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Abstract This paper describes a boundary element code

development on coupled thermal–mechanical processes of

rock fracture propagation. The code development was based

on the fracture mechanics code FRACOD that has previ-

ously been developed by Shen and Stephansson (Int J

Eng Fracture Mech 47:177–189, 1993) and FRACOM

(A fracture propagation code—FRACOD, User’s manual.

FRACOM Ltd. 2002) and simulates complex fracture

propagation in rocks governed by both tensile and shear

mechanisms. For the coupled thermal-fracturing analysis,

an indirect boundary element method, namely the fictitious

heat source method, was implemented in FRACOD to

simulate the temperature change and thermal stresses in

rocks. This indirect method is particularly suitable for the

thermal-fracturing coupling in FRACOD where the dis-

placement discontinuity method is used for mechanical

simulation. The coupled code was also extended to simulate

multiple region problems in which rock mass, concrete

linings and insulation layers with different thermal and

mechanical properties were present. Both verification and

application cases were presented where a point heat source

in a 2D infinite medium and a pilot LNG underground

cavern were solved and studied using the coupled code.

Good agreement was observed between the simulation

results, analytical solutions and in situ measurements which

validates an applicability of the developed coupled code.

Keywords Coupled thermal-fracturing processes �
FRACOD � Fictitious heat source method � Boundary

element method � Thermal stress � Multiple regions

1 Introduction

With increasing concerns about environmental issues

related to the mining and energy sectors worldwide, the

field of rock mechanics is being advanced and widened to

address the complex behavior of mechanical, thermal, and

hydraulic responses of rocks. Over the past several dec-

ades, coupled mechanical–thermal–hydraulic processes in

rock masses have been a focus of research, particularly in

the field of underground nuclear waste disposal, and sig-

nificant advances have been achieved (Min et al. 2005;

Rutqvist et al. 2005; Tsang et al. 2005). However, the past

studies have mostly treated the rock mass as a continuum

or a discontinuum with predefined discontinuities. The

process of explicit rock fracturing, which is the dominant
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mechanism in hard rock failure, has not been adequately

addressed during the simulation of complex coupled pro-

cesses. Understanding and predicting the effects of the

interactive processes between explicit rock fracturing,

temperature change and fluid flow (coupled fracturing

(F)–thermal (T)–hydraulic (H) processes) remain to be a

key challenge for industries such as geothermal energy

extraction, geological CO2 sequestration, underground

LNG storage, and deep geological disposal of nuclear

waste.

In a fractured rock mass, rock fracturing, fluid flow and

rock temperature change are closely correlated (Fig. 1).

Rock fractures will enhance the fluid flow by creating new

flow channels, whereas the fluid pressure may stimulate

fracture growth. Uneven temperature change in rock mass

will result in the thermal stress in the rock mass which

could lead to fracture propagation. Coupling between these

processes are necessary in order to study the above men-

tioned industrial issues.

To deepen the knowledge on the above mentioned issues

and to understand the coupled F–T–H processes in rocks in

an engineering scale, we developed a numerical tool that is

based on boundary element code, FRACOD which has

been previously developed by Shen and Stephansson

(1993) and FRACOM (2002) and simulates complex

fracture propagation in rocks governed by both mode I

(tensile) and mode II (shear) mechanisms. FRACOD has

been used to model the rock failure field testing in an

engineering scale and was proven to be useful in predicting

the brittle failure (Rinne et al. 2003), borehole breakouts

(Shen et al. 2002; Klee et al. 2011; Barton 2007), stability

of large shaft and galleries (Stephansson et al. 2003), pillar

spalling (Rinne et al. 2003), fundamental creep behavior of

rock samples (Rinne 2008).

For the coupled analysis, we newly implemented an

indirect boundary element method, namely the fictitious

heat source method to simulate temperature change and

thermal stresses in rocks. This paper presents our first

development of coupled F–T module in advance to fully

coupled F–T–H code development and the verification as

well as application cases studies using the developed

coupled module were presented. In addition, engineering

barriers such as concrete linings and insulation layers are

often involved in boreholes and underground caverns in

rocks. The coupled code was also extended to simulate

multiple region problems where rock mass, concrete lin-

ings and insulation layers with different thermal and

mechanical properties were present. It should be noted that

the thermal coupling and multi-region functions described

in this paper have been previously used by many other

researchers for stress modeling of intact elastic body. This

paper, however, focuses on the coupling of these functions

with fracture propagation and hence presents a unique way

to predict the complex rock fracturing processes.

2 Development of Coupled Thermal-Fracturing

Boundary Element Code

A two-dimensional fracture propagation code, FRACOD

developed by Shen and Stephansson (1993) and FRACOM

(2002) was taken as a basic code to develop coupled

thermal-fracturing boundary element code. FRACOD is

capable of modeling explicit fracturing process in rocks

which is based on the Displacement Discontinuity Method

(DDM). The DDM is an indirect boundary element tech-

nique and is very convenient for representing fractures. The

DDM has been actively used for fractures related problems

since Crouch and Starfield (1983) and its numerical

implementation into boundary element method was intro-

duced in many previous publications (Guo et al. 1990;

Shen and Stephansson 1993; Tan et al. 1998).

There are two kinds of approaches in boundary element

technique: direct approach (direct boundary integration

method) and indirect method. The direct method uses the

reciprocal theorem and calculates boundary values (stress,

displacement, and temperature) at a given boundary by

solving a system of equations (Cheng and Detournay

1988). In the direct method, a discretization of time and

spatial domain is required which makes the computational

process complex (Rajapakse and Senjuntichai 1995).

For the benefit of coupling with FRACOD, we consider

an indirect method to simulate the temperature distribution

and thermal stresses due to internal and boundary heat

sources. In the indirect method, fictitious heat sources with

unknown strength over the boundary of domain are used,

which is known to be easier to consider the problem with

internal heat sources. The indirect approaches have been

found efficient in modeling poro-elasticity (Jing 2003) and

thermal-poroelasticity (Ghassemi and Zhang 2004) using

boundary element methods.
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2.1 Fundamentals for Thermo-Elasticity

The theory of thermo-elasticity incorporates the typical

linear elastic constitutive equations and linear heat con-

duction for coupling the temperature and stress fields. The

governing equations for the thermo-elasticity can be found

in Timoshenko and Goodier (1970) which are briefly

reviewed as follows.

2.1.1 Constitutive Equations

In isotropic thermo-elasticity, the constitutive equations

can be separated into a deviatoric response and a volu-

metric one. The deviatoric response is given by eij = rij/2G

(i = j) where eij denotes the components of the deviatoric

strain tensor, rij denotes the components of the deviatoric

stress tensor, and G is the shear modulus. The volumetric

response of the solid contains thermal coupling terms as

ekk = rkk/3 K ? aT, where ekk is volumetric strain, rkk/3

is volumetric stress (mean stress), T is temperature. The

constant K is the rock’s bulk modulus. a is the volumetric

thermal expansion coefficient of the bulk solid under

constant stress, which can also be written as a stress form

as rij ¼ 2Geij þ 2Gm=ð1� 2mÞeijdij þ KaTdij in which m is

Poisson’s ratio. dij is Dirac delta function that represents

unit concentrated sources.

2.1.2 Transport Laws

The heat flow is governed by Fourier’s law which is written

as qT
i ¼ �jTi where qT

i is the heat flux, jS is the thermal

conductivity.

2.1.3 Balance Laws

For local stress balance, the equilibrium equation in elas-

ticity is used as rij = 0.

2.1.4 Field Equations for Thermo-Elasticity

From the constitutive, transport, and balance equations, the

field equations can be derived for temperature T, and dis-

placement ui by Navier and diffusion equation.

Navier equation: Gr2ui þ 1
3
ðGþ 3KÞei ¼ KaTi

Diffusion equation: cr2T ¼ oT
ot

In the above equation, the constant c represents thermal

diffusivity.

2.1.5 Fundamental Solutions

The two-dimensional fundamental solutions for tempera-

ture, stresses and displacements induced by a continuous

point heat source in thermo-elasticity are given below

(Zhang 2004).

T ¼ 1

4pk
Eiðn2Þ ð1Þ

rxx ¼
Ea

24pkð1� mÞ 1� 2x2

r2

� �
1� e�n2

n2
� Eiðn2Þ

( )
ð2Þ

rxy ¼
Ea

24pkð1� mÞ � 2xy

r2

� �
1� e�n2

n2

( )
ð3Þ

ryy ¼
Ea

24pkð1� mÞ 1� 2y2

r2

� �
1� e�n2

n2
� Eiðn2Þ

( )
ð4Þ

ux ¼
að1þ mÞ

4pkð1� mÞ r
x

r

ð1� e�n2Þ
2n2

þ 1

2
Eiðn2Þ

( )
ð5Þ

uy ¼
að1þ mÞ

4pkð1� mÞ r
y

r

ð1� e�n2Þ
2n2

þ 1

2
Eiðn2Þ

( )
ð6Þ

where T is the temperature (�C), rxx, rxy, and ryy are the

stresses (Pa), ux and uy are the displacements (m), a is the

linear thermal expansion coefficient (1/�C), k is the thermal

conductivity (W/m �C), c is the thermal diffusivity (m2/s),

q is the density (kg/m3), cp is the specific heat capacity

(J/kg �C), and c ¼ k
qcp

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; n2 ¼ r2

4ct ;Ei uð Þ ¼R1
u

e�z

z dz in the above equations.

Equations 1–6 constitute the fundamental equations to

be used in all the formulations of the numerical process in

this paper. Because FRACOD uses 2D line elements to

represent problem boundaries, we will then need to con-

sider a line heat source solution in an infinite medium. This

can be done by integrating Eqs. 1–6 over the element

length. In FRACOD the integration is done numerically

using ten evenly distributed points along each line element.

The applicability of the developed code has been

extended to the practical problems where point heat sour-

ces are also located inside the region concerned by

implementing the formulation by Hemantiyan et al. (2011).

2.2 Fictitious Heat Source Method for Thermo-Elasticity

For an internal problem as shown in Fig. 2, the boundary of

a finite body has been discretized into n elements. Before

any boundary condition is considered, each element is

assumed to be in an infinite, isotropic and homogeneous

medium. Let’s consider that a constant line heat source

with unit heat strength is placed along element j at time

t0 = 0. At any given time t, the temperature, stresses and

displacements at the centre point of another element (ele-

ment i) is known based on the fundamental solutions given

in Eqs. 1–6. Note that these equations are for a point source
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only. For a line source, the above equations need to be

integrated over the entire length of element j. They are

given below:

Tðj! iÞ ¼ 1

4pk

Za

�a

Eiðn2Þdx0 ð7Þ

rx0x0 ðj! iÞ

¼ Ea
24pkð1�mÞ

Za

�a

1�2x02
r2

� �
1�e�n2

n2
�Eiðn2Þ

( )
dx0

ð8Þ

rx0y0ðj! iÞ ¼ Ea
24pkð1� mÞ

Za

�a

� 2x0y0

r2

� �
1� e�n2

n2

( )
dx0

ð9Þ

ry0y0ðj! iÞ

¼ Ea
24pkð1�mÞ

Za

�a

1�2y02

r2

� �
1�e�n2

n2
�Eiðn2Þ

( )
dx0

ð10Þ

ux0ðj! iÞ

¼ að1þ mÞ
4pkð1� mÞ

Za

�a

r
x0

r

ð1� e�n2Þ
2n2

þ 1

2
Eiðn2Þ

( )
dx0

ð11Þ

uy0ðj! iÞ

¼ að1þ mÞ
4pkð1� mÞ

Za

�a

r
y0

r

ð1� e�n2Þ
2n2

þ 1

2
Eiðn2Þ

( )
dx0

ð12Þ

The integrations in Eqs. 7–12 need to be done

numerically since a closed form solution is hard to obtain

due to the existence of the exponential integral function

Ei(n2).

During the numerical integration, element j is divided

into ten equal length segments. For each segment, the line

heat source is assumed to have ‘‘shrunken’’ to a point

source and the point source has the same total strength as

the line source over the segment. Therefore, the entire line

source over element j is represented by ten point sources

evenly distributed over the element. For example, the

temperature Eq. 7 is calculated numerically using

Tðj! iÞ ¼
X10

k¼1

T x0k; y
0� �

a=5 ð13Þ

where T(x0k, y0) is the temperature at element i calculated

from a point source at (x0k, y0) with strength of a/5.

The coordinates of the ten points are given as (x01, y0) =

(-0.9a, 0), (x02, y0) = (-0.7a, 0), ���, (x010, y0) = (0.9a, 0).

The results in the above equations are presented for the

local coordinates (x0, y0) of the element j as shown in

Fig. 2. In the global coordinate system, they need to be

transformed. Note that the temperature is independent of

direction and hence is not affected by the coordinate

transformation:

T ¼ T

rij
xx ¼ rij

x0x0 cos2 h� 2rij
x0y0 sinhcoshþ rij

y0y0 sin2 h

rij
yy ¼ rij

x0x0 sin2 hþ 2rij
x0y0 sinhcoshþ rij

y0y0 cos2 h

rij
xy ¼ ðr

ij
x0x0 � rij

y0y0 Þ sinhcoshþ rij
x0y0 ðcos2 h� sin2 hÞ ð14Þ

ux ¼ u
0

x cos h� u
0

y sin h

uy ¼ u
0

x sin hþ u
0

y cos h

Since the boundary values (stresses and/or displacements)

of the boundary element i are often given in its shear and

normal directions, the obtained stresses and displacements

should be further transformed to the local co-ordinates of

element i. After this process, the temperature, shear and

normal stresses, and shear and normal displacements of

element i, caused by a unit line heat source at element j are

calculated.

In fictitious heat source method, we assume that a line

source has been applied along each boundary element. The

Fig. 2 Elements along a solid body boundary and local coordinate

system of the boundary element
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strength of these line sources are unknowns and need to be

solved. The total temperature, stresses and displacements at

element i due to the fictitious line sources can be calculated

by super-positioning the effect of all individual heat sour-

ces as shown below:

Ti ¼
Xn

j¼1

TijH j ðt ¼ t0Þ ð15Þ

ri
s ¼

Xn

j¼1

Aij
ssD

j
s þ Aij

snD j
n þ Fij

s H j
� �

ðt ¼ t0Þ ð16Þ

ri
n ¼

Xn

j¼1

Aij
nsD

j
s þ Aij

nnD j
n þ Fij

n H j
� �

ðt ¼ t0Þ ð17Þ

ui
s ¼

Xn

j¼1

Bij
ssD

j
s þ Bij

snD j
n þ Gij

s H j
� �

ðt ¼ t0Þ ð18Þ

ui
n ¼

Xn

j¼1

Bij
nsD

j
s þ Bij

nnD j
n þ Gij

nH j
� �

ðt ¼ t0Þ ð19Þ

where Hj is the strength of the line heat source at element j.

Tij, Ass
ij , Asn

ij , Ans
ij , Ann

ij , Bss
ij , Bsn

ij , Bns
ij , Bnn

ij , Fs
ij, Fn

ij, Gs
ij, Gn

ij are

‘influence coefficients’, representing the temperature, stress

and displacement at the centre of the element i due to a unit

line source at element j. They are calculated based on the

Eqs. 15–19. For example, the coefficient Ans
ij gives normal

stress at the midpoint of the ith element (ri
n) due to a

constant unit shear displacement discontinuity over the jth

element (D j
s = 1).

Because the strength (Hj) of the fictitious heat sources is

only dependent upon the thermal boundary conditions, they

can be solved using Eq. 15 only. If the temperature along the

problem boundary is known, using Eq. 15, we will have n

equations with n unknowns. The fictitious heat source strength

along each element can then be obtained by solving the system

of n equations. Their values can then be used in Eqs. 16–19 to

solve the displacement discontinuities D j
s and D j

n.

The thermal boundary condition is sometimes defined as

heat flux rather than the temperature. In this case, we will

need to use the flux equation below to replace Eq. 15 for

temperature

Qij ¼ �k
oT

on
¼ ðxi � xjÞ cos hi þ ðyi � yjÞ sin hi

8pkt2
Eiðn2Þ

ð20Þ

where Qij is the heat flux in the normal direction of element

i due to a unit line source at element j and k is the thermal

conductivity.

Other numerical process described before for tempera-

ture boundary conditions are also applicable to the flux

boundary condition.

2.3 Time Marching Scheme for Transient Heat Flow

The solutions in the previous section have been confined to

the cases that the heat sources and the boundary condition

are constant over a period of the time t. Here we extend the

solution using a time marching scheme to simulate the

cases where either the heat source or boundary condition is

changing during this period.

There are different approaches to temporal solution of

the problem. One approach is solving the problem at the

end of a time step and then using the results as the initial

conditions for the next time step, marching forward in time.

The disadvantage of this method is that it requires dis-

cretizing the spatial domain of the problem. The second

approach is dividing the heat source into many sub-sources.

The sub-sources start to take effect at different times, and

hence allows for total strengths of heat source to vary with

time. The final solution is the accumulated effect of all the

sub-sources. This technique eliminates the need for internal

discretization of the spatial domain. But it has the disad-

vantage that the coefficient matrix must be kept to be used

as required.

The implementation of this time marching scheme is

possible because it is the time interval between thermal

loading and receiving that affects the response rather than

the absolute times. This is the so-called ‘time translation’

property of the fundamental solutions. For example, the

stress at a point x and time t due to a heat source taking

place at point v and at time s is equal to the stress at point x

and time t - s due to a heat source occurring at time zero

at the point v. That is

rij x; t; v; sð Þ ¼ rij x; t � s; v; 0ð Þ: ð21Þ

Due to this property of the fundamental solutions, the

evaluation time and loading time can be shifted along the

time axis without affecting the values of the fundamental

solutions. Therefore, the influence coefficient can be

calculated only once during the calculation history.

When the time marching scheme is used, Eqs. 15–19

needs to be re-written as:

Ti ¼
Xn

j¼1

Xm

k¼1

TijðtkÞH jðtkÞ t ¼ tmð Þ ð22Þ

ri
s ¼

Xn

j¼1

Aij
ssD

j
s þ Aij

snD j
n þ

Xm

k¼1

Fij
s ðtkÞH jðtkÞ

 !
ðt ¼ tmÞ

ð23Þ

ri
n ¼

Xn

j¼1

Aij
nsD

j
s þ Aij

nnD j
n þ

Xm

k¼1

Fij
n ðtkÞH jðtkÞ

 !
t ¼ tmð Þ

ð24Þ
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ui
s ¼

Xn

j¼1

Bij
ssD

j
s þ Bij

snD j
n þ

Xm

k¼1

Gij
s ðtkÞH jðtkÞ

 !
t ¼ tmð Þ

ð25Þ

ui
n ¼

Xn

j¼1

Bij
nsD

j
s þ Bij

nnD j
n þ

Xm

k¼1

Gij
nðtkÞH jðtkÞ

 !
t ¼ tmð Þ

ð26Þ

where tk is the time interval between the evaluation time

(tm) and the time when the kth sub-source Hj(tk) takes effect

tk = tm - kDt (k = 0���m).

In Eqs. 22–26, each Hj(tk) is a fictitious heat source and

needs to be solved using thermal boundary conditions. For

a problem with n boundary elements and m time steps,

there are effectively (n 9 m) unknown fictitious heat

sources. They can be solved using Eq. 22 if the boundary

condition is temperature. If the boundary condition is heat

flux or mixed temperature and flux, then the correspondent

flux equation needs to be used.

In some cases, real heat sources with known strength

and duration take place inside a rock mass. This can

happen, for instance, in nuclear waste disposal where

canisters can be considered as a line heat source on large

scale. These real heat sources can be considered in the

same way as the fictitious heat source except that their

strengths are already known. In Eqs. 22–26, the heat

sources Hj(tk) also include the real heat sources if there

are any.

To demonstrate the time marching process, we consider

the situation in Fig. 3 in which evaluation time domain is

divided into five equal time steps each with an interval of

Dt. The temperature at ith element at the end of each time

step is given below:

Time step k ¼ 1 : Ti
ðt¼DtÞ ¼

Xn

j¼1

Tij
ðt¼DtÞH

j
ðt¼0Þ

Time step k ¼ 2 : Ti
ðt¼2DtÞ

¼
Xn

j¼1

Tij
ðt¼2DtÞH

j
ðt¼0Þ þ Tij

ðt¼DtÞH
j
ðt¼DtÞ

� �

Time step k ¼ 3 : Ti
ðt¼3DtÞ

¼
Xn

j¼1

Tij
ðt¼3DtÞH

j
ðt¼0Þ þ Tij

ðt¼2DtÞH
j
ðt¼DtÞ

�

þ Tij
ðt¼DtÞH

j
ðt¼2DtÞ

�

Time step k ¼ 4 : Ti
ðt¼4DtÞ ¼

Xn

j¼1

�
Tij
ðt¼4DtÞH

j
ðt¼0Þ þ Tij

ðt¼3DtÞH
j
ðt¼DtÞ þ Tij

ðt¼2DtÞH
j
ðt¼2DtÞ

þ Tij
ðt¼DtÞH

j
ðt¼3DtÞ

0
@

1
A

Time step k ¼ 5 : Ti
ðt¼5DtÞ ¼

Xn

j¼1

�
Tij
ðt¼5DtÞH

j
ðt¼0Þ þ Tij

ðt¼4DtÞH
j
ðt¼DtÞ þ Tij

ðt¼3DtÞH
j
ðt¼2DtÞ

þTij
ðt¼2DtÞH

j
ðt¼3DtÞ þ Tij

ðt¼2DtÞH
j
ðt¼4DtÞ

0
@

1
A:

To calculate the temperature at the end of a given time

step k, the fictitious heat source in the previous step is

required. If a uniform time step is used, the influence

coefficient calculated from the previous time steps can be

saved and re-used during the calculation of time step k.

This can significantly reduce the calculation time. The

number of time steps is limited to 10 and the time step is

uniform in this study. In general, increasing the number of

time steps will dramatically increase the size of the system

of equations and hence reduce the calculation speed.

2.4 Implementation of Thermal-Fracturing Coupling

The basic principle of the indirect boundary element

approach for thermo-elastic analysis is the assumption that

a fictitious line heat source exists at each element. The

strengths of the line sources are unknown and should be

determined based on the boundary conditions. For exam-

ple, if the temperature at all boundary elements is zero, the

combined effect of all the line heat sources on the boundary

elements should result in a zero temperature. Once the

strength of each fictitious heat source is determined, the

temperature, thermal flux, and thermal-induced stresses

and displacements at any given location in the rock mass

can be calculated using Eqs. 1–6.

The following steps are involved in implementing the

thermal function into FRACOD:

Step 1 Solve the thermal problem separately without

mechanical calculations using the fictitious

Fig. 3 Example of time marching scheme with five equal time steps

for a continuous heat source H(t)

140 B. Shen et al.

123



heat source method. Obtain the fictitious heat

sources along the boundary, and take into

account the real heat sources in a rock mass,

if any.

Step 2 Calculate the thermal stress at the centers of all

boundary elements. The thermal stresses are

treated as a negative stress on the elements and

they are added into the total boundary stresses

for the mechanical calculation. The same

principle applies to the displacement boundary

conditions.

Step 3 Solve the same problem with mechanical load and

obtain the displacement discontinuity (DD)s of

each element. The solution has already included

the thermal effect.

Step 4 Calculate the stresses and displacements at any

internal point in the rock mass using the resultant

DDs. The thermal stresses and displacements

need to be added to their mechanical values and

they are calculated using fictitious and real heat

sources.

In the current coupled thermal-fracturing code, two

types of thermal boundary conditions (constant tempera-

ture or constant heat flux) can be used. The boundary

condition is kept to be constant for the duration of problem

time. Fractures can be treated as an internal thermal

boundary, and they have constant temperature, constant

heat flux or zero thermal resistance (i.e. the derivative of

heat flux is constant across the fracture). And internal heat

sources are allowed, which include both point sources and

line sources in two dimensions. The internal heat sources

can have variable strength.

2.5 Fracture Initiation and Propagation Criterion

2.5.1 Fracture Initiation in Intact Solid

The current code considers intact solid as a flawless and

homogeneous medium. Thus, any fracture initiation within

this medium represents a localized failure of the intact

body. For tensile fracture initiation, the tensile failure cri-

terion is used, and Mohr–Coulomb failure criterion is used

for a shear fracture initiation.

Tensile fracture criterion: rtensile C rt

Shear fracture criterion: rshear C rn � tan w ? c

Here, rtensile and rshear are the tensile and shear stress at

a given point, respectively, rt is the tensile strength of the

intact solid body, rn is the normal stress to the shear failure

plane, w is internal friction angle, and c is the cohesion.

Direction of tensile and shear failures are calculated

h(rtensile) ? p/2 and w/2 ? p/4, respectively, where

h(rtensile) is the direction of principal tensile stress.

2.5.2 Fracture Initiation at Boundaries

Fracture initiation at a boundary is not as a straight forward

as that is in intact body. Instead of predicting the fracture

initiation directly from a boundary, the fracture initiation

from the intact body very close to the boundary is examined

using the above intact body failure criterion. Once a fracture

initiation is predicted from any of the grid points close to the

boundaries, a new fracture is created at the grid point in the

direction of failure. The code then examines whether

the newly formed fracture will link to the boundary or not

by using a fracture propagation criterion explained below.

An existing fracture is treated to be the same as a boundary.

2.5.3 Fracture Propagation Criterion

In modeling fracture propagation in a solid body where both

tensile and shear failure are common, a fracture criterion for

predicting both mode I and mode II fracture propagation is

needed. In the current code, F-criterion that was proposed

by Shen and Stephansson (1993) and is a more general form

of strain energy release rate criterion or G-criterion, was

used. F value that is calculated as FðhÞ ¼ GIðhÞ
GIC
þ GIIðhÞ

GIIC
in an

arbitrary direction (h) at a fracture tip, and the fracture tip

will propagate when the maximum F value in the direction

of h0 reaches 1.0. Here, GI and GII are strain energy release

rate of Mode I (tensile) and Mode II (shear), respectively,

and GIC
and GIIC

denote a critical strain energy release rate

for both modes which is related to the fracture toughness.

3 Implementation of Multi-Region Boundary Element

Module

Materials around a rock excavation may have different

thermal and mechanical properties. An example problem is

a reinforced borehole where three different materials (rock,

cement, and steel casing) exist. For application to this case,

it is necessary to handle different materials with different

thermal and mechanical properties in different regions. A

multi-region function for mechanical responses has previ-

ous been developed in FRACOD (FRACOM 2002), and the

thermal multi-region function is introduced in this section.

The fictitious heat source method discussed before is for

a homogenous rock. If a rock mass contains different

regions with different material properties, the basic solu-

tions given by Eqs. 1–6 are no longer valid. To solve this

problem, the problem region is separated into several

individual regions, each being a homogeneous region with

the same rock properties (Fig. 4). For each homogeneous

region, the basic thermal solutions discussed before are still

valid, and systematic equations can be set up for each
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region to solve for temperature and thermal flux at the

internal point and on the boundary. The interfaces between

two regions become boundaries in both regions. The

boundary temperature and flux values at the interfaces,

however, need to meet certain conditions to ensure the

thermal continuity of the two regions sharing an interface.

To demonstrate this process, we consider a basic prob-

lem as shown in Fig. 5. The two triangular regions have two

different properties. The outer boundaries of each region are

represented by displacement discontinuity (DD) elements

as Region 1: elements no. 1, 2, 5, 7 and Region 2: elements

no. 3, 4, 6, 8. Note that elements 5 and 6, and 7 and 8 are

representing the interfaces but in different regions.

For the problem with eight elements, the systematic

equations can be written

T1 ¼ T11H1 þ T12H2 þ T15H5 þ T17H7

T2 ¼ T21H1 þ T22H2 þ T25H5 þ T27H7

T3 ¼ T33H3 þ T34H4 þ T36H6 þ T38H8

T4 ¼ T43H3 þ T44H4 þ T46H6 þ T48H8

T5 ¼ T51H1 þ T52H2 þ T55H5 þ T57H7

T6 ¼ T63H3 þ T64H4 þ T66H6 þ T68H8

T7 ¼ T71H1 þ T72H2 þ T75H5 þ T77H7

T8 ¼ T83H3 þ T84H4 þ T86H6 þ T88H8

ð27Þ

For continuity at interfaces, the temperature

(T) and thermal flux (Q) at the interface elements have

to meet the conditions: T5 = T6, T7 = T8, Q5 = - Q6,

Q7 = - Q8.

Using the above conditions, we can then obtain the

following equations:

T1 ¼ T11H1 þ T12H2 þ T15H5 þ T17H7

T2 ¼ T21H1 þ T22H2 þ T25H5 þ T27H7

T3 ¼ T33H3 þ T34H4 þ T36H6 þ T38H8

T4 ¼ T43H3 þ T44H4 þ T46H6 þ T48H8

0 ¼ T51H1 þ T52H2 � T63H3 � T64H4 þ T55H5

� T66H6 þ T57H7 � T68H8

0 ¼ T71H1 þ T72H2 � T83H3 � T84H4 þ T75H5

� T86H6 þ T77H7 � T88H8

0 ¼ Q51H1 þ Q52H2 þ Q63H3 þ Q64H4 þ Q55H5

þ Q66H6 þ Q57H7 þ Q68H8

0 ¼ Q71H1 þ Q72H2 þ Q83H3 þ Q84H4 þ Q75H5

þ Q86H6 þ Q77H7 þ Q88H8

ð28Þ

The matrix form of the systematic equations for this

simple multi-region problem is then given below:

T11 T12 T15 T17

T21 T22 T25 T27

T33 T34 T36 T38

T43 T44 T46 T48

T51 T52 �T63 �T64 T55 �T66 T57 �T68

Q51 Q52 Q63 Q64 Q55 Q66 Q57 Q68

T71 T72 �T83 �T84 T75 �T86 T77 �T88

Q71 Q72 Q83 Q84 Q75 Q86 Q77 Q88

2
66666666664

3
77777777775
�

H1

H2

H3

H4

H5

H6

H7

H8

2
66666666664

3
77777777775
¼

T1

T2

T3

T4

0

0

0

0

2
66666666664

3
77777777775

ð29Þ

Fig. 4 Treatment of multi-

regions with two different

material properties by modeling

two separate regions (indicated

by subscript 1 and 2) of

homogeneous property

Region 2 

Region 1 

1
2

3 4

5

6
7
8

Fig. 5 A basic multi-region

problem consisting of two

triangular regions of eight

boundary elements
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where Tij, and Qij are the thermal and heat flux influence

coefficients, Hi is the strength of fictitious heat source, and

Ti is the temperature at boundaries. Thus, Qij denotes the

thermal flux of ith element due to the fictitious heat source

over the jth element.

After solving the strengths of fictitious heat sources at

all boundary and interface elements, the temperature at any

internal point can be calculated. Note that only the con-

tributions from elements 1, 2, 5 and 7 are used because the

two regions are considered to be separate for an internal

point in the Region 1. Elements 3, 4, 6 and 8 of Region 2

will not have contributions to the temperature of the

internal point in Region 1.

4 Verification and Application Examples of Coupled

Thermal-Fracturing Code

4.1 Verification Examples

4.1.1 Point Heat Source in an Infinite Plane

A point heat source with constant heat strength located in a

2D infinite elastic medium was solved using the developed

coupled thermal-fracturing module and compared with

analytical solution for a verification purpose of the devel-

oped code. The analytical solution to this problem has

already been given in Eqs. 1–6.

The material properties as well as initial and boundary

conditions for this example are given in Table 1. It was

assumed that the material properties were temperature-inde-

pendent and the thermal output of the source was constant.

We simulated this problem where the point heat source

was considered as distributed heat source along a small hole.

A constant heat flux was applied to the inner boundary of the

hole. The hole radius was assumed to be R = 0.1 m, and the

applied flux (q) was 1/2pR = 1.59 W/m2. A symmetry

Fig. 6 Calculated distribution of a temperature, b principal stress,

c displacement around a hole-like point heat source after 1 year

Table 1 Material properties, and initial and boundary conditions for

a point heat source in 2D infinite medium

Material

properties

Density, q (kg/m3) 2,000

Shear modulus, G (GPa) 30

Bulk modulus, K (GPa) 50

Specific heat, Cp(J/kg �C) 1,000

Thermal conductivity, k (W/m �C) 4.0

Linear thermal expansion

coefficient, a (1/�C)

5.0 9 10-6

Initial and

boundary

conditions

Initial rock temperature, t0(�C) 0

In situ stresses, rxx = ryy(MPa) 0

Heat source strength, H(W) 1.0
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condition was used so that only a quarter-section of the

model was actually modeled using 15 elements.

The numerically predicted temperature, stresses and

displacements after 1 year are shown in Fig. 6, and they

were compared with the analytical results along a radial

line from the model centre in Fig. 7. We could observe a

good agreement between the numerical and analytical

results, which verifies the validity of the newly developed

thermal calculation module in addition to previous

mechanical module.

4.1.2 Annulus in a Circular Hole in a Plane

A simple case of a boundary value problem in an inho-

mogeneous elastic body shown in Fig. 8 was solved and

compared with analytical solution so as to verify newly

implemented multi-region function in the coupled code.

The region of interest consists of two different regions with

different properties (Young’s modulus, E and Poisson’s

ratio, m): an annulus a B r B b with elastic constants E1

and m1 inside a circular hole of radius r = b in a sufficiently
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Fig. 7 Comparison of

a temperature, b stresses and

c displacement along a radial

line in the numerical model with

a hole-like point heat source

(dots are the numerical

predictions by the coupled

FRACOD and lines are the

analytical solutions)
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large plane with elastic constants E2 and m2. The inside wall

of the annulus was subject to a normal stress rrr = -p, and

the plane was unstressed at infinity. This problem may

correspond to the boreholes with cement reinforcement or

excavated tunnels with concrete linings in rock engineering

problems, where the annulus corresponds to either cement

reinforcement or concrete lining and the sufficiently large

plane is a rock mass. The normal stress rrr = -p is an

internal pressure of hydraulic fracturing or pressurized fluid

stored inside the annulus.

The solution to this problem, satisfying continuity of

radial stress and displacement at the interface (r = b), can

be constructed from standard formulas from thick-walled

cylinders (Obert and Duvall 1967):

rrr ¼
1

1� a=bð Þ2
p a=bð Þ2�p0
� �

� p� p0ð Þ a=rð Þ2
h i

a� r� b

ð30Þ

rhh ¼
1

1� a=bð Þ2
p a=bð Þ2�p0
� �

� p� p0ð Þ a=rð Þ2
h i

a� r� b

ð31Þ

rrr ¼ �p0 b=rð Þ2 r� b ð32Þ

rhh ¼ �p0 b=rð Þ2 r� b ð33Þ

in which rrr and rhh indicate radial and tangential stresses,

respectively, and

p0 ¼ p a=bð Þ2

1þ 1
2

E1

E2

1þm2

1�m2
1

� 1
1�m1

� �
1� a=bð Þ2
� � ð34Þ

In this example, the following geometrical and mechanical

parameters were used a = 0.5 m, b = 1.0 m, m1 = m2 = 0.2,

E1 = 50 GPa, E2 = 25 GPa, and p = 10 MPa.

A total of 60 elements were used for the internal circular

boundary and 60 elements for each side of the interface. The

modeled stress distribution using the multi-region coupled

code was shown in Fig. 9. And a comparison of radial and

tangential stresses between the numerical results and the

analytical solutions was presented in Fig. 10. A good

agreement was obtained, indicating that the developed code

accurately simulates the multi-region problem.

4.2 Application Examples

4.2.1 A Hypothetical Underground LNG Storage Cavern

A hypothetical underground lined LNG storage cavern was

simulated. The cavern size was 5.6 9 5.6 m2 after exca-

vation. The cavern has an internal lining system of concrete

lining and thermal insulation layer, and both the concrete

linings and the insulation layer had a 40 cm thickness

(Fig. 11). When filled with LNG during operation, its
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Fig. 10 Comparison of stresses between the simulation results and

analytical solutions for the annulus inside a circular hole (dots and lines
indicate the numerical results and analytical solution, respectively)

Fig. 8 Analysis model of the annulus inside a circular hole in plane

Fig. 9 Calculated stress distribution in the annulus inside a circular

hole
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internal surface temperature was assumed to be -160 �C

whereas the rock initial temperature to be 25 �C. This

underground lined LNG storage cavern was designed to

demonstrate a practical applicability of the developed

coupled code with multi-region module, since the thermal

shock induced fracturing due to very low temperature of

LNG is involved, and insulation layers of different property

from surrounding rock mass are required to be considered

in the simulation.

The mechanical and thermal properties of the rock mass,

the concrete linings and the thermal insulation layer used in

the simulation are listed in Table 2. The rock strength

parameters are also given in the Table 2. A cooling time of

1 year was considered in this simulation.

The temperature and stress distribution around the

cavern after 1 year is shown in Fig. 11. It was noted that

significant thermal stresses that were induced by the

thermal shock of approximately -60 �C in the surround-

ing rock were concentrating especially at the corner of the

floor and the roof of the cavern. These stresses, in this

hypothetical simulation conditions, were by far exceeding

the tensile strength of the concrete linings and rock mass,

so that fracturing that provides an unfavorable leakage for

a storage cavern would occur. The results in Fig. 11b were

fairly symmetric, minor asymmetry, however, could

be seen due to numerical inaccuracy near the boundary.

Figure 12 demonstrates the predicted pattern of cooling

fractures in the rock. As expected, the fracturing was

concentrating at the corner of the floor and roof of the

Fig. 11 Calculated a temperature and b tensile stress developed in

surrounding rock and concrete lining of the hypothetical underground

LNG storage cavern after 1 year cooling

Table 2 Mechanical and thermal parameter used in the simulation of

the hypothetical underground LNG storage cavern

Variable Material

property

Thermal

insulation

Concrete

lining

Rock

mass

E Modulus of

elasticity

(GPa)

0.00375 20 37.5

m Poisson’s ratio 0.25 0.25 0.25

rxx Horizontal in

situ stress

(MPa)

0 0 1.25

ryy Vertical in situ

stress (MPa)

0 0 1.25

rt Tensile strength

(MPa)

a b 9

c Cohesion (MPa) 33

/ Internal friction

angle (�)

33

KIc Fracture

toughness

(Mode I)

(MPa m0.5)

0.75

KIIc Fracture

toughness

(Mode II)

(MPa m0.5)

3.0

q Density (kg/m3) 2,500

k Thermal

conductivity

(W/m �C)

0.27 1.0 2.7

Cp Specific heat

(J/kg �C)

700.0 700.0 700.0

a Linear thermal

expansion

coef. (1/�C)

1.0 9 10-5 1.0 9 10-5 1.0 9 10-5

a Mechanical failure in thermal insulation is not considered
b Two cases are considered—Case 1: the strength of the concrete

lining is infinitely high and is not allowed to fail; Case 2: the strength

of the concrete lining is the same as rock and is allowed to fail
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cavern where high stress concentration was observed. It

was also noted that the fracturing patterns were different,

depending on the properties of inner concrete linings.

When the concrete lining was not allowed to fail

(Fig. 12a), the fracturing in the rock was comparatively

more significant. On the contrary, if the concrete lining

was allowed to fail (Fig. 12b), less fracturing in the rock

was observed due to the stress relaxation in the concrete

linings. However, it should be noted that the fracturing in

the concrete lining is more critical and unfavorable in a

storage cavern design concept. Figure 13 shows the vari-

ation of temperature, stresses and displacement along a

monitoring line (Fig. 11a) and we could clearly see that

the temperature dropped sharply in the insulation layer.

High tensile stresses developed in the concrete lining and

surrounding rock mass, which led to the intensive rock

fracturing.

Although these results are for hypothetical conditions, it

can be clearly seen that the present coupled code can be an

effective design tool for predicting a fracturing that is

induced by thermal–mechanical coupled processes in

concrete linings and rocks.

4.2.2 A Pilot Underground Lined Rock Cavern for LNG

Storage

A real pilot lined cavern tested for underground LNG

storage was simulated using the coupled code with multi-

region module. The design of the underground LNG storage

was based on the implementation of a containment system

consisting of gas tight steel liners and insulation panels to

protect the failure and damage of surrounding rock against

thermal shock caused by the extremely low temperature of

liquefied LNG (Park et al. 2010). The size of cavern and the

thickness of both liners and panels differ from those of the

previous hypothetical study of LNG storage cavern in

which thermal–mechanical fracturing conditions were

intentionally prescribed in order to test the practical appli-

cability of the coupled code. In the present example, how-

ever, we mainly focus on the comparison between the

calculation and in situ measurements during the pilot test so

as to verify the validity of the developed coupled code. The

inner dimension of the pilot cavern was 3.5 m 9 3.5 m

after installing the liners. Figure 14 shows structural con-

cept of the pilot cavern. During the pilot testing, the changes

in temperature and displacement in rock mass were moni-

tored and compared with the simulation results.

In the pilot testing, liquefied nitrogen (LN2) was used to

fill the cavern during the operation of the pilot cavern for

safety and practical reasons. The measurements showed

that LN2 had a temperature of -194 �C and gaseous space

in the top of the cavern due to boiling of LN2 was about

-100 �C. Thus, two different regions of thermal boundary

conditions were explicitly modeled, and initial rock tem-

perature was 17 �C. The mechanical and thermal parame-

ters of the rock mass used in the simulation are summarized

in Table 3. The thermal properties of insulation panel and

concrete lining in the cavern are listed in Table 4. In the

simulation, we considered only the rock stability, and the

insulation panel of polyurethane (PU) foam and concrete

wall were assumed to have sufficiently high strengths so as

not to fail.

Figure 15 presents the simulated and measured temper-

ature distribution around the pilot cavern. The calculated

temperature distribution was generally similar to measure-

ment results, considering that geological heterogeneity in

the surrounding rock mass was not considered in the

Fig. 12 Predicted rock fracturing in surrounding rock due to

thermally induced tensile stress of a Case 1: lining is not allowed

to fail, and b Case 2: lining is allowed to fail
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simulation. Figure 16 shows the comparison of the simu-

lated and measured temperature evolution at the floor,

where a good agreement was obtained. Figure 17 indicates

the modeled major and minor principal stresses distribution

after 22 weeks of operation. The simulated tensile stresses

in the rock were less than 3 MPa, and hence no tensile

fracturing was predicted, considering the tensile strength of

concrete and rock that is usually ranging between 5 and

20 MPa. From these results, we may conclude that the

current coupled code with multi-region module can be

effective in predicting a fracturing that is induced by ther-

mal–mechanical coupled processes in geomaterials.

Fig. 13 Calculated evolution of

a temperature, b stresses, and

c displacement along the

horizontal monitoring line

shown in Fig. 11a
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5 Concluding Remarks and Discussions

A coupled thermal-fracturing boundary element module

has been developed using the existing version of FRA-

COD to analyze the complex explicit fracturing and

thermal responses in geomaterials such as rocks and

concretes. FRACOD is the boundary element code based

on a displacement discontinuity (DD) method, and has

been proven to simulate both tensile and shear fracture

propagations.

Fig. 14 Conceptual structures

of the pilot lined cavern for

underground LNG storage

(Park et al. 2010)

Fig. 15 Temperature profile a predicted by the simulation, and

b estimated from the measurements around pilot LNG cavern after

22 weeks of operation

Table 3 Mechanical and thermal properties of rock mass in the

simulation of the pilot underground LNG storage cavern

Tensile strength, rt (MPa) 9

Cohesion, c (MPa) 13

Internal friction angle, / (�) 33

Fracture Mode I toughness, KIc (MPa m0.5) 1.5

Fracture Mode II toughness, KIIc (MPa m0.5) 3.3

Density, q (kg/m3) 2,500

Young’s modulus, E (GPa) 43.2

Poisson’s ratio, m (GPa) 0.25

Specific heat, Cp (J/kg �C) 710

Thermal conductivity, k (W/m �C) 2.627

Linear thermal expansion coefficient, a (1/�C) 6.59 9 10-6

In-situ stresses, rxx = ryy (MPa) 0.795

Table 4 Thermal properties of the insulation panel and concrete

lining in the simulation of the pilot LNG storage cavern

Material property PU foam Concrete

Thickness (m) 0.1 0.3

Thermal conductivity (W/m �C) 0.026 2.627

Specific heat (J/kg �C) 1,674 710

Density (kg/m3) 65 2,500

Multi-Region Boundary Element Analysis 149

123



The coupling was achieved using an indirect method, so

called the fictitious heat source method. This coupling

method employed the same principle as the DD method,

and hence it has been the most appropriate way to imple-

ment it into FRACOD code. The coupled code was further

extended to deal with multi-regions which enables us to

simulate problems where rock mass, concrete linings and

insulation layers with different thermal and mechanical

properties are all present.

Verification and application examples were presented

where good agreement between the simulation results

and analytical solution as well as in situ measurement

could be observed. Therefore, the developed coupled

code can be effectively used in designing structures that

are placed under extreme temperature conditions and

thermal-fracturing would be significant processes in their

stability perspective.

Coupled processes in a fractured rock mass are impor-

tant in the performance and safety analysis of many rock

engineering projects such as CO2 geosequestration and

geothermal industry, but are difficult to be predicted by in

situ tests due to many unknown factors affecting the test

conditions. From this point of view, the numerical methods

to produce predictions under many different conditions

could provide valuable information about the coupled

processes. Especially, the current coupled code has a good

potential to predict the complex behaviors of fractured rock

mass realistically due to its capacity to model propagation

of discrete fractures. The coupled code is currently under

further development to model the mechanical–thermal–

hydraulic response of rock and rock fractures, and new

application cases with special focus on the CO2 geose-

questration and the geothermal industry would be intro-

duced in the future.
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