional

secondary cracks form along a line towards the hole as well

as along the diameter. For the largest hole eccentricities,

failure is caused by primary splitting along the loaded

diameter without intersecting the hole. From Fig. 28, we

Fig. 17 3D numerically

simulated stress–strain curves

for different normalized

thickness of disc (t/R)
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see that the peak stress increases with an increasing value

of eccentricity, with the largest eccentricities resulting in

behaviour which is similar to that for a standard Brazilian

disc.

Figure 29 shows the numerically predicted failure

modes for samples with the same eccentricity but holes of

various sizes (r/R). Figure 30 shows the corresponding

stress–strain curves. From Fig. 29, we see that for small

values of r/R, the tensile cracks forming around the hole do

not propagate very far, with the failure mode being very

similar to that for a standard Brazilian sample, i.e. splitting

of the disc along the loaded diameter. This indicates that

when the hole is very small with a moderate eccentricity, it

has little influence on the evolution of cracking. However,

as the size of the hole is increased, it not only influences the

formation and propagation of primary tensile cracks, but

also causes secondary cracks that bend out from the loaded

diameter. For the case with the largest hole (r/R = 0.25),

primary cracks initiate from the hole and propagate almost

parallel to the loaded diameter. From Fig. 30 we see that,

when the eccentricity is the same, the peak stress decreases

as the size of the hole increases. This is what we expect on

physical grounds.

Figure 31 shows the numerically simulated failure

modes for specimens with various values of homogeneity

index (m). Figure 32 illustrates the corresponding stress–

strain curves. From Fig. 31, we see that more micro-cracks

are generated around the major cracks when the homoge-

neity index is low. Indeed, when m B 1.1, the major cracks

are not distinct. In contrast, when m C 4, the major cracks

are very distinct and almost no micro-cracks are evident.

Figure 32 shows that the peak stress decreases gradually as

the homogeneity index is increased. For the cases with

m B 1.1, the mode of failure is ductile in nature with no

pronounced drop in the stress–strain response after the peak

stress has been passed. This suggests that when the material

is very heterogeneous, the effect of the hole on the load

capacity of the specimen is weaker. In comparison, when

m C 2, there are marked drop-offs in the strength as the

applied strain increases, even though the peak strength

increases with increasing values of m.

5 Conclusions

The code RFPA3D has been used to study the failure

mechanisms of the standard Brazilian disc and discs with a

central hole or eccentric hole. The following conclusions

can be drawn:

1. The three-dimensional numerical model (RFPA3D) has

been validated against the results of standard Brazilian

tests performed on Brisbane tuff (Erarslan and Wil-

liams 2012b). The numerical model predicts both the

failure and the peak stress with acceptable accuracy,

and has been used to investigate the influence of the

ratio of the compressive strength to tensile strength (C/

T), the heterogeneity index (m), and the loading arc

angle (2a). As C/T increases from 7 to 14, both the

02 strain)

03 strain)

04 strain)

0048 strain)

059 strain)

071 strain)

074 strain)

A (0.0

B (0.0

C (0.0

D (0.

E (0.0

F (0.0

G (0.0

H (0.0087 strain)

Fig. 18 3D numerically simulated failure process of rock disc with a

hole in the center (e = 0, r/R = 0.333, m = 2, 2a = 10, t/R = 2/5)

(minimum principal stress distribution)
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peak stress and the residual strength of specimen

increase gradually. As m is increased from 1.5 to 10,

the peak stress of the specimen also increases. This

effect is also observed when the loading arc angle is

increased from 10� to 30�. Importantly, the thickness

of the Brazilian specimen does not appear to have a
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Fig. 19 3D numerically

simulated stress–strain curves
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at the centre

Fig. 20 Experimental results

for ring specimens tested by

simple methods using flat

platens with different ratios of r/

R (Mellor and Hawkes 1971)

Three-Dimensional Numerical Investigations of the Failure 2131

123



r/R=0.083 r/R=0.167 r/R=0.25

r/R=0.333 r/R=0.417 r/R=0.5

Fig. 21 3D numerically simulated failure modes of ring specimens with different ratios of r/R (r is the radius of the hole, R is radius of the disc)
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for specimens with different r/

R (r is the radius of the hole,
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marked effect on the failure modes and the peak stress

of the specimen when the normalized thickness ratio (t/

R) \1.

2. For a disc with a central hole, the numerical model

qualitatively reproduces the primary cracks that are

observed to propagate along the loaded diameter, with

secondary cracks intersecting the hole along the

horizontal diameter (Mellor and Hawkes 1971). The

numerical results also show that the peak stress of a

specimen increases as the normalized hole size is

decreased.

3. For the specimens with an eccentric hole, the numer-

ically simulated primary crack patterns broadly agree

with those observed in laboratory tests (Van de Steen

et al. 2005). For a fixed hole size, the peak stresses

increases as the horizontal eccentricity (e/R) is

increased. Conversely, when the horizontal eccentric-

ity is kept the same, the predicted peak stress decreases

as the size of the hole is increased and the failure mode

Fig. 23 Observed failure of diametrically loaded disc with a hole,

showing split along the diameter without intersecting the hole (Van de

Steen et al. 2005)

Fig. 24 Observed failure of diametrically loaded disc with a hole,

showing primary fractures intersecting the hole and a secondary

fracture growing from the bottom platen contact to the centre of the

disc (Van de Steen et al. 2005)

A (0.002 strain)

B (0.003 strain)

C (0.004 strain)

D (0.005 strain)

E (0.059 strain)

F (0.0066 strain)

G (0.0084 strain)

H (0.011 strain)

Fig. 25 3D numerically simulated failure process of rock disc with

an eccentric hole (e/R = 0.333, r/R = 0.167, m = 2, 2a = 10, t/

R = 2/5) (minimum principal stress distribution)
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Fig. 26 3D numerically

simulated stress–strain curves

for rock discs, with and without

a hole (e/R = 0.333, r/

R = 0.167, m = 2, 2a = 10, t/

R = 2/5)
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Fig. 27 3D numerically simulated failure modes for specimens with various horizontal hole eccentricities (e/R) (r/R = 0.167, m = 2, 2a = 10,

t/R = 0.4)
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Fig. 28 3D numerically

simulated stress–strain curves

for specimens with various

horizontal hole eccentricities (e/

R) (r/R = 0.167, m = 2,

2a = 10, t/R = 0.4)
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Fig. 29 3D numerically simulated failure modes for specimens with the same horizontal eccentricity (e/R = 0.333) but holes of various sizes (r/

R) (m = 2, 2a = 10, t/R = 0.4)
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is also affected. When both the radius and horizontal

eccentricity are kept constant, the final crack pattern is

much more distinct for a higher homogeneity index

(m), while the peak stress also increases as m increases.
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Fig. 31 3D numerically simulated failure modes for specimens with various homogeneity indices (m) (e/R = 0.333, r/R = 0.167, m = 2,

2a = 10, b/R = 0.4)
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