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Abstract The aim of the present study was to determine

the stress field developed in a Brazilian disc under condi-

tions closely approaching those of the actual test executed

according to the standardized procedure suggested by the

International Society for Rock Mechanics. Advantage is

taken of a recently introduced analytic solution for a mixed

fundamental contact problem where the disc and the jaw

are considered as a system of two interacting elastic bodies.

Using the outcomes of that study, the complex potentials

method is employed here for the solution of a first funda-

mental problem for a Brazilian disc under a parabolic load

distribution. Analytic full-field formulae for the compo-

nents of the stress field developed in the disc are given. The

solution is then applied for the case of a disc made from

Dionysos marble. The results are compared to existing ones

obtained from solutions adopting statically equivalent

loads either in the form of distributed (uniform or sinu-

soidally) radial pressure acting along the actual contact rim

or in the form of diametrically acting point (line) loads.

While the stress field in the major part of the disc seems to

be rather insensitive to the exact load application mode,

critical differences are detected in the vicinity of the loaded

arc of the disc. The solution is assessed according to the

results of a short series of Brazilian disc tests with PMMA

specimens. The agreement between theoretical predictions

and experimental data is satisfactory. Finally, it is indicated

that, as opposed to previous solutions, the stress field (even

at the disc’s center) is a non-linear function of the exter-

nally applied load depending, among others, indirectly on

the properties of the disc’s and jaw’s materials, the com-

bination of which dictates the extent of the contact angle.

Keywords Brazilian disc test � Complex potentials �
Marble � PMMA � Contact length � Radial pressure �
Point load

1 Introduction

For the standardized execution of the Brazilian disc test,

the International Society for Rock Mechanics (ISRM)

proposed a ‘‘suggested’’ method based on the apparatus

shown in Fig. 1 (ISRM 1988). It consists of two metallic

jaws of curvature radius R2 equal to 1.5R1, where R1 is the

disc’s radius. It is evident that if the own weight of the

upper jaw is ignored, contact between specimen and jaw is

realized along a mathematical line, i.e., the common gen-

eratrix of the cylindrical surfaces. Assuming now that the

external load, applied by the loading frame on the upper

jaw, increases gradually (and taking into account the

inevitable deformability of both the jaw and the disc), the

contact is realized along a curved surface, the projection on

the disc’s cross section of which is a finite arc symmetric

with respect to the vertical axis of symmetry of the

arrangement.

Existing analytic solutions for the stress field developed

in the disc do not take into account this gradual change of

the contact length considering either a point (line) load

(Muskhelishvili 1963; Jianhong et al. 2009; Stefanizzi et al.

2009) or uniform radial pressure acting along an arc of

arbitrarily predefined length (Hondros 1959; Markides

et al. 2010). Although such approaches are rather rough
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approximations of reality, they are widely used for prac-

tical purposes. This is because it is generally accepted that

the exact conditions in the immediate vicinity of the jaws–

specimen interface do not seriously influence the stress

field at the center of the disc. Unfortunately, this is not the

case in the immediate vicinity of the load application area.

Here, the local stress field is critically influenced not only

by the magnitude of the contact length, but also by the

exact distribution of the radial pressure and friction (Lav-

rov and Vervoort 2002; Markides et al. 2011), which vary

according to the relative deformability of the jaws and the

specimen.

In a recent study, shortly recapitulated is Sect. 2

(Kourkoulis et al. 2011), the mixed fundamental contact

problem of two elastic bodies (corresponding to the disc

and the jaw of the ISRM suggested device) was considered.

Analytic formulae were obtained both for the actual length

of the contact rim (in terms of R1 and R2, the elastic

properties of the specimen’s and jaw’s materials and the

load imposed), as well as for the exact variation of the

radial pressure along this rim. Following the results of that

study, an attempt is described here to obtain closed form

expressions for the stress field developed in a circular disc

under the influence of a radial pressure distribution closely

resembling the form obtained by Kourkoulis et al. (2011)

and acting along the actual contact length, as it is dictated

by the geometry and the material properties. This config-

uration corresponds to a first fundamental problem of

classic linear elasticity and is here solved using the com-

plex potentials method introduced by Muskhelishvili

(1963). The stress field obtained is considered in juxtapo-

sition with existing ones, which ignore the actual loading

and contact conditions at the jaw–disc interface. The cases

comparatively considered include the diametral point load

and the uniform and sinusoidal distributions of the radial

pressure along the actual contact length (always assuming

static equivalence between the overall loads). It is again

concluded that at the disc’s center, the stress field is not

very sensitive to the exact load application mode. How-

ever, according to the present solution, even at the center of

the disc the stresses depend indirectly on the elastic prop-

erties of the disc’s and jaw’s materials (which define the

contact angle) and vary non-linearly versus the load

applied. As the loaded rim is approached, the situation

changes dramatically and erroneous conclusions may be

drawn in case the actual loading type is not taken into

account.

2 The Standardized Brazilian Disc Test As a Contact

Problem (Kourkoulis et al. 2011)

Following Muskhelishvili’s (1963) approach for the

respective Hertz plane problem, consider the disc and jaw

of the ISRM Brazilian test device as elastic bodies in

frictionless contact. The respective mathematical regions

Sj, j = 1, 2 lie in the complex plane z = x ? iy (Fig. 1).

Due to the load, Po, parts (-‘, ?‘) of their boundaries Lj,

j = 1, 2 come in contact and the common arc after contact

is realized is denoted as (-L, ?L). A Cartesian system is

introduced (Fig. 1) and s denotes both point x and its

abscissa. The contact length and the variation P(s) of the

contact stresses are to be determined. The following hold:

r�xyj
¼ 0; j ¼ 1; 2 on the entire x-axis; i:e: on L1; L2;

ð1Þ
r�yyj
¼ 0; j ¼ 1; 2 on x-axis except ð�‘;þ‘Þ ð2Þ

r�yyj
¼ �PðsÞ; j ¼ 1; 2 along ð�‘;þ‘Þ: ð3Þ

Signs (-), (?) refer to boundary values for z tending

to s on x-axis from the lower and upper half-planes,

respectively. With f(s) = f2(s) - f1(s), fj(s), j = 1, 2 the

equations of Lj before deformation and for small

deformations, it can be seen that:

v�01 � vþ02 ¼ f 0ðsÞ on ð�‘;þ‘Þ ð4Þ

Upper jaw
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Fig. 1 Vertical section of the

ISRM suggested device for the

standardized realization of the

Brazilian disc test and the

respective mathematical

problem configuration

146 Ch. F. Markides, S. K. Kourkoulis

123



For the above boundary values and given the resultant

force Po (i.e., the overall external load Pdev normalized

over the thickness w), a mixed fundamental plane problem

is obtained. According to Muskhelishvili (1963), the

solution consists in the determination of a single analytic

function Uj(z), j = 1, 2, in terms of which stresses and

displacements are expressed as:

ryyj
� irxyj

¼ UjðzÞ � Uj zð Þ þ z� zð ÞU0j zð Þ; j ¼ 1; 2

ð5Þ

2lj u0j þ iv0j

� �
¼ jjUjðzÞ þ Uj zð Þ � z� zð ÞU0j zð Þ; j ¼ 1; 2

ð6Þ

2lj uj þ ivj

� �
¼ jjujðzÞ þ uj zð Þ � z� zð Þu0j zð Þ þ C;

j ¼ 1; 2
ð7Þ

C expresses rigid body displacements. Over-bar denotes

complex conjugate values. jj, lj, j = 1, 2 are Muskhelish-

vili’s constants and shear moduli, respectively. Equations

(1–7) for j = 1 yield:

Uþ1 sð Þ þ U�1 sð Þ ¼ if 0ðsÞ=K with

K ¼ ðj1 þ 1Þ=4l1 þ ðj2 þ 1Þ=4l2 ð8Þ

Using function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � z2
p

¼ �iXðzÞ (where XðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ‘2
p

is a particular solution of Uþ1 sð Þ þ U�1 sð Þ ¼ 0),

and assuming further that U1(z) vanishes at infinity, Eq. (8)

yields:

U1ðzÞ ¼
1

2pK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � z2
p

Zþ‘

�‘

f 0ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

ds
s� z

þ Po

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � z2
p

ð9Þ

Using Plemelj formulae and Eqs. (5, 9) for j = 1,

z ? s, yields for P(so) along (-‘, ?‘):

P soð Þ ¼
1

pK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2

o

p
Zþ‘

�‘

f 0ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

ds
s� so

þ Po

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2

o

p

ð10Þ

For P(so) to remain bounded at points ±‘, Eqs. (9, 10)

reduce to (Muskhelishvili 1963):

U1 zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � z2
p

2pK

Zþ‘

�‘

f 0ðsÞds

s� zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p ;

PðsoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2

o

p
pK

Zþ‘

�‘

f 0 sð Þds

s� soð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

ð11Þ

Clearly, P is actually zeroed at so = ±‘. Considering

also Eq. (10), the following is obtained for ‘:

Zþ‘

�‘

f 0ðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p ¼ 0;

Zþ‘

�‘

f 0ðsÞsdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p ¼ KPo ð12Þ

Following Muskhelishvili (1963), the equal facing arcs

(–‘, ?‘) (before load is applied) that come into contact are

considered (in their undeformed state) as parts of two

parabolas, which at the vertex O have the same curvatures

as the respective circular arcs and fj(s) = -(s2/2Rj). Rj,

j = 1, 2 are the disc’s and jaw’s radii, respectively. Then

Eqs. (12) reduce to a single condition for ‘:

Zþ‘

0

f 0ðsÞsdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p ¼ KPo

2
ð13Þ

For R2 = 1.5R1, f0(s) = s/(3R1), the first of Eqs. (11)

and (5) yield:

U1 zð Þ ¼ 1

6R1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � z2

p
þ iz

� �
; PðsÞ ¼ 1

3R1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

ð14Þ

It is seen that P(s) corresponds to a circular distribution

of radial normal stresses (Fig. 2). She contact length and

the contact angle between the disc and the jaw are then

obtained as:

2‘ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6R1KPo

p

r
;xo ¼

ffiffiffiffiffiffiffiffiffiffiffi
6KPo

pR1

r
: ð15Þ

3 The Stress Field Under Parabolic Radial Pressure

Along the Actual Contact Length

3.1 The Problem

Knowing the actual variation of P, and xo, one could

proceed to the solution of the first fundamental problem for

the isolated Brazilian disc, using the method of complex

Fig. 2 The actual distribution of the radial pressure imposed by the

jaw on the disc along the actual contact length (-‘, ?‘)
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potentials, to obtain the stress field developed in the disc.

However for the circular distribution of P, a closed form

solution is not possible (see ‘‘Appendix I’’). Therefore, and

within the accuracy considered, an alternative parabolic

distribution is introduced (as described in ‘‘Appendix II’’)

of the following form:

PðsÞ ¼ p‘
8RK

1� s
‘

� �2
� �

ð16Þ

where from now on R will stand for R1 (accordingly L will

stand for L1). Taking now under consideration also the first

of Eqs. (15), it follows that:

Zþ‘

�‘

p‘
8RK

1� s
‘

� �2
� �

ds ¼
Zþ‘

�‘

1

3RK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

ds ¼ Po ð17Þ

insuring static equivalency between the circular and

parabolic distributions (as in Fig. 3). It is emphasized at

this point that the parabolic distribution given by Eq. (16)

not only constitutes an efficient (from the point of view of

reducing mathematical complexities) substitute of that

given by the second of Eqs. (14), but perhaps it also

approaches reality better: Indeed, the cyclic distribution of

P has been obtained for an approximately straight contact

segment (-‘, ?‘) (Kourkoulis et al. 2011). It appears

therefore that for an initially circular contact region

(-‘, ?‘), a parabolic distribution (of slightly increased

intensity at the vertex and of slightly reduced intensity

toward the end points of the loaded rim) is more reasonable

compared to a perfectly circular one. The maximum value

of the parabolic distribution is attained at the vertex point

O (for s = 0 in the Oxy Cartesian reference, Fig. 3), as:

Pc ¼
p‘

8RK
ð18Þ

This value exceeds the respective one of the circular

distribution Pc = ‘/(3RK) by about 15%. Considering a

Cartesian reference system with its origin at the center of

the disc and taking into account that xo is very small

(especially for brittle geomaterials tested using the ISRM

device), the arcs s, ‘ can be approximated by the respective

straight segments s0, ‘0 (Fig. 4) as:

‘ � ‘0 ¼ R sin xo; s � s0 ¼ R cos# ð19Þ
Accordingly, xo of Eqs. (15) becomes:

xo ¼ Arc sin

ffiffiffiffiffiffiffiffiffiffiffi
6KPo

pR

r
; ð20Þ

while Pc, from Eq. (18), is written as:

Pc ¼
ffiffiffiffiffiffiffiffiffiffiffi
3pPo

32KR

r
ð21Þ

In the Cartesian reference introduced (Fig. 4), the end

points ±‘ of the loaded rim are denoted as tj, j = 1, 2.

Introducing Eqs. (18, 19, 21) in Eq. (16) P is written in

terms of angle # as:

Pð#Þ ¼ Pc 1� cos2#

sin2xo

	 

; ð22Þ

The boundary conditions for the stresses on the disc

periphery L read as:

rþrrð#Þ ¼ �Pð#Þ

¼ �Pc 1� cos2#

sin2xo

	 

on the loaded rims of L;

ð23aÞ

rþrrð#Þ ¼ 0 on the unloaded part of L ð23bÞ

Fig. 3 The actual (cyclic) distribution of the radial pressure in

juxtaposition to the alternative one (parabolic) adopted in the present

study

Fig. 4 The parabolic distribution along the loaded rim and further

simplifying assumptions. The maximum value of the parabolic

distribution in terms of Po
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Sign (?) indicates boundary values taken on L from the

interior of the disc. Thus, one has arrived at a classical first

fundamental problem for the intact Brazilian disc for the

configuration shown in Fig. 5a.

3.2 The Complex Potentials

Following Muskhelishvili’s (1963) complex potentials

method, the disc is considered in the complex plane

z ¼ rei#. The origin of the Cartesian reference has been

taken at the disc’s center and y-axis is the symmetry axis of

the external load. The arbitrary point z on L is denoted by

t ¼ Rei# and tj j = 1, 2, 3, 4 are the end points of the

loaded rims. The problem is first solved for the unit disc in

the complex plane f ¼ qei#, Fig. 5b. Points tj of L corre-

spond, through the conformal mapping z = Rf, to points sj

on the unit circle c, with s ¼ ei# the arbitrary point f on it.

In this context, Eqs. (23a, b) are rewritten for c as:

rþqqð#Þ ¼ �Pð#Þ

¼ �Pc 1� cos2#

sin2xo

	 

on the loaded rims of c;

ð24aÞ

rþqqð#Þ ¼ 0 on the unloaded part of c ð24bÞ

The complex potentials for the unit disc are written as

(Markides et al. 2010, 2011):

UðfÞ ¼ 1

2pi

Z

c

rþqqðsÞ
s� f

ds� 1

4p

Z2p

0

rþqqð#Þd# ð25Þ

WðfÞ ¼ 1

f2
UðfÞ þ 1

f2
U

1

f

	 

� 1

f
U0ðfÞ ð26Þ

Taking into account that cos# ¼ sþ sð Þ=2, Eq. (24a)

can be alternatively written as:

rþqqðsÞ ¼ �Pc 1� 1

4sin2xo

2þ s2 þ 1

s2

	 
� �
ð27Þ

Combining Eqs. (24a, b, 27) with Eq. (25) providesU(f) as:

UðfÞ ¼ Pc

4pi sin2xo

f4 þ 1

2f2
þ cos2xo

	 

‘n

s2
2 � f2

s2
1 � f2

� 1

f2
þ cos2xo

	 

2ixo

" #

ð28Þ

In turn, introducing U(f) from Eq. (28) in Eq. (26) gives

for W(z):

WðfÞ¼ �Pc

4pi sin2xo

f4�1

f4
‘n

s2
2� f2

s2
1� f2

"

þ f4þ1

f2
þ2cos2xo

	 

1

s2
1� f2

� 1

s2
2� f2

 !
þ4ixo

f4

#

ð29Þ

Reverting to the variable z through the conformal

transformations f = z/R, sj = tj/R, one obtains the

complex potentials of the problem for the real disc of

radius R as follows:

UðzÞ ¼ Pc

4pi sin2xo

z4 þ R4

2R2z2
þ cos2xo

	 
�

� ‘n t2
2 � z2

t2
1 � z2

� R2

z2
þ cos2xo

	 

2ixo

�
ð30Þ

W zð Þ ¼ �Pc

4pi sin2xo

z4 � R4

z4
‘n

t2
2 � z2

t2
1 � z2

�

þ z4 þ R4

z2
þ 2R2cos2xo

	 

1

t2
1 � z2

� 1

t2
2 � z2

	 


þ 4iR4xo

z4

�
: ð31Þ

(a) (b)

Fig. 5 The mathematical

configuration of the first

fundamental problem for the

disc and the conformal mapping
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3.3 The Stress Field

Substitution of Eqs. (30, 31) in the familiar formula

(Muskhelishvili 1963):

rrr � irr# ¼ 2<UðzÞ � e2i# zU0ðzÞ þWðzÞ½ � ð32Þ

(< denotes the real part of the function) gives the closed

form expressions for the stress components in compact

form as:

r rr

##

¼ Pc

4psin2xo

R2�r2ð Þ2
2r4

2r6�R6�r4R2

2r4R2

+
� sin2# � ‘n R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2

8<
:

þ
þ 4xoR2 R2�2r2ð Þ

r4 cos2#þ r4�R4þ2r2R2

r4 cos2#þ 2cos2xo

� �

� 4xoR4

r4 cos2#þ 2r6þR6�r4R2

r4R2 cos2#þ 2cos2xo

� �
* +

�

2p� tan�1 Rcosxo � rsin#

Rsinxo þ rcos#
� tan�1 Rcosxo þ rsin#

Rsinxo � rcos#

�tan�1 Rcosxo � rsin#

Rsinxo � rcos#
� tan�1 Rcosxo þ rsin#

Rsinxo þ rcos#

9>>=
>>;

region I

the same expression without 2p region II

*

� R2 � r2
� � r2

R2
sin4#þ 2cos2xosin2#

	 

�R2cos2xo � r2cos2#

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2

 "

þ R2cos2xo þ r2cos2#

R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

!
� r2

R2
cos4#þ 2cos2xocos2#þ R2

r2

	 


� R2sin2xo � r2sin2#

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2
þ R2sin2xo þ r2sin2#

R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

 !#
� 4xocos2xo

)

ð33Þ

rr# ¼
Pc R2 � r2ð Þ

4psin2xo

r4 � R4

2r4R2
cos2#‘n

R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2

"

þ 4xoR2

r4
sin2#� r4 þ R4

r4R2
sin2#

�

2p� tan�1 Rcosxo � rsin#

Rsinxo þ rcos#
� tan�1 Rcosxo þ rsin#

Rsinxo � rcos#

�tan�1 Rcosxo � rsin#

Rsinxo � rcos#
� tan�1 Rcosxo þ rsin#

Rsinxo þ rcos#

9>>=
>>;

region I

the same expression without 2p for region II

*

þ r2

R2
sin4#þ 2cos2xosin2#

	 

R2sin2xo � r2sin2#

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2

 

þ R2sin2xo þ r2sin2#

R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

!
þ r2

R2
cos4#þ 2cos2xocos2#þ R2

r2

	 


� �R2cos2xo � r2cos2#

R2 þ r2ð Þ2� 2rRsin xo þ #ð Þð Þ2
þ R2cos2xo þ r2cos2#

R2 þ r2ð Þ2� 2rRsin xo � #ð Þð Þ2

 !#

ð34Þ
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The limiting values of the stress components at the

center of the disc (i.e., for r ? 0) along a radius at any

arbitrary angle 0 are obtained through Eqs. (33, 34) as:

rrrj#r¼0 ¼
Pc

4psin2xo

½4xocos2xo

� 2sin2xo þ cos2#ð4xo � sin4xoÞ� ð35Þ

r##j#r¼0 ¼
Pc

4psin2xo

½4xocos2xo

� 2sin2xo � cos2#ð4xo � sin4xoÞ� ð36Þ

rr#j#r¼0¼
�Pc

4psin2xo

sin2#ð4xo � sin4xoÞ: ð37Þ

4 Results and Discussion

4.1 Loading Types

The above-developed solution is applied now for a disc of

diameter 100 mm made from marble subjected to diametral

compression using the ISRM standardized device. The

mechanical properties assigned to the material are those of

Dionysos marble (the material used extensively and almost

exclusively in the restoration project of the Parthenon

Temple in the Acropolis of Athens). Its modulus of elas-

ticity was considered equal to ED = 78 GPa and its Pois-

son’s ratio equal to mD = 0.26 (Kourkoulis et al. 1999).

The jaws of the device are assumed to be made of steel

with modulus of elasticity Es = 210 GPa and Poisson’s

ratio ms = 0.30. An overall compressive force Pdev equal to

11.45 kN is applied on the upper jaw of the ISRM device

corresponding to the force causing a tensile stress equal to

about 7.3 MPa at the center of the disc [according to the

familiar formula rtension = (Pdev)/(pRw)]. The specific

stress value is very close to the tensile fracture strength of

Dionysos marble as it was obtained by a series of direct

tension tests by Vardoulakis et al. (2002).

For the above combination of numerical values of the

mechanical properties, geometrical characteristics and load,

Eq. (20) yields a contact angle xo = 2.1�, justifying all

assumptions about the smallness of the contact length

(indeed, the contact length corresponding to the above

combination is equal to about ‘ = 1.8 mm), while the

maximum value Pc
parabolic of the parabolic load distribution is

given by Eq. (21).

At this point it was decided, for comparison reasons, to

study in juxtaposition three additional loading cases, i.e.,

point load, uniformly distributed radial pressure and sinu-

soidally varying radial pressure.

(i) For the point load and for Po = Pdev/w, the stress

field components can be expressed by particularizing the

Muskhelishvili’s (1963) general solution as:

r rr
##
¼ Po

pR
1� 2

R4 þ r2R2cos2#

R4 þ r4 þ 2r2R2cos2#

	 

� 2PoR

p
R2 � r2
� �

cos2# R4 þ r4cos4#þ 2r2R2cos2#ð Þ þ 2r2sin22# R2 þ r2cos2#ð Þ
R4 þ r4 þ 2r2R2cos2#ð Þ2

ð38Þ

rr#¼
2PoR

p
R2�r2
� �

sin2#

2r2cos2# R2þr2cos2#ð Þ� R4þr4cos4#þ2r2R2cos2#ð Þ
R4þr4þ2r2R2cos2#ð Þ2

ð39Þ

(ii) For the uniformly distributed radial pressure, the

components of the stress field were given in closed form by

Markides et al. (2010). In this case, it holds that (Fig. 6):

Puniform
c ¼ Pdev

2Rxow
¼ Po

2Rxo
in

kN

m2

� �
ð40Þ

where xo is considered as that obtained for the parabolic

loading distribution by Eq. (20).

(iii) For a radial pressure sinusoidally varying accord-

ing to the formula (Markides et al. 2011):

Psinusoidalð#Þ ¼ c sin#� cosxoð Þ in
kN

m2

� �
ð41Þ

the static equivalence:

Zp=2þxo

p=2�xo

Psinusoidalð#ÞRwd# � Pdev ¼ Pow ð42Þ

dictates that the maximum value reads as:

Psinusoidal
c ¼ Po 1� cosxoð Þ

2R sinxo � xocosxoð Þ in
kN

m2

� �
ð43Þ

where again, xo corresponds to the one obtained from

Eq. (20).

The four loading cases considered are recapitulated in

Table 1 and schematically represented in Fig. 6.

4.2 The Stress Field Along Some Characteristic Paths

The variation of the radial stress rrr along the 0 = 90� radius

(i.e., axis Oy in Fig. 6) is plotted in Fig. 7a for all four

loading cases studied. As expected, the differences are

absolutely negligible along the major part of the radius. Only

for r values exceeding r = 0.95R, the distributions start

deviating from each other as seen in the graph embedded in

Fig. 7a. Clearly, the point load generates the (absolute)

maximum radial stress equal to about -1,400 MPa for

r = R. The stress values were (intentionally) not normalized

to provide an estimation of their magnitudes (given that the

material considered is widely used in praxis). On the con-

trary, the uniformly distributed load generates the minimum
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radial stress along the 0 = 90� radius equal to about

-300 MPa at r = R. The sinusoidal and the parabolic dis-

tributions yield identical results all along the 0 = 90� radius

and are equal to about -450 MPa at r = R.

Similar conclusions are drawn from Fig. 7b, in which

the transverse (hoop) stress is plotted again along the

0 = 90� radius. The stresses at r = R for the uniform load

and the sinusoidal and parabolic distributions are exactly

equal to the respective values of the radial stresses. The

main difference concerns the stress distribution due to the

point load, which is constant all over the 0 = 90� radius.

This constant value, equal to about 7 MPa, is identical for

all four load types for r \ 0.95R and provides an estima-

tion of the tensile strength of the specific marble, which is

very close to the one experimentally obtained from direct

tension tests (Vardoulakis et al. 2002).

As a next step, the stress components’ variation is

plotted along the radius ending at the end point of the

contact arc (calculated according to the present method),

i.e., along the radius with 0 = 87.9� (Fig. 8). Again for

r \ 0.95R, all loading types yield identical results. For

r ? 0 (at the disc’s center), the value of the radial stress

component is equal to about -21 MPa (Fig. 8a) and that of

the transverse component is equal to about 7 MPa

(Fig. 8b), while that of the shear component is equal to

about -1 MPa (Fig. 8c). However as r ? R, the situation

changes dramatically. All stress components attain nega-

tive values and reach global extrema (around r & 0.95R)

equal to about -149.67 MPa for the radial stresses (for the

uniform load), -124.57 MPa for the transverse stresses

(for the point load) and about -98.21 MPa for the shear

ones (again for the point load). The portion of the graphs

around this global extremum is shown magnified in the

embedded graphs. From this point on, the stress compo-

nents increase abruptly and tend to zero (for all loading

types) as r ? R. It is to be noted that the differences for the

four loading types are almost negligible for the transverse

stress and very small (\5%) for the shear stress. On the

contrary, the difference for the radial stress approaches

20% between the two extreme loading cases, i.e., the point

load (-126.31 MPa) and the uniform distribution

(-149.67 MPa).

Fig. 6 Schematic

representation of the loading

types exerted on the disc

Table 1 The loading cases considered

Loading

case

P(0) Maximum value

(at 0 = 90�)

Parabolic Pð#Þ ¼ Pparabolic
c 1� cos2#

sin2xo

� �
Pparabolic

c ¼
ffiffiffiffiffiffiffiffi
3pPo

32KR

q

Point load – Pdev/w

Uniform Pð#Þ ¼ Po

2Rxo
Puniform

c ¼ Po

2Rxo

Sinusoidal Pð#Þ ¼ Po sin#�cosxoð Þ
2R sinxo�xocosxoð Þ Psinusoidal

c ¼ Po 1�cosxoð Þ
2R sinxo�xocosxoð Þ
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To obtain a global view of the stress field, two additional

radii are examined: one within the loaded arc (i.e.,

0 = 88.5�) and the other outside the loaded arc (i.e.,

0 = 60�). The results for the radius within the loaded arc

are plotted in Fig. 9. All three stresses exhibit a qualitative

behavior similar to that observed in Fig. 8. The main dif-

ference appears for the normal stresses in the immediate

vicinity of the contact arc. The stress distribution for the

uniform load and the parabolic and sinusoidal distributions

do not exhibit an extreme value and the respective values

keep decreasing up to the boundary of the disc (fulfilling

the boundary conditions). Again, for clarity reasons, the

areas of the graphs very close to the critical region

(r ? R) are shown in magnification in the embedded

figures.

With respect to the stress distribution along the 0 = 60�
radius, plotted in Fig. 10a, the main conclusion is that any

difference between the four loading types has been elimi-

nated. It is thus indicated that outside the loaded arc, the

influence of the exact load application mode is negligible

and any one of the existing solutions for the stress field

(ranging from the one introduced by Hondros (1959) to

more sophisticated ones (Wijk 1978; Markides et al. 2010,

2011) can be safely used. In other words, it can be stated

that no difference exists in this region of the disc between

the actual problem and its mathematical simulations.

As it is perhaps expected for the radius with 0 = 0�, the

situation is quite similar (Fig. 10b). No differences at all

can be observed between the various loading modes, and

therefore the simple solution for the point load (Eqs. 38,

39) appears adequate for practical purposes. Finally, the

polar distribution of the normal stress components rrr and

r00 along the arc with 85� \ 0\ 95� is plotted in Fig. 11

for the three load distributions (the point load is not

included for clarity reasons, since it provides extremely

higher absolute values). Recalling that on the disc’s

-500

-400

-300

-200

-100

0

100

0.00 0.01 0.02 0.03 0.04 0.05

r [m]

T
ra

ns
ve

rs
e 

(h
oo

p)
 s

tr
es

s 
[M

Pa
]

Uniform
Sinusoidal
Parabolic
Point Load

-299.5

+7.0

-449.3
-449.1

-500

-400

-300

-200

-100

0

100

0.048 0.049 0.050

-500

-400

-300

-200

-100

0

0.00 0.01 0.02 0.03 0.04 0.05

r [m]

R
ad

ia
l s

tr
es

s 
[M

Pa
]

Uniform

Sinusoidal

Parabolic

Point load

-299.4

-449.3
-449.1

-1400

-500

-400

-300

-200

-100

0

0.048 0.049 0.050

(a)

(b)

Fig. 7 The variation of the radial (a) and the transverse (hoop)

(b) stresses along the 0 = 90� radius for all four loading types studied

-100

-75

-50

-25

0
0.00 0.01 0.02 0.03 0.04 0.05

r [m]

S
ea

r 
st

re
ss

 [M
P

a]

-93.37
-93.39
-94.51

-98.21

Uniform

Sinusoidal

Parabolic

Point Load-100

-50

0

0.0450 0.0475 0.0500

-125

-100

-75

-50

-25

0

25

0.00 0.01 0.02 0.03 0.04 0.05

r [m]
T

ra
ns

ve
rs

e 
(h

oo
p)

 s
tr

es
s 

[M
P

a]

Uniform

Sinusoidal

Parabolic

Point Load
-124.41

-124.44

-123.87

-124.57

-150

-100

-50

0

0.0450 0.0475

-150

-100

-50

0
0.00 0.01 0.02 0.03 0.04 0.05

r [m]

R
ad

ia
l s

tr
es

s 
[M

P
a]

Uniform

Sinusoidal

Parabolic

Point load -133.40
-133.43
-149.67

-126.31

-200

-150

-100

-50

0

0.0450 0.0475

(a)

(b)

(c)

0.0500

0.0500

Fig. 8 The variation of the radial (a), the transverse (hoop) (b) and

the shear (c) stresses along the 0 = 87.9� radius (i.e., along the radius

ending at the end point of the contact arc) for all four loading types

studied

The Stress Field in a Standardized Brazilian Disc 153

123



periphery, i.e., for r = R it holds that rrr = r00, it can be

concluded that the differences between the sinusoidal and

parabolic distributions are negligible. On the other hand,

the abrupt changes of the stress distribution in the case of

the uniform load explains various erroneous results

observed in the immediate vicinity of the terminal points of

the loaded arc in all solutions adopting such a load type,

accompanied by the linear elasticity assumption. Clearly,

this inadequacy is cured by adopting either the sinusoidal

or the parabolic load distribution (which are in fact much

closer to reality).

4.3 Experimental Validation and Use

The accuracy of the solution proposed here was assessed

using the data from a short series of experiments carried

out according to the ISRM suggestions. The disc-shaped

specimens used were made from PMMA (E = 3.19 GPa

and m = 0.36). Their radius was R = 0.05 m and their

width w = 0.01 m. PMMA was chosen since it was a more
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or less linear elastic material (at least for loads not

approaching its fracture load) of isotropic and homoge-

neous nature, as opposed to most natural building stones.

During the experiments, the strain field was determined

using a 3D digital image correlation (DIC) system by

LIMESS.

Characteristic experimental results concerning the

transverse and radial strains along the 0 = 90� radius are

plotted in Fig. 12a for an external load Pdev = 20 kN. The

experimental data are shown for 0 \ r/R \ 0.95, since as

r/R ? 1 the accuracy of the DIC technique is downgraded

by optical effects due to the geometric discontinuity at

r = R (the disc is thinner than the jaws).

In the same figure, the theoretically calculated strain

components are plotted as obtained using Eqs. (33) and

Hooke’s generalized law. It is seen that the agreement

between theory and experiment is almost excellent for ehh

for the whole r/R region, while for err some discrepancies

appear as one approaches the specimen–jaw interface.

However, even these discrepancies (maximized somewhere

around r/R = 0.83) do not exceed 12% and could be

attributed both to local deviations of the material from

perfect linearity and also to the fact that the contact angle

for PMMA for Pdev = 20 kN is around 12�; in other words,

it is on the border line of validity of the small angle

assumption (Eq. 19). Similar conclusions have been drawn

from the comparison of the experimental data with the

theoretical ones along any other radius. In fact, as one

moves away from the critical region [0 - xo, 0 ? xo], the

agreement becomes progressively better, while for the

0 = 0� radius the two sets almost coincide with each other.

The polar variation of all three strain components for

0 \0\ 90� is plotted in the small figure embedded in

Fig. 12b. It is seen that while for 0\ 70� the strain com-

ponents vary monotonically and smoothly, for 0[ 75�
strong fluctuations appear. In this direction, the

70� \ 0\ 90� part of the graph is plotted magnified in

Fig. 12b together with the 0 = 78.12� line corresponding

to the specimen–jaw contact angle as determined from the

second of Eq. (15). It is seen that in a relatively narrow

band around this line, all three curves exhibit their local

extrema (points A, B, C) and points of inflection (points D,

E, F). It is reasonable to assume that at least some of these

points are somehow related to the end of the disc–jaw

contact region. Theoretically speaking, the end of the

contact region can be defined as the point where the contact

stresses are zeroed. Unfortunately from an experimental

point of view, such a direct definition does not exist

(stresses cannot be measured directly). Figure 12b offers a

solution to this problem, since it is clear that any one of the

points B, D or E (easily determined experimentally) can be

used as the point corresponding to the end of the contact

region, within a given degree of accuracy.

5 Conclusions

A closed form solution for the stress field developed in a

disc subjected to diametral compression was obtained.

The advantage of this solution (beyond the fact that it is

a full-field closed form one) is that the loading type

adopted (i.e., that of parabolic radial pressure distribu-

tion) approaches closely the actual loading form (as

obtained from the solution of the mixed fundamental

contact problem by Kourkoulis et al. 2011), i.e., the

cyclic distribution of radial pressure. In addition, the

load was applied along the actual contact length (instead

of along an arbitrarily predefined arc) developed between

the specimen and the metallic jaws, taking into account
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the inevitable deformability of both the specimen and the

jaw. Finally it is emphasized at this point that according to a

preliminary analysis, the displacement field due to the par-

abolic radial pressure distribution can be also obtained in

closed form contrary to that of the sinusoidal distribution.

Perhaps, the most important outcome of the present

study is that the dependence of the stress field components

upon the externally applied load is not linear even at the

center of the disc, contrary to what is predicted by previous

approaches where the contact length was assumed constant

(consider for example Eqs. (1–4) of Hondros’ (1959) pio-

neering paper). This can be easily concluded from

Eqs. (35, 36), since the factor Pc (directly related to the

external load Pdev) multiplying the expressions in square

brackets is not constant but depends among others on the

contact length ‘ (Eq. 18), which in turn depends on the load

level (Eq. 20). This non-linear variation of the stress field

on the load level is exhibited in Fig. 13a where the trans-

verse (tensile) stress developed at the disc’s center is

plotted versus the force, Pdev, externally exerted on the

disc, both according to Hondros’ familiar formula

rt = (Pdev/pRw) and also according to the present solution.

For the needs of the present solution, the specimen was

assumed to be made from PMMA, while the jaws from

steel. It is seen from Fig. 13a that the tensile fracture stress

of PMMA (estimated for the specific materials’ batch

around 37 MPa from direct tension tests) corresponds

according to the traditional formula to a load equal to

57.8 kN, while according to the present solution the

respective load is equal to about 64 kN. The difference

(exceeding 10%) is not negligible.

It can be argued of course at this point that PMMA is not

a material representative of the materials tested using the

Brazilian disc test. Clearly in case of geomaterials like

marble, the deviation from linearity is not so striking and

the traditional formula approaches experimental reality

accurately enough. If for example Dionysos marble is

considered (for which the maximum contact angle at the

fracture load is about 2.1�), the predictions for the maxi-

mum load according to the present solution and according

to the rt = (Pdev/pRw) formula almost coincide (the dif-

ference does not exceed 1%).

As one moves away from the disc’s center, the differ-

ence between the stresses developed in specimens made

from different materials according to the present solution

increase dramatically. This is indicated in Fig. 13b, where

the transverse (hoop) stress is plotted along the 0 = 90� for

two materials, i.e., for marble and PMMA, for a common

load level equal to 10 kN. It is seen that while for

r/R \ 0.75 the differences are negligible (embedded

figure), for r/R ? 1 they become enormous.

The results of the study indicate clearly that as long as

one remains at points relatively far from the vicinity of the

loaded portion of the disc’s periphery, all solutions for the

stress field provide more or less acceptable results, in case

of very brittle materials. This is true even for the gross

approximation of reality corresponding to the point load

simulation. However as one approaches the loading arc

(i.e., for r ? R and 90 - xo \ 0\ 90 ? xo), the stress

field strongly deviates both from that predicted by the point

load assumption and from that predicted for the uniform

load. Similarly for materials of decreased ductility, the

differences between existing approaches and that proposed

here cannot be ignored even for the stresses at the disc’s

center.
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Of course, it is to be mentioned that even in case of

loading distributions closely approaching reality (like the

sinusoidal and the parabolic ones), the absolute values of

the stresses developed in this region are very high, since

linear elastic behavior of both the specimen’s and the

jaw’s materials is assumed in the present solution.

Although failure of the specimen is not studied at all in

this paper, it is obvious and should be kept in mind that

for specific combinations of the mechanical properties of

the specimen and the jaw [especially those leading to

very small contact angles, as determined from the second

of Eqs. (15) or Eq. (20)], it is possible that premature

failure starts in the vicinity of the loaded arc (especially

close at its end points) undermining the validity of the

test.

Beyond the linear elasticity assumption friction was

ignored in the present study. This was done since existing

studies (Lavrov and Vervoort 2002; Markides et al. 2011)

indicate that the role of friction is again restricted very

close to the loaded arc and cannot influence the stress field

at the center of the disc. For a closed form solution of the

friction problem, one should first answer the question

concerning the type of friction developed at the jaw–

specimen interface. Clearly a Coulomb-type friction (pro-

portional to the normal radial pressure) is not adequate,

because it yields maximized friction at the symmetry point

of the load distribution where by intuition friction must be

zeroed (Hooper 1971) since the relative motion tendency is

eliminated due to symmetry. In any case, the fact that

friction is ignored does not deteriorate the value of the

present solution, which could be used (among others) for

the validation of numerical models that could explore in a

parametric manner various critical aspects of the Brazilian

disc test.

Appendix I

A Note on the Complex Potential in Case of Circular

Load Distribution

Consider the circular distribution:

PðsÞ ¼ 1

3R1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2
p

Under the obvious simplifications: ‘ � ‘0 ¼ Rsinxo; s �
s0 ¼ Rcos# (R = R1) becomes:

Pð#Þ ¼ 1

3K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2xo � cos2#

q

Equivalently, since cos# ¼ sþ sð Þ=2, it can be written

as:

PðsÞ ¼ 1

3K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2xo �

1

2
� s2

4
� 1

4s2

r
; s ¼ ei#:

Therefore on the loaded rims (in the fictitious f-plane) it

holds that:

rþqq ¼ �PðsÞ ¼ � 1

3K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2xo �

1

2
� s2

4
� 1

4s2

r
:

Inserting the above value for rþqq in the general formula:

UðfÞ ¼ 1

2pi

Z

c

rþqqðsÞ
s� f

ds� 1

4p

Z2p

0

rþqqð#Þd# Eq: 25ð Þ;

an integral appears of the form:

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � s2 � 1

s2

q

s� f
ds

A closed form solution for such an integral is not

available.

Appendix II

An Alternative Load Distribution

Taking the squares of both sides of the second of Eqs. (14),

for R1 = R, it follows that:

PðsÞ2 þ s
3RK

� �2

¼ ‘

3RK

	 
2

;

which represents the equation of a circle of radius ‘
3RK.

A parabola (red color in the following figure) of the

same area (demanded to insure static equivalence between

the circular and the parabolic radial pressure distributions)

that intersects the x-axis at the points � ‘
3RK is described by

the equation:

PðsÞ ¼ p‘
8RK

� p
8RK

s
‘

2

¼ p‘
8RK

1� s
‘

� �2
� �

:

See Fig. 14.

Fig. 14 Cyclic versus parabolic pressure distribution
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