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Abstract Determining anisotropic deformation sur-

rounding underground excavations for tunnels is an intui-

tional task that involves many difficulties due to the

inherent anisotropies in the strength and deformability of

natural rocks. This study investigates joint-induced aniso-

tropic deformation surrounding a tunnel via a numerical

simulation that accounts for the mechanical behavior of

intact rock, the orientations of joint sets, and the mechan-

ical behavior of joint planes; this numerical simulation can

model the complete stress–strain relationship with aniso-

tropic rock mass characteristics. Simulation results dem-

onstrate that the well-known excavation-induced stress

variation–decrease in the radial component and increase in

the tangential component–decrease shear strength and

increase shear stress for the joint plane tangential to the

tunnel wall, resulting in joint sliding failure and consider-

able shear deformation. This joint sliding failure and sig-

nificant shear deformation account for the joint-induced

anisotropic deformation surrounding a tunnel. When a rock

mass has two joint sets with unfavorable joint orientations,

the area with joint sliding failure can deteriorate mutually,

resulting in large anisotropic deformation. Additionally, for

a rock mass containing three joint sets with well-distributed

orientations, joint sliding in various joint sets and associ-

ated stress variations can counter balance each other,

resulting in less anisotropic deformation than those of rock

masses containing one or two joint sets.

Keywords Jointed rock mass � Deformation surrounding

a tunnel � Joint-induced anisotropy � Constitutive model �
Failure modes � Pre- and post-peak deformation

1 Introduction

Anisotropic deformation, commonly for tunnels excavated

from rock masses, reduces the stability of the usual bilaterally

symmetrical supporting system (Hoek and Brown 1980;

Bhasin et al. 1995; Hefny and Lo 1999; Tonon and Amadei

2003; Fortsakis et al. 2012; Vu et al. 2012). The inherent an-

isotropies in both strength and deformability for natural rocks

generate difficulties when simulating the mechanical behav-

iors of rock masses, including pre- and post-peak anisotropic

deformation (Amadei et al. 1987; Amadei and Savage 1991;

Amadei and Pan 1992; Pine et al. 2006; Wang et al. 2009). As

such, for tunnel designs, the determination of anisotropic

deformation surrounding underground excavations in rocks is

a seemingly intuitional task that involves many complexities

and compromises (Pariseau 1999; Prudencio and Prudencio

and Van Sint 2007; Wang and Huang 2011; Zhou et al. 2012).

The anisotropy of a rock mass resulting from foliation or

lamination of intact rocks, such as schistosity in schists or

bedding in sandstones, can be taken into account by a

transversely isotropic constitutive model that is integrated

with directional failure-related criteria (Chen et al. 1998;

Singh et al. 2002; Singh and Rao 2005; Weng et al. 2008;

Kolymbas et al. 2012). Anisotropic deformation caused by

underground excavation can be determined via an associated

numerical implementation with little difficulty, and usually

has a ratio of maximum to minimum deformation of \1.5
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(Kulatilake et al. 2001; Weng et al. 2010). However,

anisotropy due to rock formations cut by one or several

regularly spaced ubiquitous joint sets is far more complex, as

the rock has significant differences in strength and defor-

mability of the joint plane and arbitrary orientations of joint

sets, resulting in various failure modes and various complete

stress–strain relationships of rock masses (Singh et al. 2002;

Wang 2003; Wang and Huang 2006). Underground exca-

vation in such a rock mass can induce highly anisotropic

deformation with the ratio of the maximum to minimum

deformation exceeding three, jeopardizing tunnel stability

(Wang 2003; Singh and Singh 2008; Maghous et al. 2008).

Focusing on joint-induced anisotropic deformation, this

study investigates how joint sets deform and fail under

stress variation caused by tunnel excavation, which induces

an additional failure mode and asymmetrical deformation

components from those of intact rocks as well leading to

diverse deformational behaviors of rock masses surround-

ing a tunnel. The non-linear constitutive model and asso-

ciated numerical implementation proposed by the authors

are adopted (Wang and Huang 2009). The characteristics of

the adopted methodology are introduced via simulations of

a series of uniaxial compressive loading tests on rock

masses containing one joint set with distinct dip angles.

Circular tunnels excavated in rock masses containing var-

ious joint sets are then simulated to characterize the

influence of excavation induced stress variation on joint

deformation and related failure. The interaction between

different joint sets is also examined. Finally, factors

affecting joint-induced anisotropic deformation surround-

ing a tunnel, such as the joint orientation, joint strength,

and in situ stress conditions, are discussed.

2 Methodology

Wang and Huang (2009) developed a three-dimensional non-

linear constitutive model and an associated two-dimensional

numerical implementation for a rock mass with regularly

distributed ubiquitous joint sets. The model combines the

mechanical behavior of intact rock, the spatial configuration

of joint sets, and mechanical behavior of the joint plane into

the rock mass using representative volume elements. Thus,

this model can characterize joint-induced anisotropy in terms

of strength and deformation of a rock mass.

2.1 Constitutive Model and Associated Numerical

Implementation

2.1.1 Deformation Behavior for Intact Rock and Joints

A rock mass with a unit volume consisting of M sets of

ubiquitous joints, as shown in Fig. 1, under a uniform

stress state r is considered. When subjected to a small

increment of stress dr, the corresponding incremental

strain of the rock mass is de. The incremental strains typ-

ically consist two components–one from the intact rock

deformation deI , and the other by deformations of M sets of

joints, deJ . Thus,

de ¼ deI þ deJ ð1Þ

Before the applied load reaches peak-strength, deI can

be expressed in terms of the compliance matrix of intact

rock CI , as.

deI ¼ CIdr ð2Þ

To derive deJ , an individual joint plane, the a-th set

among M sets of joints, is considered first. Corresponding

to this particular set of joints, the three axes of local

coordinates (n, s, and t), as shown in Fig. 1b, are set to be

(1) the unit inward normal vector, n, (2) the orientation of

strike, s, and (3) the third direction, t, which is determined

by the right-hand rule.

Local deformation on joint plane dda caused by incre-

mental stress dr is related to the constitutive relation Da as.

dda ¼ DaLaBadr ð3Þ

where Da ¼ Dij

� �
, Dij (i,j = n,s,t) is the element of the

compliance matrix associated with the a-th joint plane. The

transformation matrix, La, is composed of directional

cosines between local coordinates (na, sa, and ta) and

global coordinates (X, Y, and Z). The Ba is a matrix

representing the area projection of the a-th joint plane onto

the Y–Z plane, Z-X plane, and X–Y plane. The local

deformation on joint plane dda can also be expressed in

terms of deformation in the global coordinate, dua, through

a further transformation as.

dua ¼ LaT DaLaBadr ð4Þ

Equation (4) describes global deformation associated

with a single joint plane a with an inward unit normal na =

ðna
x ; n

a
y ; n

a
z Þ caused by the small increment of stress dr,

where na
x , na

y and na
z represent the area projection of the a-th

joint plane onto the Y–Z plane, Z-X plane, and X–Y plane,

respectively.

If the considered joint set has a spacing of Sa, the

apparent frequency in a unit length in the X-axis direction

should be na
xð1Þ=Sa (Fig. 1c). Consequently, for a unit

volume of the rock mass subjected to incremental stress,

deformation of the total M sets of joints deJ can be derived

as.

deJ ¼
XM

a¼1

1

Sa
TaT DaTadr ð5Þ
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Equation (5) can be rewritten as deJ ¼ CJdr, where

CJ ¼
PM

a¼1

1
Sa TaT DaTa represents the compliance matrix of

all joint sets, and T ¼ LB.

The overall average strain of a rock mass can be cal-

culated by Eqs. (1), (2) and (5). When this representative

volume of a rock mass is infinitively small, the joints

become ubiquitous. Notably, the jointed rock is regarded as

a homogenized medium in the macroscopic scale, and

interactions between joints are currently neglected (Wang

2003; Wang and Huang 2009). Nevertheless, deformation

preserves the anisotropic nature induced by the existence of

joints in a rock mass, as in Eq. (5).

2.1.2 Failure modes and strength criteria

For a specific representative volume element, three failure

modes are considered and incorporated into the adopted

model (Wang 2003; Wang and Huang 2009); these three

failure modes are (1) tensile failure of intact rock, (2) shear

failure of intact rock and (3) joint sliding.

The conventional Mohr–Coulomb failure criterion with

peak friction angle, /p, peak cohesion, cp and tensile

strength, rt, of intact rock is adopted as the failure criterion

for intact rock. Barton’s empirical formula (Barton et al.

1985) is used to estimate the shear strength of joint plane

and as the failure criterion of joint sliding through three

parameters–joint roughness coefficient, JRC, uni-axial

compressive strength of a joint wall, JCS, and its basic

friction angle, /b.

The applied stress state dominates the failure mode of a

rock mass. Prior to failure, existing stress r is updated by

adding dr computed from the previous loading step. The

updated stress state is checked to determine whether it

reaches the failure criteria in turn. Additionally, tensile

normal stress leads to joint opening, which cannot sustain

tension, and the local stress will be redistributed to the

surrounding rock mass.

Following the above-mentioned processes, either intact

rock failure or joint sliding failure along any joint set can

be identified, and, accordingly, the strength of the rock

mass can then be determined. Once failure mode is deter-

mined the corresponding post-peak deformation can be

determined, as in the following section.

2.1.3 Deformation of Intact Rock and the Joint System

The stress–strain relationship of intact rock before and after

failure can be respectively described by Eq. (2) and plas-

ticity theories. If strain softening or hardening occur, the

plasticity normality rule can be used to describe the

development of the yield/failure surface. These methods

are adopted in the model used.

For each set of joints, three independent elements (Dss,

Dns and Dnn) of the compliance matrix are considered. Four

terms, Dst, Dts, Dsn, and Dtn, represent deformation in one

direction induced by stress acting in another direction and

are ignored. Roughness in the s-direction and t-direction

are assumed the same, i.e. Dss = Dtt and Dns = Dnt.

Element Dnn represents normal deformation induced by

normal stress and equals the reciprocal of normal stiffness

knn. The empirical relation, which utilizes initial normal

stiffness kni and maximum closure um
n , proposed by Bandis

Fig. 1 Configuration of multi-sets of ubiquitous joints in a rock mass.

a Three parameters, strike b, dip c and spacing S, allocate the spatial

configuration of each joint set. b Configuration of a 3-D rock mass

with unit length in all sides and containing the ath joint set for a

particular set of joints considered. A local coordinate for each joint set

is defined. c Deformation in the XZ-plane associated with deformation

of the ath joint set (Wang and Huang 2009) (color figure online)
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et al. (1983) are utilized to determine Dnn under various

stress state. Element Dss represents shear deformation

induced by shear stress and equals the reciprocal of shear

stiffness kss. The mobilization of the JRC during shearing,

proposed by Barton et al. (1985), is used to determine Dss

corresponding to various shearing levels. For sake of

simplicity, the adopted variation of the JRC can be mobi-

lized as soon as shear displacement occurs (Wang and

Huang 2009). Additionally, we assume shear stiffness

during the unloading and reloading stages is twice that in

the initial condition. Element Dns represents normal

deformation induced by shear stress; thus, shear dilatancy

reported by Barton et al. (1985) is adopted.

Remarkably, only element Dss involves post-peak

deformation. Furthermore, deformation behaviors adopted

in the model are mainly based on published results and

commonly used in engineering practice. The model com-

bines these behaviors, such that a sophisticated deforma-

tion model capable of describing anisotropic pre- and post-

peak deformation and strain softening/hardening is

accordingly adopted to investigate anisotropic deformation

of a circular tunnel that is excavated in a rock mass con-

taining sets of ubiquitous joints.

2.1.4 Numerical Implementation

Wang and Huang (2009) incorporated the above-mentioned

constitutive model for a two-dimensional rock mass into a

subroutine for the explicit finite difference software pro-

gram, FLAC. Through the numerical implementation, the

adopted constituted model can be utilized to simulate a

practical engineering task in a rock mass containing sets of

ubiquitous joints with the following features.

(1) The failure modes corresponding to stress conditions,

which inherently determine anisotropic strength, can

be selected automatically.

(2) The major properties of joints, such as closure, shear

and the associated dilatancy of joints, can be consid-

ered in the stress–strain relationship.

(3) The progressive failure, which results in strain

softening of a rock mass, can be described in post-

peak deformation.

The numerical implementation for the adopted consti-

tutive model has been verified through a series of com-

parisons between its predictions to the results of existing

models and laboratory experiments via one single element

(Yang et al. 1998). To further validate its applications to

rock engineering and to illustrate the features of the

adopted methodology, failure mode and anisotropy of

mechanical behavior of jointed rock–based on the labora-

tory physical test by Yang et al. (1998), which in fact

represented a two-dimensional jointed rock mass with one

or two non-orthogonal joint sets–are simulated and dis-

cussed in the following section.

2.2 Characteristics of Used Methodology

Table 1 summarizes the mechanical parameters of the

intact rock and joints that comprise the jointed rock. Input

parameters of these artificial intact rocks are reduced due to

scale effects (Wang 2003; Wang and Huang 2009; Yang

et al. 1998). Numerical simulation adopts 10 9 24 (hori-

zontal by vertical) elements to simulate physical model

tests. The numerical model is fixed vertically in its lower

boundary and horizontally in its central bottom, and is

loaded from its top boundary by constant vertical down-

ward displacement.

Figure 2a shows the variation in strength, expressed in

terms of r1f , corresponding to different dip angles obtained

by the adopted model and experimentally. Numerical

simulation results show that the strength of rock mass

varies significantly with joint dip and exhibits anisotropy.

Table 1 Mechanical parameters obtained by Yang et al. (1998) and associated input parameters used for characterizing features of the adopted

methodology

Artificial intact rock material* Joint

Parameters Test results Input Parameters Test results Input

Peak cohesion cp (MPa) 1.44 0.65 Initial normal stiffness kni (MPa/m) 307.0 307.0

Peak friction angle /p (�) 34.7 34.7 Maximum closure um
n (m) 1.8E-4 1.8E-4

Bulk modulus K (MPa) 2,448.4 261.6 Joint roughness coefficient (JRC) 14.0 ±0.8 14

Poisson ratio m 0.19 0.19 Basic friction angle /b (�) 31 31

Uni-axial compressive

strength rc (MPa)

7.63 – Uni-axial compressive strength

of joint wall JCS (MPa)

7.63 7.63

* The strain softening behavior of artificial intact rock material is simulated by successive degradation of strength parameters, i.e. cohesion and

friction angle, with accumulated plastic strain (Wang and Huang 2009)
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The predicted strengths are consistent with physical model

test results, and differences between test and simulation

results are less significant than test variations.

Figure 2b shows failure modes for rock masses with

various joint dips subjected to uni-axial compressive

loading. Failure modes are illustrated when each rock mass

surpasses its peak-strength. Furthermore, the failure modes

should be interpreted in a lump specimen instead of any

particular element, since the numerical model contains 240

elements. The intact rock failure mode is observed for rock

masses containing joint dips of 0�, 15�, 30� and 90�, and

joint sliding failure mode is observed for rock masses with

joint dips of 45�, 60� and 75�, which are consistent with

physical model test results.

The deformation of rock masses is also anisotropic and

varies with joint dip. Figure 3a compares the pre-peak

tangential deformation modulus at half peak strength, E50,

determined from physical model tests and numerical

simulations. Simulation results are consistent with experi-

mental results. Figure 3b shows the deformed shapes of the

rock mass with various joint dips. These deformed shapes

are illustrated when each rock mass reaches its approxi-

mate peak strength. Joint-induced anisotropic deforma-

tions, even under intact rock failure conditions, are

observed, except for rock masses with a joint plane per-

pendicular to or parallel to the loading direction, i.e. dip

angle of 0� or 90� for the vertically loaded case. Further-

more, since the shear strength of joint is far less than that of

the intact rock, joint sliding occurs rapidly when angles

between joint dips and the applied load are small. As a

result, deformations of the rock masses with joint sliding

failure mode at peak strength are smaller than those under

intact rock failure modes.

Figure 4 shows the complete stress–strain behavior the

rock mass predicted by the adopted methodology. The

changes to failure modes during the post-peak stage are

Fig. 2 Comparison of shear

strength a and failure modes

b between model tests (Yang

et al. 1998) and prediction

results. Results of physical

model tests, indicated by hollow

symbols in a, show that failure

modes and corresponding shear

strength of rock mass vary

markedly with joint dip and,

thus, exhibit anisotropy. The

prediction results, marked by

solid symbols in a and with

distinct colors in b, are

consistent with tendencies

obtained experimentally (color

figure online)
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also given. The stress–strain curves are concave when the

stress level is low, which is a direct result of joint closure.

As loading stress approaches peak strength, these curves

display interesting phenomena.

For example, in the case of a rock mass with a joint dip

of 0�, intact rock failure occurs and intact rock stiffness

controls corresponding stress–strain curve after joint clo-

sure. When peak strength is exceeded, a significant decline

in strength occurs due to loss of intact rock strength

resulting from strain softening behavior. At peak strength,

with vertical strain defined as e1f , failure mode of elements

in the rock mass indicate that intact rock failure is gener-

ally distributed randomly throughout the specimen

(Fig. 4b). When the rock mass is continuously loaded by

vertical downward displacement to an axial strain of

approximately 1.5e1f , intact rock failure spreads all over

the specimen. Furthermore, the elements indicating intact

rock failure with just plastic flow occurring aggregate into

a cross band in the central part of the specimen. Thus, the

specimen bulges. The cross band composed of elements

indicating intact rock failure with plastic flowing then

gradually change into an inclined band as loading is

applied continuously, resulting in asymmetrical lateral

deformation of the specimen when axial strain is approxi-

mately 2.0e1f .

In the case of a rock mass with a joint dip of 60�, joint

sliding failure mode controls strength and, thus, deforma-

tion behavior of the joint controls global deformation, in

which stiffness decrease progressively before peaking. At

peak strength, joint sliding failure mode occurs in most

elements (Fig. 4d). The failure mode does not change until

axial strain reaches approximately 2.0e1f . Nevertheless,

specimen anisotropic deformation increase as continuous

loading increases.

In the case of a rock mass with a joint dip of 30�, intact

rock failure occurs at peak strength (Fig. 4c). Intact rock

stiffness controls the stress–strain curve after the closure of

joints; strain softening behavior of intact rock then domi-

nates the stress–strain curves in the early post-peak stage.

However, as applied loading continues in the post-peak

Fig. 3 Comparison of pre-peak

deformation from model test

(Yang et al. 1998) and

prediction results. a The pre-

peak tangential deformation

modulus at half peak strength of

a rock mass from physical

model tests, marked by hollow

symbols, varies markedly with

joint dip and exhibits

anisotropy. The prediction

results, marked by solid

symbols, are consistent with the

tendency obtained

experimentally. b The deformed

shapes for the rock mass with

various joint dips while each

reaches its peak strength

approximately (color figure

online)
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stage, stress-redistribution due to intact rock plasticity

changes the failure mode, i.e. failure mode gradually

transforms from intact rock failure into joint sliding failure.

With axial strain of approximately 2.0e1f , an inclined band

with elements indicating joint sliding forms, instead of

those indicating intact rock failure for the rock mass with a

joint dip of 0�. Obviously, the deformation characteristics

of a rock mass containing ubiquitous joint sets are strongly

influenced by the corresponding failure modes and the

mechanical behaviors of rock mass components.

3 Numerical Modeling

To investigate joint-induced anisotropic deformation of

rock surrounding a tunnel, numerical simulations using the

above constitutive model and associated numerical imple-

mentation are conducted to model a tunnel excavated from

rock masses containing non-ubiquitous joint set, and one,

two, and three ubiquitous joint sets.

3.1 Model Setting up

A circular tunnel with a radius of 5.0 m is considered. The

numerical model adopts a mesh sized 160 9 160 m with

roller boundaries to minimize the influence of the boundary

effect. The element size near the tunnel is 0.8 9 0.8 m.

The rock mass has a unit weight of 25 kN/m3. We assume

overburden is 400 m and the stress state is hydrostatic, i.e.

both horizontal stresses, rxx and rzz, equal vertical

stress,ryy.

Rock masses composed of medium-strength intact rock

and various ubiquitous joint sets are considered. Table 2

summaries the mechanical parameters for intact rock and

the joint plane as well as attitudes and geometrical prop-

erties of the various joint sets. For sake of simplification,

the mechanical behaviors of the joint plane are set the same

for all conditions. Full face excavation of the tunnel is

simulated. The tunnel is supported by 0.1-m-thick shotcrete

as soon as surrounding rock deformation reaches 0.05 m.

Table 2c lists the mechanical parameters of the tunnel

support.

3.2 Simulation Results

Figure 5 shows the failure zones surrounding a tunnel in

rock masses containing various sets of ubiquitous joints.

For a rock mass containing no joint set, only intact rock

failure can occur. The failure zones size approximate

0.8–1.2 m surround the tunnel symmetrically, expect have

rectangular mesh-induced edges and corners (Fig. 5a). For

a rock mass containing one joint set, the failure zone is

about 0.8 m larger in upper right and lower left area than

that with no joint set (Fig. 5b). Moreover, the failure mode

in these areas, the upper right and lower left area, is mainly

joint sliding, not intact rock failure mode that occurred in

another areas as the same as that with no joint set. For the

well-known stress variation caused by tunnel excavation,

Fig. 4 Comparison of complete stress–strain behavior from model

test (Yang et al. 1998) and prediction results. a Complete stress–strain

curve. b, c and d are failure modes and associated variation in the

post-peak stage (e1= 1.0e1f ,1.5e1f , and 2.0e1f) for rock masses

containing joint set with dips of 0�, 30� and 60� (color figure online)
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stress decreasing in the radial component and increasing in

the tangential component, decrease the shear strength of

joint planes with a dip of 30�, leading to joint sliding in the

aforementioned areas, since normal stress for these joints is

reduced, and the shear stress acting on these joints is

increased. The adopted methodology determines the failure

modes of a rock mass automatically and describes their

distribution surrounding a tunnel with significant physical

meaning.

For a rock mass containing two joint sets, stress varia-

tions corresponding to joint sliding for these two joint sets

deteriorate each other, resulting in very large failure zones

in the area of the joint planes parallel to tunnel walls

(Fig. 5c). For a rock mass containing three joint sets, the

anisotropies of strength and deformation are markedly

reduced; the failure zones tend to be well-distributed than

those of a rock mass containing two joint sets (Fig. 5d).

Figure 6 compares the rock deformations surrounding a

tunnel. For comparisons, normalized radial strain is utilized

and defined as radial displacement divided by distance to

the tunnel center from each point. For a rock mass con-

taining no joint set, normalized radial strain is uniformly

and circularly distributed with a maximum magnitude of

approximately 0.012 along the tunnel wall (Fig. 6a). For a

rock mass containing one joint set, the normalized radial

strain exhibits anisotropy and is obviously increased in the

upper right and lower left areas, i.e. the areas where joint

sliding occurs, with a maximum of approximately 0.018

(Fig. 6b). The normalized radial strain in the upper left and

lower right areas is very close to that of a rock mass

containing no joint set.

For a rock mass containing two joint sets, normalized

radial strain has a highly anisotropic distribution with a

maximum exceeding 0.028 along the tunnel wall in the top

left and right down directions (Fig. 6c). The mutual influ-

ence of the two joint sets with joint sliding failure mode

accounts for this significant convergence. For a rock mass

containing three joint sets, anisotropy of deformation

decreases obviously (Fig. 6d). However, normalized radial

strain increases with a peak of 0.020 along the tunnel wall.

Compared with that of a rock mass containing no joint set,

joint closure, shear displacement, and dilatancy clearly

contribute to the increases in deformation. Notably, maxi-

mum normalized radial strain is less than that of a rock

mass containing two joint sets, but the area with a nor-

malized radial strain exceeding 0.005 is increased. The

three well-distributed joint sets existing in the rock mass

provide more flexibility, accommodating the excavation-

induced stress–strain redistribution and reducing deforma-

tional anisotropy, with a tradeoff instead of increasing the

size of the influenced area.

Figure 7 shows the displacement of surrounding rock

along a tunnel wall. The abscissa h is measured clockwise

from the tunnel vault. Figure 7a shows the defined dis-

placement vector u and the magnitudes of its radial com-

ponent, ur, and tangential component, uh. For a rock mass

containing no joint set, both ur and uh are distributed

uniformly, except for minor variations caused by the

Table 2 Input parameters for the investigation of joint-induced anisotropic deformation surrounding a tunnel

a Mechanical parameters for intact rock and joint plane.

Intact rock Joint

Peak cohesion cp (MPa) 12.2 Initial normal stiffness kni (GPa/m) 20

Peak friction angle /p (�) 38.0 Maximum closure um
n (m) 1.0E - 4

Bulk modulus K (MPa) 6.67 Joint roughness coefficient ( JRC) 12

Poisson ratio m 0.25 Basic friction angle /b (�) 33

Uni-axial compressive

strength rc (MPa)

50.0 Uni-axial compressive strength

of joint wall JCS (MPa)

50

b Orientation for joint sets.

Joint set Joint dip angles c (�) Joint spacing S (m)

Non – –

One 30 1.0

Two 30/-30 1.0/1.0

Three 30/0/-30 1.0/1.0/1.0

c Mechanical parameters of shotcrete

Thickness(m) Deformation

modulus (GPa)

Area in unit tunnel

length (m2)

Moment of

initial (m4)

Plastic

moment (kN-m)

0.10 10.0 0.10 8.33E - 5 5.25E - 4
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rectangular mesh; thus, rock deformation surrounding a

tunnel is isotropic. For a rock mass containing one joint set,

ur has two peaks at h of 30� and 210�, where the joint plane

is just parallel to tunnel periphery tangents. Joint sliding

induces additional 30-mm displacements than that at other

locations without sliding failure, resulting in obvious

anisotropic deformation of the tunnel wall. The peaks of uh

occur when h is approximately 0� and 180�, which are

roughly 30� away from the ur peaks. The asymmetrical

shear deformation caused by joint sliding neighboring to

the locations with peak ur, i.e. h is 30� or 210�, accounts

for these gaps.

For a rock mass containing two joint sets, four locations

exist where joint planes are parallel to tunnel periphery

tangents, i.e. h is 30� and 210� for the first joint, and 150�
and 330� for the second joint set. However, both the ur and

uh peaks appear at locations where h is 120� and 300� due

to the synergistic effect associated with shear deformation

caused by the sliding of the two joint sets. For a rock mass

containing three joint sets, the locations of ur and uh peaks

appear are similar to those of a rock mass containing two

joint sets; however, both ur and uh peaks are much less in

magnitude. Again, the flexibility provided by additional

joint sets accommodating the stress–strain redistribution

accounts for this phenomenon.

The existence of joints induces anisotropic deformation

of rock surrounding a tunnel, and changes the ambient

stress distribution. Figure 8 shows variations in the radial

stress component and tangential stress component with

distance to the tunnel center r, where h is 0� and the

additional deformation caused by joint sliding is moderate.

The typical stress redistributions induced by excavating a

tunnel in a rock mass containing various joint set(s), i.e.

decreasing radial stress and increasing tangential stress, are

similar as those of a rock mass containing no joint set. In

the region r[7.5 m, where the rock masses remain elastic

for all conditions, the radial stress distribution of rock

masses containing three joint sets resembles that of the

condition with no joint set, which is generally isotropic.

However, the radial stress distribution for rock masses

containing one or two joint sets strays from the isotropic

condition, and have greater (negative) magnitudes as

Fig. 5 Excavation-induced

failure zones surrounding a

tunnel for rock masses

containing various sets of

ubiquitous joints. a For a rock

mass containing no joint set, the

zone of intact rock failure

surrounding a tunnel is

symmetrical with thicknesses of

0.8–1.2 m. b For a rock mass

containing one joint set with a

dip of 30�, joint sliding induces

further failure in the upper right

and lower left areas surrounding

the tunnel in addition to another

intact rock failure zone,

generating an anisotropic failure

zone. c For a rock mass

containing two joint sets with

dips of 30� and -30�, joint

sliding induced failure

influences reciprocally and

results in a large anisotropic

failure zone. d For a rock mass

containing three joint sets with

dips of 30�, 0� and -30�, the

failure zone tends to be well-

distributed as strength and

deformation anisotropy is

reduced significantly (color

figure online)

Anisotropic deformation 651

123



excavation-induced stress variation tends to increase nor-

mal stress and decrease shear stress on nearby joint planes,

which mobilizes the JRC and shear strength; increasing

shear strength of the joint while the stress–strain redistri-

bution is complete. As the locations of rock masses

approach the boundaries of the elastic and plastic regions,

the radial stress component tends to be less different than

each other because the stress state for all cases must match

one of the two failure criteria, i.e. the Mohr–Coulomb

criterion for intact rock failure or the modified Barton’s

empirical formula for joint sliding. In the failure zone

neighboring the tunnel wall, both radial and tangential

stresses differ significantly. This results in various support

stresses at particular positions along a tunnel wall.

Figure 9 shows variations in the radial stress component

and tangential stress component with distance to the tunnel

center, where h is 120� and there is generally additional

deformation caused by joint sliding. In the elastic region

roughly 12 m from the tunnel center, tangential stresses in

all cases are generally similar, but radial stress of rock

masses containing one or two joint sets deviates from the

isotropic condition, and have small magnitudes as the

adopted Barton’s empirical formula for joint sliding tends

to have less shear strength than peak strength. In the plastic

region neighboring the tunnel wall, radial stress is typically

close to each supporting stress, and the difference in radial

stress for all case is getting small. The radial stresses are

greater (negative) than those when h is 0� (Fig. 8a).

Moreover, the distribution of tangential stresses differs

from that conditions with h of 0� owing to various thick-

nesses of plastic regions and largely joint-sliding-induced

anisotropic deformation (Fig. 8b).

4 Discussion

This study now discusses the main factors, including joint

orientation, joint strength, tunnel overburden, and the ratio

of horizontal to vertical components of in situ stress,

affecting joint-induced anisotropic deformation of rock

surrounding a tunnel.

4.1 Influence of Joint Orientation

To investigate the influence of joint orientation on sur-

rounding deformation, this study simulates a tunnel exca-

vated in rock masses containing two joint sets with dip

angles of 15�/-15�, 30�/-30�, and 45�/-45�. The adopted

mechanical parameters and installation time of support, as

well in situ stresses, are the same as those mentioned in

Sect. 3.1.

Figure 10 shows the radial and tangential displacements

along a tunnel wall in rock masses with various joint ori-

entations. For joint sets with a small included acute angle,

such as 30� for the case with dip angles of 15�/-15�,

the joint-induced anisotropic deformation remains minor.

Fig. 6 Excavation-induced

normalized radial strain

surrounding a tunnel for rock

masses containing various sets

of ubiquitous joints. a For a

rock mass containing no joint

set, strain is distributed

uniformly and circularly with a

maximum magnitude of about

0.012. b For a rock mass

containing one joint set, strain

exhibits anisotropy and is

increased in the upper right and

lower left areas with a

maximum of 0.018. c For a rock

mass containing two joint sets,

strain exhibits high anisotropy

with a maximum exceeding

0.028 in the top left and right

down areas. d For a rock mass

containing three joint sets, the

anisotropy of strain decreases

markedly and maximum strain

along the tunnel wall is 0.020

(color figure online)
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Maximum tangential displacement is 30 mm when h is

210�, and radial displacements along the tunnel remain

similar. The pre-peak joint displacement contributes only

slightly to tunnel surrounding rock deformation, neither

does local joint sliding induced by tunnel excavation. As the

acute angle of joint sets increases, anisotropic deformation

increases. For the case with dip angles of 30�/-30�, both the

radial and tangential displacements at h near 120� and 300�
have local maximums with magnitudes roughly twice those

at farther locations. Displacement resulting from joint

sliding caused by tunnel excavation dominates surrounding

rock deformation. When joint sets have an included angle of

90�, radial displacements dramatically increase when h
values nearby are 90–180� and 270–360� and tangential

displacements increase when h values nearby are 0�, 100�,

170� and 270� due to joint sliding. The shear stress in one

joint set, which must decrease due to post-peak shear

weakening described by the adopted failure criterion of the

joint plane, is the normal stress of the other joint set. The

decrease in normal stress further reduces shear strength of

the joint set. As such, joint sets with an included right angle

Fig. 7 Displacement of surrounding rock along a tunnel wall for rock

masses containing various sets of ubiquitous joints. a The definition

of h. b Magnitude of the radial component of the displacement vector.

c Magnitude of the tangential component of the displacement vector

(color figure online)

Fig. 8 Variation in the radial stress component a and tangential stress

component b with the distance to the tunnel center at h is 0� (color

figure online)
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lead to mutual deterioration after joint sliding, which also

accounts for the significant anisotropic deformation in an

initially biaxial symmetrical medium.

4.2 Influence of Joint Strength

A tunnel excavated in a rock mass containing two joint sets

with dip angles of 30�/-30� and various joint strengths is

simulated to investigate the influence of joint strength on

anisotropic deformation. The input parameters are the same

as those for the rock mass in Sect. 3.1, except that combi-

nations of the JRC and /b are changed to 20� and 43�, 16� and

38�, 12� and 33�, and 8� and 28� representing high, medium,

moderate and low joint shear strength, respectively.

Figure 11 shows the radial and tangential displacements

of surrounding rock along a tunnel wall in rock masses

with various joint strengths. For the rock mass containing

joint sets with high shear strength, tunnel excavation causes

spares joint sliding, results in minor anisotropic deforma-

tion. As joint strength dies down, the area of excavation-

induced joint sliding increases in size and give rise to the

anisotropic deformation. For the rock mass containing joint

sets with moderate shear strength, tunnel excavation

induces joint sliding when h is 120� and 300� approxi-

mately, which cause anisotropic deformation of tunnel

surrounding rocks. When joint strength is less than the

moderate condition, such as JRC is 8 and /b is 28�, the

areas of joint sliding around the tunnel wall connect.

Tunnel surrounding deformation is then anisotropic and

huge, and support failure and subsequent tunnel collapse

likely occur.

Fig. 9 Variation in the radial stress component a and tangential stress

component b with the distance to the tunnel center at h is 120� (color

figure online)

Fig. 10 The displacement of surrounding rock along a tunnel wall for

rock masses containing various joint orientations. a Magnitude of the

radial component. b Magnitude of tangential component (color figure

online)

654 T.-T. Wang, T.-H. Huang

123



4.3 Influence of Overburden and Ratio of Horizontal

to Vertical Stress

A tunnel excavated in a rock mass containing two joint sets

with dip angles of 30�/-30� with moderate joint shear

strength is adopted to investigate the influence of over-

burden on anisotropic deformation. Overburden in simu-

lations is 200, 400 and 600 m, and in situ horizontal stress

equals vertical stress in each case.

Figure 12 shows the radial and tangential displacements

along a tunnel wall in rock masses with various overbur-

dens. The magnitudes of radial components of displacement

vectors increase at all location on the tunnel wall while

tunnel overburden increases. The ratios of maximum to

minimum radial components decrease from 2.5 for a 200-m

overburden to 2.0 for a 600-m overburden (Fig. 12a).

Nevertheless, the magnitudes of tangential components of

displacement vectors remain similar for various overbur-

dens (Fig. 12b). Since the tangential components mainly

result from joint deformation, these simulating results

indicate that no further joint sliding occurs as overburden

increase, also implying that for hydrostatic stress condi-

tions, anisotropic deformation of tunnel surrounding rock

tends to reduce slightly as overburden increase.

For the influence of horizontal stress, the ratios of hor-

izontal to vertical stress (rxx=ryy) of 0.5, 1.0, and 2.0 are

simulated while keeping the first stress invariant constant.

Figure 13 shows displacement along a tunnel wall. Both

the radial and tangential components are increased signif-

icantly due to non-hydrostatic in situ stress. Furthermore,

tangential displacement has both positive and negative

values instead of always being positive for the hydrostatic

condition. These distributions mean that the displacement

Fig. 11 Displacement of surrounding rock along a tunnel wall at

various joint strengths. A rock mass containing two joint sets with dip

angles of 30�/-30� is considered. a Magnitude of the radial component.

b Magnitude of the tangential component (color figure online)

Fig. 12 Displacement of surrounding rock along a tunnel wall for

various overburdens. a Magnitude of the radial component. b Mag-

nitude of the tangential component (color figure online)
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vectors along a tunnel wall may point in a specific direction

inside the tunnel at some locations, and to various direc-

tions at other locations, resulting in joint opening and

potential tunnel instability. Simulating results indicate that

the ratio of horizontal to vertical components of in situ

stress can lead to many failure zones surrounding a tunnel,

especially that caused by post-peak joint sliding, resulting

in considerable anisotropy of deformation.

5 Conclusions

Via a constitutive model for a rock mass containing sets of

ubiquitous joints and the associated numerical implemen-

tation proposed by Wang and Huang (2009), this study

validates its application to rock engineering and applies to

simulate deformation surrounding a circular tunnel. Sim-

ulation results indicate that anisotropic deformation of a

tunnel excavated in rock masses is mainly due to closure,

shear and dilation deformations of ubiquitous joint sets;

particularly, post-peak shear deformation after joint sliding

failure. The inherent stress variation caused by tunnel

excavation, decreasing in the radial direction and increas-

ing in the tangential direction, decrease shear strength of

joints in areas where joint planes are tangential to tunnel

wall, leading to joint sliding and considerable shear

deformation.

Joint sliding conditions caused by two distinct joint sets

may deteriorate reciprocally and generate a large failure

zone. Nevertheless, for a rock mass containing three well-

distributed joint sets, joint sliding in various joint sets and

associated stress variations can balance each other, result-

ing in less anisotropic deformation than that of rock masses

containing one or two joint sets. Furthermore, joint orien-

tation, joint strength, tunnel overburden, and the ratio of

horizontal to vertical components of in situ stress affect the

anisotropy of deformation surrounding a tunnel. Addi-

tionally, the degree of anisotropy depends strongly on the

extent of joint sliding failure.
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