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Abstract Particle flow code 2D (PFC2D) was adopted to

simulate the shear behavior of rocklike material samples

containing planar non-persistent joints. Direct shear load-

ing was conducted to investigate the effect of joint sepa-

ration on the failure behavior of rock bridges. Initially

calibration of PFC was undertaken with respect to the data

obtained from experimental laboratory tests to ensure the

conformity of the simulated numerical models response.

Furthermore, validation of the simulated models were cross

checked with the results of direct shear tests performed on

non-persistent jointed physical models. Through numerical

direct shear tests, the failure process was visually observed,

and the failure patterns were found reasonably similar to

the experimentally observed trends. The discrete element

simulations demonstrated that the macro-scale shear zone

resulted from the progressive failure of the tension-induced

micro-cracks. The failure pattern was mostly influenced by

joint separation, while the shear strength was linked to the

failure pattern and failure mechanism. Furthermore, it was

observed that the failure zone is relatively narrow and has a

symmetrical pattern when rock bridges occupy a low per-

centage of the total shear surface. This may be due to the

high stress interactions between the subsequent joints

separated by a rock bridge. In contrast, when rock bridges

are occupying sufficient area prohibiting the stress inter-

actions to occur then the rupture of surface is more com-

plex and turns into a shear zone. This zone was observed to

be relatively thick with an unsymmetrical pattern. The

shear strength of rock bridges is reduced by increasing the

joint length as a result of increasing both the stress con-

centration at tip of the joints and the stress interaction

between the joints.

Keywords Particle flow code � Non-persistent joint �
Rock bridge � Joint separation � Shear and tensile cracks

1 Introduction

The behavior of a rock mass is determined not only by the

properties of the rock matrix, but mostly by the presence

and properties of discontinuities within the mass. The

different kinds and origins of discontinuities play a domi-

nant role in the failure of rock mass (Tang et al. 1998;

Wong and Chau 1998).

The initiation, propagation and coalescence of rock cracks

are important factors in controlling the mechanical behavior

of brittle rocks. Crack propagation and coalescence can

reduce the stiffness of jointed rock masses causing the shear

failure of rock slopes (Einstein et al. 1983).

Therefore, a comprehensive study on the shear failure

behavior of non-persistent joints can provide a good under-

standing of both local and general rock instability, leading to

an improved design for rock engineering projects.

From another point of view, extra financial charges are

levied on the rock engineering projects as the supportive

action of the rock bridges is being neglected by the
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designers in actual projects. This research is intended to

contribute to and highlight such effects as far as possible

within the frame of the planned research work.

The failure behavior of jointed rock masses under shear

loading has drawn ample attention from both researchers

and practical engineers over the last 3 decades, and some

extensive works on the coalescence pattern and shear

resistance of non-persistent joints have been carried out

through a large number of experimental and theoretical

studies. In one of the pioneering works done by Lajtai

(1969a, b), tensile wing cracks were found to first appear at

the tips of horizontal joints, followed by the secondary

shear cracks propagating towards the opposite joints.

Ghazvinian et al. (2007) prepared a comprehensive anal-

ysis of the shear behavior of rock bridges based on the

change in the persistence of their area. The analysis

showed that the failure mode and mechanism were affected

by the continuity of the rock bridges.

Although some promising results on the specimens

containing non-persistent open joints in different geometry

conditions under shear loading have been obtained, the

whole failure process from crack initiation, propagation

and coalescence to failure is not yet clear. The fracture of

synthetic brittle materials is so violent that it is difficult to

trace the whole failure process from crack initiation,

propagation and coalescence by the existing limited mon-

itoring devices (Glynn et al. 1978). Also the experimental

results are very sensitive to sample preparation processes

and the boundary loading conditions; thus any small

change in the contact condition between the sample and

loading platen may result in different failure modes for the

sample. A numerical approach appears to be necessary for

studying crack propagation and coalescence in rock

because of the mechanical and geometrical complexity of

most of the related problems.

Some important work has been carried out on the

numerical simulations on crack propagation and coales-

cence in multiple cracks. Using the displacement discon-

tinuity method (DDM), Scavia and Castelli (1996) and

Scavia (1999) have conducted some preliminary work to

investigate the mechanical behavior of rock bridges in the

material containing two and three crack-like flaws. A series

of numerical analyses were carried out to evaluate the

influence of overlapping so as to identify a critical value of

the resistance of the rock bridge. The results revealed that

tensile crack propagation occurs in either stable or unstable

conditions depending on the flaw spacing and applied

confining stresses. Vasarhelyi and Bobet (2000) have used

DDM to model the crack initiation, propagation and coa-

lescence between the two bridged flaws in gypsum under

uniaxial compression. Their simulations reproduced the

types of coalescence observed in the experiments and

predicted an increase in the coalescence stresses with

ligament length. While a good agreement between the

numerical and experimental results was found as for the

propagation trajectory of the tensile and shear cracks in the

numerical models containing multiple flaws, a few numeri-

cal models have been found to be able to simulate the shear

response of the specimens containing non-persistent joint

under direct shear.

The discrete element method (DEM) is also another

capable method for studying the failure behavior of bonded

geomaterials (Potyondy and Cundall 2004; Fakhimi et al.

2002; Wang and Tannant 2004; Hentz et al. 2004; Yoon

2004).

In this study, the particle flow code in two dimensions

(PFC2D), which is a program based on the principle of

DEM, was used as the simulation platform to investigate

the effect of joint separation on the shear behavior of rock

bridges. Therefore, concurrent with experimental investi-

gation of shear behavior of non-persistent joints, it is

possible to check the ability of DEM in determining failure

patterns in rock bridges by comparison of the numerical

and experimental results.

First, the laboratory experiments were performed to

calibrate the intact rock micro-mechanical parameters.

Using an inverse-modeling calibration approach, the lab-

oratory results of the uniaxial, Brazilian and triaxial tests

were used to obtain the estimates of the intact rock micro-

mechanical parameters used in the simulation. A validation

of the simulation was then performed by comparison

between the shear behavior of rock bridges in PFC2D and

that of the non-persistent joint tested under direct shear

loading in the laboratory. The validated numerical model

was used to further studying the mechanical behavior of the

jointed models with different joint persistency.

2 Laboratory Tests

2.1 Model Material Preparation

The model material used in preparing the intact samples

and jointed blocks was a mixture of plaster (37.5 %),

cement (25 %) and water (37.5 %).

The mixing, casting and curing of the specimens were

carefully controlled to obtain reproducible properties.

Mixing of the material constituents was carried out with a

blender. To ensure the maximum possible homogeneity

and isotropy of the overall compound, the plaster and the

cement were mixed together prior to the addition of water.

Then, water was added to the dry mix of the constituents

and thoroughly re-mixed. The mixed material was hard-

ened in about 10 min. This means that thorough mixing

needs to be done quickly to obtain a homogeneous mixture.

The mixed material was cast in different shapes and
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volumes to prepare samples for different types of labora-

tory testing. The samples were then removed from the

mold and kept in the geo-mechanics laboratory room with

the temperature controlled at 20 ± 2 �C for a fixed number

of days (20 days) before being subjected to mechanical

testing.

The cylindrical sample mold dimensions were 54 mm in

diameter and 108 mm in length, and the disc sample mold

dimensions 54 mm in diameter and 27 mm in thickness

(Fig. 1a).

2.2 Intact Model Material Properties

The uniaxial, triaxial compression and Brazilian tensile

tests were performed in the Rock Mechanics Laboratory of

Graz University of Technology, Graz, Austria, by their

Machine Tool System (MTS) in order to determine the

mechanical properties of the intact model material. The

mechanical properties of the physical models are summa-

rized in Table 1.

2.3 Preparation, Testing and Results of the Models

Consisting of Non-Persistent Joints

The procedure developed by Bobet and Einstein (1998) for

preparing open non-persistent joints was used in this

research with some modifications. The mold’s dimensions

for discontinuous jointed samples were 190 mm in length,

150 mm in width and 50 mm in thickness. The mold

consisted of four 20-mm-thick fiberglass sheets bolted

together plus two fiberglass plates (placed at the top and

bottom of the mold) (Fig. 1b). The top plate has two orifice

openings used to fill the mold with the liquid mixture. The

upper and the lower surfaces have slits cut into them. The

opening of the slits is 1 mm, and their tract is equal to the

width of the model. Through these slits, greased metallic

shims are inserted through the thickness of the mold (to

produce non-persistent joints) before pouring of the gyp-

sum. Each sample was kept in the mold for about 7 h, the

specimens were un-molded, and the metallic shims were

pulled out of the specimens. The grease on the shims

prevents adhesion of the shim with the sample and facili-

tates the removal of the shims. As the mixture is placed and

hardened, each shim leaves an open joint in the specimen

through the thickness and perpendicular to the front and

back of the specimen. It appears that the pulling out of the

shims does not produce any damage to the joints. Imme-

diately after removing of the shims, the specimen is stored

in the laboratory room with the temperature controlled at

20 ± 2 �C for 20 days. It is important to note that con-

sistency in mixing, casting, curing and testing is required to

obtain acceptable test results.

Two specimens with different ligament lengths of

45 mm and 90 mm were prepared. (Ligament length is the

distance between the tips of two joints (Fig. 2a).)

A servo-controlled MTS direct shear apparatus, shown in

Fig. 2b, was used for the purpose of testing the artificial non-

persistent joints. All samples were tested by applying a shear

displacement rate of 0.01 mm/s. The normal stress applied to

the rock bridges was 0.33 MPa, which is approximately 5 %

of the uniaxial strength of intact sample. The shear loads as

well as the shear displacements were taken by a data acqui-

sition system during the shear test.

The crack pattern was observed after completion of the

test. It was observed that the pre-existing joint surfaces

have not been destroyed during the test. It means that the

rock joint has no effect on the shear behavior of the rock

bridge. The shearing process of a discontinuous joint

constellation begins, as one would expect, with the for-

mation of new fractures, which eventually transect the

material bridges and lead to a through-going discontinuity.

The observation results showed that the ligament length

Fig. 1 a Two different molds

used for fabrication of the

cylindrical samples, b the mold

used for fabrication of the

jointed specimens
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influences the failure pattern of the rock bridge. Figure 3

shows two different types of failure pattern obtained in the

direct shear tests.

(a) When the ligament length is 45 mm (Fig. 3a), the

upper tensile crack propagates through the intact

portion area, but the lower tensile crack develops for

a short distance and then becomes stable and does

not coalesce with the tip of the other joint.

(b) When the ligament length is 90 mm (Fig. 3b), the

interaction between the joints is not strong so that the

tensile crack propagates in the mid zone. Thus,

the rock bridge is broken with an uneven failure

surface.

In these failure patterns, the surface of failure at the

bridge area is tensile because no crushed or pulverized

materials were noticed.

3 Numerical Modeling with PFC

Discrete element modeling (DEM) is now often used to

simulate the behavior of rock (Potyondy and Cundall

2004). The method is attractive because it does not require

the formulation of complex constitutive models (Cundall

1971).

Particle flow code represents a rock mass as an assem-

blage of bonded rigid particles. In the two-dimensional

version (PFC2D), circular disks are connected with cohe-

sive and frictional bonds and confined with planar walls.

The parallel bond model was adopted in this study to

simulate the contacts between the particles. The values

assigned to the strength bonds influence the macro strength

of the sample and the nature of cracking and failure that

occurs during loading. Friction is activated by specifying

the coefficient of friction and is mobilized as long as par-

ticles stay in contact. Tensile cracks occur when the

applied normal stress exceeds the specified normal bond

strength. Shear cracks are generated as the applied shear

stress surplus the specified shear bond strength either by

rotation or by shearing of particles. The tensile strength at

the contact immediately drops to zero after the bond

breaks, while the shear strength decreases to the residual

friction value (Itasca Consulting Group Inc 2004; Cho et al.

2007, 2008; Potyondy and Cundall 2004). For all these

microscopic behaviors, PFC only requires selection of the

basic micro-parameters to describe contact and bond

stiffness, bond strength and contact friction, but these

micro-parameters should provide the macro-scale behavior

of the material being modeled. The code uses an explicit

finite difference scheme to solve the equation of force and

motion, and hence one can readily track initiation and

propagation of bond breakage (fracture formation) through

the system (Potyondy and Cundall 2004). In addition, the

user can track the failure process at each contact and

determine if the dominant mode of failure is either tensile

or shear.

One of the requirements for the bonded particle model

(BPM) is the calibration of the micro-contact parameters to

match the macro-scale response. While the approach and

benefits of the BPM are compelling, but it is not clear if the

calibration of the BPM to a uniaxial test is adequate for

modeling any problem in that material. Although Diede-

richs (2002) showed that one of the disconcerting results is

that the uniaxial compressive strength obtained in PFC is

approximately four of the tensile strength. Based on this

finding, the ratio of uniaxial compressive strength to tensile

strength of fabricated synthetic rock-like material was

chosen equal to 5.5 for satisfying a nearly good consistency

between numerical and experimental results. Potyondy and

Cundall (2004) also demonstrated that a non-ideal triaxial

Table 1 Property values of the intact model material determined

experimentally

Property Value

Average uniaxial compressive strength (MPa) 6.6

Average Brazilian tensile strength (MPa) 1

Average Young’s modulus in compression (GPa) 5

Average Poisson’s ratio 0.18

Internal angle of friction 20.4�
Cohesion (MPa) 2.2

Fig. 2 a The schematic view of

ligament length, b photograph

of shear testing machine
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envelope is obtained if calibration is performed with uni-

axial strength of high-friction angled crystalline rock.

Hence, the particles in both laboratory synthetic rock and

numerical model were chosen to be circular and low fric-

tion angle (equal to 20.4�).

3.1 Preparation and Calibration of the PFC2D Model

for Rock-Like Material

The standard process of generating a PFC2D assembly to

represent a test model, used in this article, is described in detail

by Itasca (2004). The process involves: particle generation,

packing the particles, isotropic stress installation (stress ini-

tialization), floating particle (floater) elimination and bond

installation. A gravity effect did not need to be considered as

the specimens were small, and the gravity-induced stress

gradient had a negligible effect on the macroscopic behavior.

Uniaxial compressive strength, Brazilian and biaxial

tests were carried out to calibrate the properties of particles

and parallel bonds in bonded particle model.

The applied loading rate in each test should be set suf-

ficiently slow enough to ensure that the force, displace-

ment, velocity and acceleration should not propagate from

any particle farther than its immediate neighbors during a

single time step. Under the low loading rate, the sample

remains in a quasi-static equilibrium throughout the test

and is stable so as not to induce any possible strength

increase or unexpected material responses within the sim-

ulated models.

Figure 4a shows the effect of the loading rate on the

stress–strain curve. The mechanical responses of test

samples of 14,298 particles are clearly dependent on the

loading rate in the elastic range of the particle material. An

oscillatory behavior in the stress–strain curve is observed if

the loading rate is of 0.4 m/s. On the other hand, the

oscillatory behavior of the mechanical response is greatly

reduced when a smaller loading rate (i.e., 0.016 m/s) is

applied.

Figure 4b exhibits the effect of the loading rate on

both of uniaxial strength and Brazilian tensile strength of

numerical models. As it can be seen, the loading rate of

‘0.016 m/s’ is the upper limit of the loading rate that can

be imposed on loading for compressive and tensile

strength tests, whereas the effect of the loading rate was

shown to be consistent for lower values. Hence, the

loading rate adopted in this study was chosen to be

0.016 m/s.

Adopting the micro-properties listed in Table 2 and the

standard calibration procedures (Potyondy and Cundall

2004), a calibrated PFC particle assembly was created.

Fig. 3 The crack patterns for different ligament angles; a ligament

length = 45 mm, b ligament length = 90 mm

Fig. 4 The effect of the loading rate on the a curve of axial stress versus axial strain, b mechanical properties of numerical model
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The specifications of different numerical tests consid-

ered for model calibration are summarized in the following

sections:

3.1.1 Numerical Unconfined Compressive Test

In PFC2D, the uniaxial compression test can be simplified

to a model of two moving walls compressing the particle

assembly as illustrated in Fig. 5 with lines indicating the

break of bonds and where the micro-cracks can be found.

The black and the red lines represent the tensile failure

and the shear failure, respectively. The walls were

selected to be frictionless rigid plates. The tested speci-

men of assembly is 108 mm in height and 54 mm in

width, and consists of 14,298 particles. A normal particle

size distribution was used, with particle radii ranging

from 0.27 to 0.4212 mm. The bounds of the particle radii

were chosen so as to have particles that are as small as

possible, without compromising computational efficiency,

and minimizing code running time. The porosity ratio was

chosen as 0.08, which is a reasonable value for a dense

packing. The modulus E, Poisson’s ratio, crack initiation

stress and uniaxial compression strength (UCS) of the

particle assembly can be obtained through the PFC2D

simulation. The procedure to determine these parameters

has been described elsewhere (Itasca Consulting Group

Inc 2004).

Figure 6 compares the stress-strain curves respectively

obtained by experiment and by numerical simulation. It

can be seen that these two curves shown in Fig. 6 are

consistent in general, and the peak strength is also sim-

ilar. Similar to the rock-like material as shown in Fig. 6,

the bonded-particle model fractures at peak strength,

followed by a substantial drop of resisting stress after

peak; such behavior represents a typical brittle fracture.

After the peak, a major, inclined fracture surface formed

in the specimen upon subsequent loading (Fig. 5), and

eventually the original intact specimen was broken apart.

This fracture pattern is also similar to the rock-like

material.

A comparison of the numerical results with the experi-

mental measurements is presented in Table 3.

3.1.2 Brazilian Test

Brazilian test was used to calibrate the tensile strength of

the specimen in PFC2D model. The diameter of the Bra-

zilian disk considered in the numerical tests was 54 mm.

The specimen was made of 5,615 particles. The disk was

crushed by the lateral walls moved toward each other with

a low speed of 0.016 m/s. The numerical simulation is

demonstrated in Fig. 7a through the variation of tensile

stress versus axial displacement. It is evident, from the

figure, that the bonded particles have a brittle behavior

under indirect tensile loading. Figure 7b, c illustrate the

failure patterns of the numerical and experimental tested

samples, respectively. The failure planes experienced

in numerical and laboratory tests are well matching. The

Table 2 Micro properties used to represent the intact rock

Parameter Value Parameter Value

Type of particle Disc Parallel-bond radius multiplier 1

Density (kg/m3) 1,000 Young’s modulus of parallel bond (GPa) 4

Minimum radius (mm) 0.27 Parallel bond stiffness ratio 1.7

Size ratio 1.56 Particle friction coefficient 0.4

Porosity ratio 0.08 Parallel bond normal strength, mean (MPa) 5.6

Damping coefficient 0.7 Parallel bond normal strength, SD (MPa) 1.4

Contact Young’s modulus (GPa) 4 Parallel bond shear strength, mean (MPa) 5.6

Stiffness ratio 1.7 Parallel bond shear strength, SD (MPa) 1.4

Fig. 5 Unconfined compressive test (cracks described by red/black
lines)
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numerical tensile strength and a comparison of its experi-

mental measurements are presented in Table 3.

3.1.3 Biaxial Test

The specifications of the tested specimen in biaxial test (or

more generally known as tri-axial test as r2 = r3) are the

same as those given for the uniaxial test. For biaxial testing,

the rectangle model is loaded appropriately by the sur-

rounding four walls. The confined and vertical stresses are

applied to the specimen by activating the servo-mechanism

that controls the velocities of the four confined walls.

Figure 8 depicts the strength envelope for the laboratory-

tested material and also of the PFC model. It can be seen that

the numerical testing matches the experimental well.

A comparison of these experimental results given in

Table 3 demonstrates suitably good agreement with those

of the numerical measurements.

3.2 Numerical Direct Shear Tests on the

Non-Persistent Open Joint

3.2.1 Preparing the Model

After calibration of PFC2D, direct shear tests for jointed rock

were numerically simulated by creating a shear box model in

the PFC2D (by using the calibrated micro-parameters)

(Fig. 9). The PFC specimen had the dimensions of

76 9 60 mm. These dimensions are chosen as 40 percent

(40 %) less than the laboratory synthetic sample dimensions

to reduce the code running time. A total of 11,179 disks with a

minimum radius of 0.27 mm were used to make up the shear

box specimen. The particles were surrounded by four walls.

The planar non-persistent joints were formed by deletion of

two non-persistent vertical bands of particles from the model.

The opening of these notches is 1 mm (Fig. 9). To create the

shear test condition, two horizontal narrow bands of particles,

with the width of 1 mm, were deleted from both the upper left

side and the lower right side of the model at a distance between

the joint walls and the shear box wall (Fig. 9).

In total four specimens containing two planar edge-

notched joints with different lengths were set up to inves-

tigate the influence of joint separation on the shear

behavior of rock bridges. For different specimens, the

lengths of these edge-notched joints were different, while

in the same specimen, the lengths of those two joints were

the same, and they are both arrayed in the vertical middle

plane. The joint length (b) has a range from 12 to 25.5 mm

with an increment of 4.5 mm, while the joint separation or

ligament length (l) decreases from 36 to 9 mm with a

negative change value of 9 mm. Based on the change in the

length of planar non-persistent joints, it is possible to define

the joint coefficient (JC) as the ratio of the joint length to

the total shear length, i.e., 2b/(l ? 2b). The value of JC

increases from 0.4 to 0.85 with an increment of 0.15.

3.2.2 Loading Set Up

Both the upper and left walls of the shear box were fixed

(Fig. 9). Shear loading was applied to the sample by moving

the lower wall in the positive Y-direction, with an adequate

low velocity (i.e., 0.016 m/s) to ensure a quasi-static equi-

librium, while the normal stress was kept constant by

adjusting the right wall’s velocity using a numerical servo-

mechanism. The normal stress applied to the rock bridges in

the numerical tests was the same as in the laboratory tests

(i.e., 0.33 MPa), which is approximately 5 % of the uniaxial

strength of the intact sample. Shear displacement was mea-

sured by tracing the lower vertical wall displacement (Fig. 9,

wall 1). The shear force was registered by taking the reaction

forces on the wall 2 in Fig. 9.

Fig. 6 The stress–strain curves obtained by experiment and by

numerical simulation

Table 3 Macro-mechanical properties of the model material in the experimental tests and PFC2D

Mechanical properties Experimental results PFC2D model results Mechanical properties Experimental results PFC2D model results

Elastic modulus (Gpa) 5 5 Tensile strength (MPa) 1 1.1

Poisson’s ratio 0.18 0.19 Friction angle 20.4 21

UCS (Mpa) 6.6 6.7 Cohesion (MPa) 2.2 2.2
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An internal measurement circle installed at the center of

the sample. The diameter of this measuring circle is equal

to the ligament length (Fig. 9). The stress measurement

circle was to evaluate how the average shear and normal

stresses (rx and ry respectively) behave during the shear

loading. Furthermore, it was used to evaluate the nature of

the developed rx and ry at failure (tensile or compressive).

Support of a PFC2D manual code was sought to measure

the resulting contact force between the disks falling inside

the circle. The average stress for the X or Y axis is a ratio of

referred resulting contact force divided by the circle area.

4 Results and Discussion

4.1 Parallel Bond Forces in the Models Before Crack

Initiation

Figure 10a, b shows the parallel bond force distribution at a

state before the crack initiation in two PFC samples, which

have the lowest and highest value of JC (0.4 and 0.85),

respectively. The dark and red lines represent the compres-

sion and tensile forces in the model, respectively. The

coarser the line is, the larger the force is. As can be seen, the

maximum force concentrations occur around the joint tips.

For example, when the joint coefficient was 0.85

(Fig. 10b), the maximum compressive force on the crack tips

was equal to 1,600 N. The maximum tensile force, developed

near the tip of the joint, was equal to 1,289 N. As the tensile

strength of the particles bonded at the tip of the joint was less

than their shear strength, it can be concluded that the tensile

crack is a dominant mode that initiates at the tip of the joint.

4.2 Contact Force and Displacement Distribution

in the Models

Figure 11a, b shows the contact force distribution before

the crack initiation in two PFC samples, which have the

lowest and highest value of JC (0.4 and 0.85), respectively.

Also shown in Fig. 11c is the typical contact force distri-

bution in an intact model under direct shear loading

reported by Cho et al. (2008).

Fig. 7 a Tensile strength versus axial displacement curve for numerical Brazilian test simulation, b failure pattern in PFC2D model, c failure

pattern in physical sample

Fig. 8 Calibrated failure locus for PFC synthetic rock compared to

the laboratory measured

Fig. 9 Illustration of the direct shear test simulation scheme in PFC
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The lines are parallel to the contact forces, and the line

thickness is proportional to the magnitude of the forces. It

is clear that the contact forces in the samples are not uni-

formly distributed as the sample approaches the peak

strength. In the intact model, the contact force concentra-

tion occurs near the center of the edges of the sample

(Fig. 11c), while in the jointed models, the contact force is

concentrated near the joint tips as a result of notch creation

in the intact model. By increasing of the JC from 0.4 to

0.85, the large contact force is concentrated at the bridged

part as a result of force interaction between the joints. The

contact forces in the center of the samples are inclined by

approximately 0�–40� to the shearing direction.

Figure 12a, b shows the particle displacement vectors in

two PFC samples, which have the lowest and highest value of

JC (0.4 and 0.85), respectively. Also shown in Fig. 12c is the

typical displacement vector observed in a Brazilian tensile

test simulation using the same micro-parameters as in the

direct shear test. The displacement vectors of the particles in

a given PFC assembly illustrate how the particles are moving

as they are subjected to the external loading conditions.

As shown in Fig. 12, despite the unique differences in

the stress paths between the direct shear test and the

Brazilian test, the displacement vectors show similar trends,

and the fractures display an opening phenomenon, charac-

teristic of mode I fractures, i.e., the fracture mechanics ter-

minology for fractures subjected to tensile loading.

4.3 Local Stress Path

Using the measurement circle described in Sect. 3.2.2, the

stress path for the direct shear test can be tracked and

expressed in the rx–ry space. Figure 13 shows the local

stress path for two PFC samples, which have the lowest and

highest value of JC (0.4 and 0.85), respectively.

At the beginning of external shear loading, rock bridges

are subject to compressive loading (both of the rx and ry

are positive). By increasing the external shear loading, the

minimum principal stress changes from compression into

extension (rx changes from positive into negative), so that

tensile cracks are developed in the rock bridges.

4.4 Influence of Joint Separation on the Failure

Behavior of the Rock Bridge

Figures 14, 15, 16 and 17 illustrate the fracture patterns

recorded at each stage in the loading of the planar

non-persistent joint for JC = 0.15, 0.3, 0.45 and 0.6,

Fig. 10 The distribution of forces in the models before the crack initiation occurs; a JC = 0.4 and b JC = 0.85

Fig. 11 The contact force distribution in PFC simulated models, a JC = 0.4, b JC = 0.85 and c the contact force distribution in intact PFC-

simulated model, reported by Cho et al. (2008)
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respectively. In each case, the conditions at the three stages

of fracture development (i.e., before the peak, at the peak

and after the peak shear strength) were recorded. The black

and red lines represent the tensile failure and the shear

failure, respectively. At each stage of the simulation, the

evolution of the bond force has been shown. The dark and

red lines represent compression forces and tensile forces,

respectively; the coarser the line, the bigger the force act-

ing at the model. Also at each stage of the simulation, the

crack orientation and the number of shear and tension

induced cracks were determined. The approximate orien-

tation of cracks was plotted in rose diagrams. The length of

the orientation vector is associated with the number of

micro cracks. The 0� axis in the rose diagram is aligned to

the vertical axis in direct shear simulation, and all angles

are measured counter-clockwise starting from the vertical

axis. The mean orientations of the sketched fractures

plotted on the rose diagram were classified into three dis-

tinct fracture sets. The first fracture set (F1) was taken from

40� to 90�, the second fracture set (F2) was taken from 0�
to 40�, and the third fracture set (F3) was taken from 90� to

180�. These three fracture sets F1, F2 and F3 are marked in

these figures with a black line, green line and red lines;

respectively.

4.4.1 JC = 0.85

Stage A: As seen in Fig. 14a, before the peak shear stress is

reached, only tensile fractures are initiated at the tip of the

joints as a result of the release of tensile force. They propa-

gate out of the maximum compressive force zone to form the

so-called ‘‘wing cracks.’’ These cracks are categorized in the

major fracture set of F1 with a mean orientation of 65.5�.

After breakage of the bonds, the kinematic energy is released

and transmitted into the neighboring bonds. Since the force

intensity at the unbroken bonds is not enough to rupture the

contacts, the cracks develop in a stable manner.

Stage B: As seen in Fig. 14b, when the shear stress

reaches the peak strength, the new tensile cracks are devel-

oped along the fracture set of F1 and propagate out of the

zone of maximum compressive force for a large distance.

The mean orientation of the fracture set, F1, is 56.2�. After

the bonds are broken, the maximum tensile force is con-

centrated near the broken bonds, while the maximum com-

pressive force is distributed at the midst of rock bridge. By

this force redistribution, we can predict that the latter

breakages will occur in the vicinity of the broken bonds.

Stage C: In the final stage, as shown in Fig. 14c, a new

tensile fracture set, F3, develops in the vicinity of the fracture

set of F1 and propagates out of the zone of maximum com-

pressive force till coalescence with the joint tip. This coa-

lescence leaves an elliptical core of intact particles. The

mean orientation of the two fracture sets of F1 and F3 is 56.2�
and 149.4�, respectively. The force distribution at this stage

shows that the compressive force chains have developed in

the model and have taken an elliptical form at the middle

part. The final failure occurs by breakage of these chains. It is

worth noting that a few shear cracks are observed in the

broken model as a result of breakage of shear bonds.

4.4.2 JC = 0.7

Stage A: As seen in Fig. 15a, the upper and lower tensile

cracks (in the fracture set, F1) develop with a mean

Fig. 12 Displacement vectors during the fracture development; a JC = 0.4, b JC = 0.85 and c the typical displacement vector observed in a

Brazilian tensile test

Fig. 13 Stress path measurement at the center of PFC model. The

points marked by the big arrow correspond to the peak shear stress
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orientation of 48.8� from the notch tips prior to the peak

shear stress being attained. These propagate out of the

maximum compressive force zone for a considerable dis-

tance. Also, a few tensile cracks with the mean orientation

of 27.8� (in the fracture set, F2) develop within the rock

bridge. These fracture sets turn stable because of the

release of tensile force with the development of tensile

cracks.

Following the bond breakage, the maximum tensile

force is concentrated close to these two fracture sets.

Stage B: As the shear stress reaches the peak strength

(Fig. 15b), the new tensile cracks that form the fracture set,

F2, develop at the midst of the rock bridge and propagate

within the zone of maximum compressive force. Also some

tensile cracks develop near the fracture set F1. The mean

orientation of the two distinct fracture sets of F1 and F2 is

48.8� and 26.1�, respectively. In this stage, the number of

newly developed tensile cracks existing in the fracture set

F2 is more than that in the fracture set F1. This means that

the maximum tensile force has been transmitted within the

rock bridge. The force distribution in the rock bridge shows

that the maximum tensile force is concentrated near the

broken bond.

Stage C: In the final stage of the shear loading, as shown

in Fig. 15c, tensile cracks develop near the fracture set, F2.

Also the tensile fracture set F3 develops within the rock

Fig. 14 Development of

cracks, evolution of the bond

forces and mean orientation of

particle cracks during the three

stages of shear loading; a before

peak, b at peak and c after peak

shear strength, JC = 0.85
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bridge and coalesces with the joint tip so that the intact

bridge area gets split with an uneven shear failure surface.

It is worth noting that a few shear cracks are observed in

each fracture set. The mean orientation of two fracture sets,

F1 and F3, is 26.1� and 158.3�, respectively. The length

and orientation of fracture set F1 remain constant after the

first stage. It means that the external shear load has no

effect on the force concentration near the fracture set F1

after the first stage of shear loading. The bond force dis-

tribution at this stage shows that the force chains take an

uneven form according to the geometry of the failure sur-

face. These force chains are stable till the ultimate break-

age occurs in the rock bridge. It is important to note that

only two fracture sets of F2 and F3 are responsible for

breaking the rock bridge. As can be seen from Fig. 3a,

nearly the same failure pattern has occurred in the physical

sample when JC = 0.7.

4.4.3 JC = 0.55

Stage A: As shown in Fig. 16a, before the peak shear stress

is reached, two distinct tensile fracture sets of F1 and F2

are identified in the bridge area with a mean orientation of

61.3� and 29.5�, respectively. The upper and lower tensile

wing cracks (in fracture set, F1) develop at the notch tips

and propagate out of the zone of maximum compressive

force for a short distance. Also the fracture set of F2

develops at the midst of rock bridge as several short shear

Fig. 15 Development of

cracks, evolution of the bond

forces and mean orientation of

particle cracks during the three

stages of shear loading; a before

peak, b at peak and c after peak

shear strength, JC = 0.7
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bands because of the low stress interaction between the

joints. In other words, several short bands of contacts in the

midst of the rock bridge that are weak due to their critical

situation related to the shear loading path (about 0�–40�),

break simultaneously with crack initiation at the tip of the

joints. These two fracture sets propagate for a short dis-

tance and become stable due to the development of tensile

cracks. Note that the direction of weak bands is in a good

agreement with the contact force distribution in the cen-

ter of the samples, which are inclined by approximately

0�–40� to the shearing direction (Fig. 11).

Stage B: As the shear stress reaches the peak strength

(Fig. 16b), the new tensile cracks develop along the frac-

ture set F2, so the shear bands propagate within the zone of

maximum compressive force for a large distance. The

mean orientation of fracture set F2 is equal to 25�. Force

redistribution in the midst zone shows that the high tensile

force is concentrated in vicinity of the fracture set F2.

Stage C: In the final stage of the shear loading, as shown

in Fig. 16c, the short tensile fracture set F3 develops

between the shear bands so that the intact bridge area gets

broken with an unsymmetrical shear failure surface. The

mean orientation of fracture set F3 is 158.6�. It is important

to note that only the two fracture sets of F2 and F3 are

responsible for the breakage of the rock bridge. The length

and orientation of fracture set F1 remain constant after the

first stage of shear loading. It means that the external shear

load does not induce any force concentration near the

Fig. 16 Development of

cracks, evolution of the bond

forces and mean orientation of

particle cracks during the three

stages of shear loading; a before

peak, b at peak and c after peak

shear strength, JC = 0.55
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fracture set F1 during the different stages of shear loading

(stages of B and C). The bond force distribution shows that

the force chains develop within the unbroken parts of the

rock bridge. These chains affect the post peak behavior of

the shear surface till the final breakage of the bonded

particles is reached. Note that the tensile cracks are the

dominant mode of failure, while a few shear cracks

develop within the model.

Wong et al. (1999, 2001) gained similar related results

showing that ‘fish eye’ mode coalescence occurs in a

critical range of joint coefficients (JC = 0.55) in experi-

ments using plaster modeling material under direct shear

tests.

4.4.4 JC = 0.4

Stage A: Figure 17a indicates that both shear and tensile

cracks (in fracture set F2) accumulate in the rock bridge

prior to the peak shear stress being attained. It can be seen

that several shear bands propagate in a stable manner

within the zone of maximum compressive force because of

the low stress interaction between the joints. The mean

orientation of the tensile fracture set F2 is 35.1�.

Unlike in the previous cases, there are no cracks at the

tip of the joints in this stage. In other words, the stress

concentration at the tip of the joints is not enough to

overcome the bond strength, while several short bands of

Fig. 17 Development of

cracks, evolution of bond forces

and mean orientation of particle

cracks during three stages of

shear loading; a before peak,

b at peak and c after peak shear

strength, JC = 0.4
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contacts, due to their critical situation with respect to the

shear loading path (about 0�–40�), break in the rock bridge.

Bond force distribution shows that the maximum tensile

force is concentrated near the fracture set F2.

Stage B: As the shear stress reaches the peak strength

(Fig. 17b), new cracks (tensile/shear) develop along the

fracture set F2 so the shear bands propagate within the zone

of maximum compressive force for a large distance. The

mean orientation of the tensile fracture set of F2 is 30.2�.

The force redistribution in the middle zone shows that the

maximum forces are concentrated near the shear bands.

Stage C: In the final stage of shear loading (Fig. 17c), the

short fracture set of F3 consists of both shear and tensile

cracks, with a mean orientation of 156�, and develops

between the shear bands so that the intact bridge area gets

broken with an unsymmetrical shear failure surface. The

fracture set F3 is approximately symmetrical to the fracture

set F2, but in the opposite direction. The bond force distri-

bution shows that the force chains develop within the

unbroken rock bridge. The existence of bond forces in the

rock bridge affects the residual strength of the broken model.

As shown in Fig. 3b, nearly the same failure pattern has

occurred in the physical sample when JC = 0.7.

The failure pattern obtained from this simulation is in

reasonable accordance with some of the related numerical

results in Zhang et al. (2006).

The crack ratios shown in Figs. 14, 15, 16 and 17 clearly

reveal that tension cracks are considerably greater in number

than the shear cracks. Such differences become even more

significant as shear deformation increases. Also, in all the

tested samples, nearly 45 % of total crack numbers develop

at the peak strength (stage B), and 55 % of them develop after

the peak shear resistance is reached. It shows that the planar

non-persistent joints lose their loading capacity when 45 %

of the total cracks develop within the rock bridges. From the

above discussions, we can conclude that:

• The fracture morphology in planar rock bridges at low

normal load level (0.33 MPa) does not occur because of

shear stresses, but rather from tensile stresses.

• Three different tensile fracture sets develop within the

rock bridges. The fracture set F1 is observed before the

peak shear stress (stage A in Figs. 14, 15), and the

fracture set F2 mainly is observed as the shear stress

reaches the peak strength (stage B in Figs. 14, 15, 16,

17). Finally, before the shear stress approaches the

residual strength (stage C in Figs. 14, 15, 16, 17), the

two fracture sets F1 and F2 become kinetically

impossible, and the fracture set F3 develops in the

rock bridge.

• The fracture set F1 initiates at the joints tip but the

other two fractures sets of F2 and F3 develop within the

rock bridge.

• The joint coefficient controls the type of fracture set

within the rock bridge. When the joint coefficient is

high, the stress interaction between the joints is so

strong that the two fracture sets of F1 and F3 are

responsible for the breakage of the rock bridge. By

decreasing the joint coefficient, the stress interaction

between the joints is decreased and consequently the

two fractures sets of F2 and F3 break the rock bridge.

• By decreasing the joint coefficient, the propagation

length of fracture set F1 decreases, while the number

and length of the other two fractures sets of F2 and F3

increase. This is due to the transition of maximum bond

forces from the joints tip to the bridge area.

• When the joint coefficient is high, the failure zone is

relatively narrow and has a symmetrical pattern,

resulting from the high tensile stress concentration at

the tip of the joints as well as the high stress interaction

between the joints (Figs. 14, 15).

• When the joint coefficient is low, the rupture surface is

more complex and develops into a shear zone. This

zone is relatively thick and has an unsymmetrical

pattern. The more complex shear zone results from the

non-uniform distribution of the localized regions of

tensility in the rock bridge (Figs. 16, 17).

Figure 18a illustrates the relationship between the shear

load and shear displacement, and Fig. 18b represents the

linear fitting curve of peak shear load and joint coefficient.

Figure 18c shows the variation of failure stress of the

bridged segment versus the joint coefficient for both the

numerical and physical models. The fill points and hollow

points represent the failure stresses in the PFC2D models

and laboratory samples, respectively. The failure stress is

measured by division of the maximum shear force by the

length of the ligament.

Through comparison between Figs. 14, 15, 16, 17 and

18a, we can conclude that the peak of shear load is asso-

ciated with the propagation length of the shear failure zone.

The larger the propagation length is, the higher will be the

peak of shear load.

The capacity of bridged rock to resist shear loading has a

close relationship with the failure patterns. For a smaller joint

separation (JC = 0.85), the intact-bridged rock ruptures in

elliptical mode with two short strias; for a larger joint sepa-

ration (JC = 0.7), tensile cracks propagate for a certain

length and remain stable owing to the release of tensile stress.

When the shear load increases, the middle bridged rock

ruptures with a single uneven shear failure surface. For a

larger joint separation (JC = 0.55), two joints are connected

with several small shear bands. Finally, for the largest joint

separation (JC = 0.4), a more complex shear zone, con-

sisting of a large number of shear bands, propagates for a

large distance and forms the final fracture surface. Also from
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Fig. 18a, it is clear that the shear stiffness increases with

decreasing the joint coefficient.

The linear fitting curve between the peak of the shear

load and joint co-efficient in Fig. 18b shows that the peak

of shear load is almost linear to the joint coefficient. The

smaller the ratio (JC = 0.4), the higher the peak shear load

is. Note that the increase in the loading capacity of the rock

bridge is not only due to the increase in the length of rock

bridge. This may also be explained by the fracture

mechanics theory, which indicates that small joint lengths

correspond to small values of the stress intensity factors

(KI and KII). This leads to higher rock bridge strength.

From the fitting equation, y ¼ �1441:7xþ 1442:3

(Fig. 18b), it can be inferred that when the specimen has no

pre-existing joints, the joint coefficient equals 0, and the

peak of shear load is 1,442.3 N. The shear load would be

0.6 N (approximately close to 0) when the ideal condition

is achieved [i.e., when the joint runs through the whole

specimen (JC = 1)]. Therefore, the numerical results

comply reasonably with the engineering expectation.

Figure 18c shows that the shear strength of non-persis-

tent joints predicted by numerical simulations are nearly

similar to the results obtained by experimental tests. The

slight discrepancy may be due to some small variations in

the mechanical specifications of numerical and laboratory

specimens (i.e., the tensile strength and friction angle given

in Table 3).

From Fig. 13c it is clear that the rock bridge capacity to

resist shear loading has a close correlation (inversely pro-

portional) with the joint coefficient. By increasing the joint

coefficient, the shear strength of the rock bridge is reduced

because of an increase in the stress concentration at the tip

of the joints and an increase in the stress interaction

between the joints.

Similarly, it may be concluded that the peak of shear

load of jointed rock is mostly influenced by its failure

pattern, while the failure pattern of bridged rock is mainly

controlled by the joint separation.

Whereas shear strength, as one of the material

mechanical properties, has a close relationship with its

defect configuration, the capacity of jointed rock masses to

resist shear loading is severely influenced by its macro-

scopic joint constellation.

5 Conclusion

The shear behavior (failure progress, failure pattern, failure

mechanism and shear resistance) of rock specimens con-

taining two edge joints with different joint separations was

investigated with the direct shear test by PFC2D Numerical

Simulation and verified by experimental tests. Based on the

results obtained, the following conclusions drawn from this

research are:

• By increasing the joint coefficient, the high fracture

surface changes into a single symmetrical failure

surface.

Fig. 18 a The relationship between the shear load and shear

displacement. b The linear fitting curve of the peak of shear load

and joint coefficient. c The variation of failure stress of the bridged

segment versus the ligament angle
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• Tension is the dominant mode of fracturing, irrespec-

tive of the stage of shearing.

• In all examined cases, about 45 % of the total number

of cracks developed at the peak strength, and nearly

55 % of them developed after the peak shear resistance

was reached. This revealed that the models lose their

loading capacity when 45 % of the total number of

cracks develops within the rock bridge.
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