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List of Symbols

a Radius of a circular contact area

ah Height of asperity in Fig. 11

a0 Coefficients of Fourier series in Eq. (1)

am Coefficients of Fourier series in Eq. (1)

bm Coefficients of Fourier series in Eq. (1)

b Radius of a special curve in Eq. (6)

c Constant

d Distance between the two reference surfaces

after loading

d0 Distance between the two reference surfaces

before loading

E Young’s modulus of rock

Ea Modulus of asperity

Eb Modulus of bulk material

E0 E/2(1 - t2)

e0 Initial aperture

F External force being exerted on one asperity in

Fig. 11

f (z) Height distribution function of the asperities

with the topographical height z as the

independent variable

G(m) Normalized amplitude of the waviness

g Generalized function

h, Integers and independent variables

i, Integers and independent variables

m, Integers and independent variables

n Integers and independent variables

JRC Joint roughness coefficient

k Composite spring constant between asperity

and bulk substrate

ka Asperity spring constant

kb Bulk substrate spring constant

N Total number of sampling data in Eq. (1)

P External force being exerted on one peak of

the waviness

p0 Maximum contact pressure

q1(r) Distribution function of the compressive

contact stress

q2(r) Distribution function of the compressive

contact stress

q3(r) Distribution function of the compressive

contact stress

R Curvature radius of the waviness

r Distance from the contact center

ra Radius of contact region in Fig. 11

rb Radius of circular contact region on top of

bulk substrate in Fig. 11

Uz Normal displacement of the contact

surface

u(r) Asperity deformation in Eq. (7)

w(r) Deformation of waviness

z General topographical heights

z(i) The ith measured topographical height
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zc(i) The ith topographical height of composite

topography

zupper Topographical heights of the upper surfaces of

a joint

zlower Topographical heights of the lower surfaces of

a joint

D Sampling interval

t Passion’s ration

b Root mean square radius of peak

g Mean peak density of unevenness in composite

topography of a joint

er(i), eh(i) Random component of surface topography in

Eqs. (1), (3)

u The angle shown in Fig. 4

uh Amplitude angle of waviness

q Asperity radius in Fig. 11

d Normal displacement in Fig. 11

da Asperity deformation in Fig. 11

db Bulk substrate deformation in Fig. 11

rn Normal stress

1 Introduction

The mechanical properties of rock mass are mainly gov-

erned by the joints which it contains. As a consequence,

over the past decades, many researchers have focused on

the mechanical properties of rock joints and numerous

applications could benefit from this, such as geo-thermy,

petroleum reservoirs, as well as underground disposal of

high-level radioactive wastes and CO2. This paper focuses

on the closure deformation of rock joints under compres-

sive loading and this is the first step in the direction of a

more global hydro-mechanical study of joint. Many models

have been developed to describe the mechanical behavior

of a joint under normal stress and which can be classified

into three categories: empirical model, numerical model,

and theoretical model.

In the study of joint deformability, it has been generally

observed that the relation between closure deformation and

the normal stress is non-linear. Many empirical models are

proposed to fit the experimental data by using non-linear

mathematical function. Goodman (1976) suggested

hyperbolic relation to describe joint closure under normal

compressive stress. Bandis et al. (1983) and Barton et al.

(1985) presented a modification of Goodman’s hyperbolic

model which was shown to provide a better fit to experi-

mental data across the whole range of stress and closure

values, known as BB model. BB model established a

relationship between JRC and mechanical parameters such

as maximum closure of the fracture and normal stiffness,

which are used mostly in practice (Bower and Zyvoloski

1997; Guvanasen and Chan 2000; Itasca Consulting Group

2004; Baghbanan and Jing 2007; Tao et al. 2011; Zhao

et al. 2011; etc.). However, such a model makes use of

parameters obtained from experimental data only, therefore

there may be difficult for being extend to general behaviors

of rock joints. A power-law model for joint closure was

given by Swan (1983) which provides a good fit to

experimental data only at low stress levels. The power-law

model also suggests infinite initial fracture compliance,

which may be appropriate only for some highly compliant

rock joints. Malama and Kulatilake (2003) presented a

generalized exponential model to predict joint deformation

behavior under normal compressive loading. Nevertheless,

all of these empirical models cannot be used to predict the

closure deformation of rock joints because of the non-

predictive nature.

Several numerical models, asperities represented by

cylinders, can take into account both asperity deformations

and deformations of the rock surrounding the asperities

(Cook 1992; Hopkins 2000; Lee and Harrison 2001; Mar-

ache et al. 2008). These models rely on an accurate

description of the topography of joint and of the void

space. Superposition principle is used and the total closure

deformation is the sum of three parts: deformation of the

asperity itself due to the forces acting directly on it,

deformation of the bulk material surrounding the asperity

due to the forces acting on the asperity, and deformation of

the bulk material results in mechanical interaction between

contact zones. For a given joint, it is required to develop a

special computation program. Because of the lake of ver-

satility, this class of models is inconvenient to use.

Theoretical models (Greenwood and Williamson 1966;

Greenwood and Tripp 1970; Yamada et al. 1978; Swan

1983; Brown and Scholz 1985, 1986), based on the Hertz

contact theory, can be used to predict the closure defor-

mation of joint under normal stress. But most of the the-

oretical models used only the unevenness to describe the

joint surface and did not consider the contact state cases

between two rough surfaces (Xia et al. 2003). According to

ISRM (1978), joint topography is made up of large-scale

waviness component and small-scale unevenness compo-

nent. Both of them have different effect on the closure

deformation (Xia et al. 2003). A mathematical method was

given by Xia et al. (2003) to identify the two components

and joint was classified into three contact state cases

according to the waviness and unevenness components. A

general load-closure model was proposed by Xia et al.

(2003). Xia’s model can take into account the effects of

both the waviness and unevenness components and also the

contact state cases.

The above theoretical models give us a relative correct

understanding of joint closure behavior under normal
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stress, however, they ignored the substrate deformation

caused by asperity deformation and the interaction between

asperities which have great influence on the hydro-

mechanical behavior of rock joints. On the basis of Xia

model, we present an improved model capable of predict-

ing closure deformation of rock joints. Both surface

topography (waviness component and unevenness compo-

nent) and substrate deformation caused by asperity defor-

mation can be taken into account by the new model.

Several experiments are performed to validate the proposed

model.

2 Description of Joint Surface

2.1 Method to Separate Waviness and Unevenness

Components

The method to identify and separate the waviness and

random unevenness components for rock joints is proposed

by Xia et al. (2003) presented in the ensuing.

If surface topography of joint contains determinate

waviness component, the data order array z(i) with the total

number N gained by measuring surface topography can be

expressed by the following Fourier series:

z ið Þ ¼ a0

2
þ
XN

m¼1

am cos
2pmi

N

� �
þ bm sin

2pmi

N

� �� �
þ er ið Þ

ð1Þ

where, a0 ¼ 2
N

PN
i¼1 x ið Þ; am ¼ 2

N

PN
i¼1 x ið Þ cos 2pmi

N

� �
; bm

¼ 2
N

PN
i¼1 x ið Þ sin 2pmi

N

� �
:

The amplitude of each waviness is cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m þ b2
m

p
and

its normalized value is defined as G mð Þ ¼ c2
mPn

i¼1
c2

i

:

If there is a waviness component m = h in the surface

topography of a rock joint according to measurement, the

Eq. (1) is expressed as

z ið Þ ¼ ah cos
2pmi

N

� �
þ bh sin

2pmi

N

� �
þ eh ið Þ ð2Þ

The random unevenness component of this surface

topography is expressed as

eh ið Þ ¼ z ið Þ � ch cos
2phi

N
þ uh

� �
ð3Þ

A typical composite profile with waviness and its

waviness and unevenness components by using above

method to identify and separate are shown in Fig. 1.

2.2 Composite Topography

According to Brown and Scholz (1985), the composite

topography of a joint is obtained by summing coordinates

of its upper and lower surface profiles, shown in Fig. 2.

The upper surface height at the lateral coordinate point

i is added to the lower surface height at the lateral

coordinate point i ? m, where the lateral shift interval

m indicates the contact states for the composite topogra-

phy of a joint, i.e.,

z ið Þ ¼ zupper ið Þ þ zlower iþ mð Þ ð4Þ

For perfect matched joints, the composite topography

z(i) represents a straight line and the composite topographic

can be expressed by

z ið Þ ¼ zupper ið Þ þ zlower ið Þ ¼ d0 ¼ cost: ð5Þ

Waviness component

Unevenness component

Total topography

0 300(mm)150

Fig. 1 Total topography and the two components

Reference plane (under stress)

Composite topography
Zc(i)=Zupper(i)+Zlower(i)

e0:Mean initial aperture

(a)

(b)

d0

d0

Zupper(i)

Zlower(i)

Reference plane of upper rough surface

Reference plane of lower rough surface

Upper rough surface profile Zupper

Lower rough surface profile Zlower

Reference plane (without stress)
d

Fig. 2 Sketch of two rough

surface profiles of a joint and

the associated composite

topography (Cook 1992)
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2.3 Contact States of Rock Joints

According to both the upper and lower joint surface and its

associated composite topography, the contact state of joint

can be classified into the following three cases (Xia et al.

2003):

• Case 1: the two surface profiles of joint contain only the

random unevenness and the composite topography still

contains only the random unevenness.

• Case 2: the two surface profiles of a joint contain the

waviness components whilst the composite topography

contains only the random unevenness.

• Case 3: the two surface profiles of a joint contain

waviness components and random unevenness compo-

nents. The waviness components are uncorrelated. The

composite topography then contains both the waviness

component and the random unevenness components.

3 Closure Deformation Model

As shown in Fig. 3, Xia et al. (2003) assume the distri-

bution of compressive contact pressure, q1(r), at the contact

area is

q1 rð Þ ¼ P

pc

1

r2 þ 4b2
� 1

a2 þ 4b2

� �
ð6Þ

where, c ¼ ln a2þ4b2

4b2

	 

� a2

a2þ4b2

As the pressure distribution of asperity contact is rele-

vant to the asperity deformation u(r), another equation for

the distribution of the compression pressure at the contact

area can be obtained as follows according to the Brown

model (Brown and Scholz 1985, 1986) [for detailed deri-

vation of Eqs. (8) and (9), see Xia et al. (2003)]

q2 rð Þ ¼ 4

3
E0g

ffiffiffi
b

p Zu rð Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u rð Þ � z½ �3

q
f zð Þdz ð7Þ

u rð Þ ¼ a2 � r2

2R
þ w að Þ � w rð Þ ð8Þ

w rð Þ ¼ 2P

p2E0bc

Zp=2

0

arctan
1

2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2 sin2 u

q� ��

� 2b

a2 þ 4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2 sin2 u

q �
du

ð9Þ

On the basis of Eq. (7), if we take into account the

substrate deformation caused by the asperity deformation,

the contact pressure can be expressed as (see ‘‘Appendix’’

for detailed derivation):

q3 rð Þ ¼ 4

3
E0g

ffiffiffi
b

p Zu rð Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g u rð Þ � z½ �f g3

q
f zð Þdz ð10Þ

For solving this model, the initial values of a, b shall

be given (nonzero value), and then the distribution of

compression stress q1(r) can be calculated by Eq. (6). The

deformation of the waviness w(r) and w(a) are calculated

from Eq. (9). The asperity deformation u(r) is calculated

from Eq. (8). Another distribution of the compression

stress q3(r) is obtained by substituting u(r) into Eq. (10).

The procedure above is repeated until the two

distributions of the compression pressure q1(r) and

q3(r) are equal at r = 0 and r = 0.5a. Figure 4 outlines

the calculation algorithm of the proposed mathematical

model.

When the closure deformation curves are calculated by

using the above closure deformation model, the data of

surface topography of the joint should be treated and cal-

culated as follows (Xia et al. 2003):

• Calculate the composite topography of a joint from the

test data of surface topography and the contact states of

the two surfaces of the joint.

• Test and distinguish the waviness component in the

composite topography of the joint.

• Calculate the topographical parameters of the waviness

and unevenness components in the composite topogra-

phy of the joint. The topographical data must be

processed through the zero average before calculating

the topographical parameters.

Fig. 3 Simplified model for the

contact between waviness

surface and unevenness surface

of the composite topography for

a rock joint (Xia et al. 2003)
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If there is no waviness component in the composite

topography of a joint, the general model for Case 3 will

automatically degenerate into the contact closure defor-

mation model between a smooth surface and a random

rough surface. This degenerated contact corresponds to

Cases 1 and 2. The general model is also applicable to

Cases 1 and 2 if the curvature radius of waviness is zero.

The closure deformation of a joint is determined by the

waviness and unevenness components of the composite

topography for a specific contact state. The closure defor-

mation models applicable to the three cases are summa-

rized in Table 1. Compared with other models, the

proposed can take into account the substrate deformation

and also the effect of morphology components.

4 Experiments and Validation

4.1 Sample Preparation

The used samples have been prepared from gray granite

whose average grain size is about 3.5 mm, known as

quasi-isotropic granite. We have cut samples with

dimensions 300 9 300 9 150 mm from blocks of this

granite. The joints were obtained by rupture according to

three points bending method. During this operation the

joint surfaces were maintained by silicon rubber for

saving the quality of the surface at the instant of the

failure. We established marks for these samples of rock

joints based on the direction of the mean plane of rupture,

and on the regularity of their roughness in order to be

able to choose the most interesting rock joint surfaces to

carry out tests with high quality. We extracted two joints

from this series. Then, we made samples as replicas of the

two rock joints. In order to be able to carry out several

tests on identical surfaces of joints (geometry and

mechanical properties), we decided to work on replicas in

mortar of our models.

The model material is a mixture of plaster, sand, and

water at the ratio of 3:2:1 (weight). All the samples were

cured at a constant temperature of 25 �C in a chamber for

about 28 days. The uniaxial compressive strength and

density of several cubic concrete replicas with diameter

50 mm and height 100 mm were measured in the labora-

tory, which gave an average value of 27.5 MPa and density

of 2,200 kg/m3. The Young’s modulus of the model

material is 6.1 GPa and Poisson’s ratio is 0.16.

Table 1 Three contact cases of joint and its suitable model

Case Topographical characteristics of joint surface Suitable model Type of input parameters for solving

1 The topographies of the two surfaces of a joint are

random unevenness, and their composite

topography is still random unevenness

New model and Xia model

(R ? ?)

Composite parameters of surface topographies

of a joint

Brown model Parameters of composite topography of a joint

Greenwood model Parameters of surface topographies of a joint

Yamada model and Swan model Profile data of surface topographies of a joint

2 The topographies of the two surfaces of a joint

contain waviness, and their composite topography

is still random unevenness

New model and Xia model

(R ? ?)

Parameters of composite topography of a joint

3 The topographies of the two surfaces of a joint

contain waviness, and their composite topography

still contains tendency waviness too

New model and Xia model (R is

limit)

Parameters of composite topography of a joint

Apply initial values for a,b

Read morphology parameters

and material paramters

Calculate pressure 
distribution, q1(r)

Calculate waviness 
deformation, w(r),w(a)

Calculate asperity 
deformation, u(r)

Calculate pressure 
distribution, q3(r)

q1(0)=q3(0)
q1(a/2)=q3(a/2)

Yes

No

OUT
(1) Closure deformation

(2) Radius of contact area

Fig. 4 Algorithm for the new mathematical model

Mechanical Model for Predicting Closure Behavior 2291

123



According to the single surface topography, the samples

are divided into two groups, named Group I, II, and each

group consists of four samples with the same morphology.

4.2 Measurement System

Rock joint surface were measured using a 3D stereo-to-

pometric measurement system developed by Xia et al.

(2008, 2013). Such a system has the advantages of high

precision and good repeatability, as well as being fast and

easy to use since it is able to digitize the entire surface at

once. The system works on a novel principle compared to

one-camera fringe projection sensors and consists of a

measurement head containing a central projector unit and

two CCD cameras with the resolution of 1.44 9 106 pixel.

Various white-light fringe patterns are projected onto the

object surface and recorded by two digital cameras, which

are integrated into the measurement head, from two dif-

ferent angles (Fig. 5). Due to the high data density result-

ing from the optical measurement process, details of the

rough surface can be captured precisely. Depending on the

selected camera shutter speeds, one measurement requires

5–15 s to be completed. 3D coordinates are computed

independently with high accuracy for each of the camera

pixels. The resolution of the spatial location of each point

in the 3D space (point cloud) along x, y, z direction is

±20 lm. In this work, point spacing is selected as 0.3 mm

when reconstruct joint surface. The surface spatial varia-

tions of joint specimens are shown in Fig. 6.

The basis of the surface point triangulation is the interior

and exterior orientation of the sensor elements, which must

be determined by a special calibration procedure. The

calibration procedure relies on the fact that the parameters

of a mathematical model describing the camera operation

can be extracted from target locations. The calibration

object consists of a plane with circular targets whose

coordinates need not be known exactly. They are simul-

taneously calculated by a bundle adjustment light. Only the

distance between two points of the calibration object

should be known a priori to determine the scale of the

coordinates. In the laboratory, the calibration accuracy of

this system is usually 0.002 mm.

4.3 Test Procedure

Joint surface topography and contact states between the

upper and the lower joint surfaces have a dominant effect

on its closure deformation (Xia et al. 2003). We can obtain

joints with different contact states by using different dis-

locations between the upper and lower joint surface pro-

files. In this work, the amount of lateral dislocation was 5,

10, or 15 mm, respectively. Each combined joint set can be

considered as an individual joint with its own composite

topography. The eight sets of combined joints were used in

Sensor head

Projection unit

Camera 1
Camera 2

Projector

Calibration object

Triangulated surface

Rock joint

Camera 1
Camera 2

Fig. 5 Stereo-topometric scanner used to digitize surface roughness (Xia et al. 2013)
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the closure testing. We used the following approach to

impose the lateral dislocation between the upper and lower

surfaces (Xia et al. 2003):

• Initially, the entire upper sample block and the lower

sample block are placed tightly together as one single

man-made joint.

• Under this completely mated joint state, a set of scale

lines are drawn at 1 mm intervals on the two symmetric

surfaces of the joint plane.

• The lower block sample is then fixed.

• The upper block is then moved slowly to make lateral

dislocations of 5, 10, or 15 mm, respectively, along the

scale lines.

The closure tests were carried out on a servo-controlled

testing machine, at Rock Mechanics and Engineering

Center of Tongji University. The specimens were pre-

loaded by 50.0 kPa to stabilize the testing system and

normal stress was increased at a rate of 0.002 MPa/s until

to a designated value, 3.0 MPa. The normal displacement

was measured by LVDT with an accuracy of ±1 lm,

which was connected to a digital data acquisition system

with an adjustable data-recording rate. Two pieces of plates

bearing extensometers were installed on the two symmetric

surfaces of the lower sample part. Two pieces of plates

transmitting displacement were stalled on the two sym-

metric surfaces of the upper sample part (Fig. 7). They

were made with angle steel with large stiffness. The

Fig. 6 Spatial variation of the

bottom surfaces of the

respective joint specimens

Load cell

Actuator

Joint

LVDT LVDT

Plate

Plate

Plate

Upper
block

Lower
block

Fig. 7 The schematic of closure deformation measurement by LVDT
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relative displacements between the plates bearing and

plates transmitting displacement under different compres-

sive loads were measured with two clip-type extensome-

ters. The average value of the two extensometers

subtracting the deformation of the intact rock between two

pre-determined signs under the corresponding axial load

was considered to be the joint closure deformation.

4.4 Analysis and Validity of the Experimental Results

Each test has been made twice, so it becomes possible to

evaluate the repeatability of the mechanical behaviors.

Results of the compression tests are presented in Fig. 8.

The curves of mean normal relative displacement versus

normal stress have nearly the same shape, and have been

described by many authors, such as Goodman (1976) and

Bandis et al. (1983). The closure curves possess a high

degree of non-linearity. As the normal stress increases, the

curves gradually approach a vertical line that corresponds

to the maximal joint closure deformation. We can also

know that the closure curves for one joint with different

contact depict substantial variations. The larger the dislo-

cation between the two joint surfaces, the more the dif-

ference among the load-closure curves. This result

indicates that joint closure behavior has a substantial

dependence on the characteristics of composite topography

under a specific contact state.

The material and morphology parameters used for pre-

dicting closure deformation of joints are given in Table 2.

A comparison between the test and the calculated closure

deformation are shown in Figs. 9 and 10. Compared to Xia

model, the calculated curves by the new model are closer to

the experimental. Errors associated with topography mea-

surement and initial aperture estimation may be the reasons

for the difference between the theoretic curve of the new

model and the experimental curve. Another factor may be

the used morphology parameters which are scale and size

dependent. During the laboratory testing, we tried to obtain

joint samples with contact state Case 2. However, we were

failure to obtain such joint samples for testing. Hence,

experimental verification of the new model for Case 2

should be carried out in future studies.

How a joint deforms under stress depends on its

physical attributes, including the roughness of the joint

surfaces, the spatial geometry of the contact area and

topographical features (Hopkins 2000). As for a real rock

joint, surface roughness is directional dependent, so we

will obtain different composite topography and varied

closure deformation when the lateral dislocation forwards

different direction. Greenwood model cannot reflect this

feature and the calculated closure deformation is unique

as long as the single surface of joint is the same. As for

Table 2 Input parameters for validity of the proposed models

Dislocation (mm) Group I Group II

g (mm-2) b (mm) e0 R g (mm-2) b (mm) e0 R

5 0.1666 6.3248 1.36 ? 0.0970 5.1626 2.18 141.8

10 0.1727 6.2276 1.93 ? 0.0950 5.4584 2.66 144.3

15 0.1738 6.443 2.24 ? 0.0955 5.3642 3.02 143.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
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m
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 s

tr
es

s 
(M

Pa
)

Closure deformation (mm)

0 mm 5 mm 10 mm 15 mm

(a) Group I

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

 s
tr

es
s 

(M
Pa

)

Closure deformation (mm)

0 mm 5 mm

10 mm 15 mm

(b) Group II

Fig. 8 Results of joint closure-deformation curves under different

contact state
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Fig. 9 Comparison between the experimental and theoretical closure

deformation curves for Group I
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Fig. 10 Comparison between the experimental and theoretical clo-

sure deformation curves for Group II
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the Xia model and the proposed model, we will obtain

different closure deformation when the composite

topography changed. For a realistic closure process,

roughness and waviness evolve with the deformation,

which means that the friction between two surfaces

changes gradually. Actually, the changing contact friction

can be reflected by the increasing normal stiffness during

the process of closure. Compared with the Xia model,

the calculated stiffness by the present model is smaller

and this would be expressed by the contact model using

two springs in series.

Deformation of the bulk material surrounding the joint

results in mechanical interaction among contacting asper-

ities and changes in the geometry of the void space

between the joint surfaces and these results have significant

implications for almost any endeavor in fractured rock,

including predicting the hydro-mechanical response of a

rock mass to changes in stress, understanding deformation

and failure of joints under shear stress (Hopkins 2000).

However, there is no effort to discuss the interaction

between asperities because of its complexity and, this is

our future work.

5 Conclusions

Many factors influence the closure deformation of rock

joints and we pay more attention to the effect of its

roughness. Other factors, such as substrate deformation,

usually have been ignored or at least not straight forward to

be expressed in the existed theoretical models. Compared

to other models, Xia model is the only one which can take

into account the different effect of components (waviness

component and unevenness component) to joint closure

deformation. According to elastic analysis for single

asperity, two springs in series concept was used and the

realistic deformation of asperity was derived on basis of

deformation compatibility conditions. The substrate

deformation has great effect on joint deformation. Then,

we estimate the closure deformation of joints under normal

stress by improvement of Xia model to account this sub-

strate deformation. The proposed model can account the

effect of both surface components and substrate deforma-

tion. Several closure tests are performed to validate the

proposed model and the prediction compares well with the

experiment results.
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Appendix

Single asperity and bulk substrate were analyzed separately

according to elastic analysis using two springs in series

concept as shown schematically in Fig. 11. The realistic

contact pressure on the substrate is more complicated

depending on the geometrical and physical properties of

asperity and substrate.

According to Hertz theory, the stiffness of an asperity is

given by (Popov 2010)

ka ¼
dF

dda

¼ 2
ffiffiffi
q
p

Ea

ffiffiffiffiffi
da

p
ðA1Þ

In the case of bulk substrate, a Hertz pressure instead of

a constant pressure was used to model the substrate

stiffness. When the Hertz pressure is applied to a circular

region with a radius of rb in the elastic half-space,

according to elastic analysis, the normal displacement of

the surface could be obtained by (Popov 2010)

Uz rð Þ ¼ pp0

4Ebrb

2r2
b � r2

� �
0� r� rb ðA2Þ

p0 ¼
3

2

F

pr2
b

ðA3Þ

The normal displacement at the centre of the circular

region could be expressed as

d

ah

rb

F

asperity
Ea

bulk

b

a

Eb

ka

kb

ra

Fig. 11 Single asperity contact-deformation model (Modified from

Yeo et al. 2009)
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db ¼ Uz 0ð Þ ¼ pp0

2Eb

rb ðA4Þ

According to Eqs. (A3) and (A4), the stiffness of the

bulk substrate could be obtained as

kb ¼
dF

ddb

¼ 4

3
rbEb ðA5Þ

As shown in Eq. (A1), ka is not a constant value but a

function of da, and the value of da should be determined in

advance to obtain the equivalent stiffness. The following

two equations could be used on basis of the elastic

compatibility conditions (Yeo et al. 2009):

F ¼ k � d ¼ ka � da ¼ kb � db ðA6Þ
d ¼ da þ db ðA7Þ

Applying Eqs. (A1) and (A5)–(A6) and (A7), da is

related to d by

3
ffiffiffi
q
p

Ea

2rbEb

d3=2
a þ da � d ¼ 0 ðA8Þ

Then, we can obtain

da ¼
d

1þ 3
ffiffi
q
p

Ea

2rbEb

ffiffiffiffiffi
da

p ðA9Þ

As for rock joint, for simplicity, we can treat Ea = Eb,

q = rb.

Equation (A9) is a iterative equation and can be solved

numerically by the fixed point iteration method (Yeo et al.

2009). Therefore, after two iterations, an approximate

solution for the asperity deformation could be given by:

da ¼
d

1þ 3
2
ffiffi
q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
.
ð1þ 3

2
ffiffi
q
p

ffiffiffiffiffiffiffiffi
d=2

p
Þ

r ðA10Þ

Equation (A10) is the asperity deformation which takes

into account the bulk substrate deformation and is not equal

to the applied displacement d, but instead is given as a

function of d.

If we take into account the bulk substrate deformation,

the asperity deformation da is expressed as

da ¼ g dð Þ ¼ g z� dð Þ

¼ z� dð Þ

1þ 3
2
ffiffi
q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� dð Þ

.
ð1þ 3

2
ffiffi
q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� dð Þ=2

p
Þ

r ðA11Þ

Substituting Eq. (A11) into Brown model (Brown and

Scholz 1985, 1986), the normal stress is given by

rn ¼
4

3
E0g

ffiffiffi
q
p Z1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g z� d½ �f g3

q
f zð Þdz ðA12Þ

Rearrange Eq. (A12), we can obtain Eq. (10).
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