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1 Introduction

Rocks with micro defects do not always behave elastically

but sometimes viscoelastically under dynamic loading.

Attenuation and dissipation occur when stress wave prop-

agates through an intact rock with micro defects, which

cannot be described using traditional elastic rock models

(Jaeger et al. 2007). A proper viscoelastic model of rocks is

thus important once the stress wave propagation caused by

earthquakes, blast, and impact forces is under concern.

A variety of equipments have been used to obtain the

dynamic properties of rocks, for example, drop towers,

Split Hopkinson Pressure Bars (SHPB), spalling and flyer

plates (ASM Int 2000). Among these set-ups, the SHPB has

been widely used to test the rock dynamic strength, rock

fracture, and fragmentation for their easy operation, good

repeatability, and accurate results (Li et al. 2005; Li and

Ma 2009; Zhou et al. 2010). However, most of these

dynamic experiments were conducted with the aims of

investigating the strain rate effect and rock failure behav-

ior. The pre-failure behavior of defected rocks under

dynamic conditions is still not clear. Although some vis-

coelastic constitutive models have been introduced in

analyzing stress wave amplitude attenuation, waveform

dissipation (Pyrak-Nolte et al. 1990; Jaeger et al. 2007; Li

et al. 2010), and mechanical energy dissipation (Perino

et al. 2010) in jointed rock mass, these viscoelastic models

were mainly proposed for the consideration of the joint

effect in jointed rock mass. There still lacks an effective

method to determine the viscosity and parameters in the

theoretical models for rocks with micro defects.

The present technical note introduces an experimental

method to determine the viscoelastic behavior of a sedi-

mentary rock. It is found that a modified three-element

viscoelastic model can best fit the experimental results. The

wave propagation coefficient (wave attenuation coefficient

and wave number) of the sedimentary rock are determined.

The frequency dependence of the viscoelastic storage

modulus and loss modulus is obtained. Discussions of the

rock viscosity and its effect on stress wave propagations in

the sedimentary rock are performed.

2 Dynamic Test of Sedimentary Rock

A series of impact tests as shown in Fig. 1 were carried out

to investigate the viscoelastic behavior of a sedimentary

rock. The sedimentary rock bar was cored from an under-

ground cavern construction site with a length of

129.80 cm, a diameter of 4.49 cm and a density of

2,681 kg/m3. The integrity and homogeneity of the sedi-

mentary rock bar were carefully examined and the end

surface of the bar was grinded by a grinding machine to

make a flat free end. A steel pendulum hammer was used to

generate a longitudinal pulse and the intensity of the pulse

load could be adjusted by changing the swinging angle of
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the hammer. A pair of rollers was designed to support the

sedimentary rock bar in order to eliminate the friction

effect from the supports. The longitudinal strain waves

were measured by using a pair of diametrically opposite

strain gauges located at the middle of the bar as shown in

Fig. 1. The strain time history was recorded at a time rate

of 1.00 9 107 s-1 (time resolution of 1.00 9 10-7 s),

which gave sufficient data points with sufficient accuracy

to perform a discrete Fourier transformation.

According to one-dimensional stress wave propagation

theory (Lundberg and Blanc 1988; Bacon 1998; Benatar

et al. 2003), once an impact is applied to the boundary at

x = 0, the attenuation coefficient a(x) and the wave

number k(x) can be deduced from the Fourier transfor-

mation of measured strain as a function of x and x as

a xð Þ ¼ �Re ln

F e2j jð Þ
F e1j jð Þ

� �

l

2
4

3
5 ð1Þ

and

k xð Þ ¼ �Im ln

F e2j jð Þ
F e1j jð Þ

� �

l

2
4

3
5 ð2Þ

respectively, where x is the angular frequency of a har-

monic component wave after Fourier transformation, e1 is

the first measured strain pulse in the increasing x direction

produced by the pendulum and e2 is the second measured

strain pulse in the decreasing x direction which is reflected

from the free surface at the distal end, l denotes the wave

traveling distance between these two pulses, F denotes the

treatment of applying the Fourier transformation, Re and

Im denote the real and imaginary parts of the complex

expression, respectively.

Consequently, the storage modulus E0 xð Þ and the loss

modulus E00 xð Þ of the rock are determined from Eqs. 1 and

2 as

E0 xð Þ ¼ qx2 k2 � a2ð Þ
k2 þ a2ð Þ2

ð3Þ

and

E00 xð Þ ¼ 2qx2ka

k2 þ a2ð Þ2
ð4Þ

respectively, where q denotes the rock density (Lundberg

and Blanc 1988; Bacon 1998; Benatar et al. 2003).

Equations 1–4 introduce the method to determine the

viscoelastic parameters experimentally. The attenuation

coefficienta(x), the wave number k(x), the storage mod-

ulus E0 xð Þ, and the loss modulus E00 xð Þ are derived from

the measured strain signals. The following Sect. 3 shows

that a modified three-element viscoelastic model can fit the

experimental results well and Sect. 4 discusses the effect of

the viscoelastic behavior on stress wave propagations.

3 A Modified Three-Element Viscoelastic Model

A modified three-element viscoelastic model is used to

simulate the viscoelastic behavior of the sedimentary rock.

The model as shown in Fig. 2 is an auxiliary spring in

parallel with a modified Maxwell element. The modified

Maxwell element consists of a spring with a frequency

dependent elastic constant Ev(x) and a dashpot with a

frequency dependent damping ratio gv(x), which is used to

describe the frequency dependent viscosity of rock. If the

Scheme for strain wave measurement 
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Fig. 1 Experimental setup for impact test
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Fig. 2 Modified three-element viscoelastic model
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strain-rate is sufficiently small, such as under fully relax-

ation, the Maxwell element term can be neglected. In that

case, the present model is degraded to the spring model

with an elastic constant Ea, which is the static elastic

modulus of the rock.

The constitutive equation of the present model can be

written as

Evr x; tð Þ þ gv

or x; tð Þ
ot

¼ EaEve x; tð Þ þ Ea þ Evð Þgv

oe x; tð Þ
ot

ð5Þ

where t is the time, r x; tð Þ and e x; tð Þ denotes stress and

strain in the time domain, respectively.

A Fourier transformation is applied to Eq. 5 to obtain

the constitutive equation in the frequency domain, Eq. 5 is

changed to

Ev þ ixgvð Þ~r ¼ EaEv þ ix Ea þ Evð Þgv½ �~e ð6Þ

where ~r x;xð Þ and ~e x;xð Þ denote the Fourier transforma-

tion of stress and strain, respectively.

Therefore, the complex dynamic modulus of the present

model is derived from Eq. 6 as

E� xð Þ ¼ ~r x;xð Þ
~e x;xð Þ ¼ Ea þ

x2s2
v

1þ x2s2
v

Ev þ i
xsv

1þ x2s2
v

Ev

ð7Þ

The retardation time of the Maxwell element is defined

as sv ¼ gv=Ev.

Thus, the relations between the real and imaginary parts

of the rock dynamic modulus versus the material constants

are given by

E0 xð Þ ¼ Ea þ
x2s2

v

1þ x2s2
v

Ev ð8Þ

and

E00 xð Þ ¼ xsv

1þ x2s2
v

Ev ð9Þ

respectively, where E0 xð Þ and E00 xð Þ are, respectively, the

dynamic storage modulus and the dynamic loss modulus

and they should equate to the dynamic moduli obtained by

experiments as given in Eqs. 3 and 4, respectively.

It is noticed from Eqs. 1–4, 8 and 9 that a(x), k(x),

E0 xð Þ, and E00 xð Þ all depend on the component wave fre-

quency x as well as the material constants Ea, Ev, gv.

The wave number k(x) is a monotonic continuous

function of the frequency. However, it is observed from

Eq. 2 that the imaginary part of the complex expression is

generally calculated in the range from 0 to 2p, which

makes the function discontinuous to the frequency during

numerical calculation. This error can be corrected by

adding multiples of ±2p when absolute jumps occur

(Bacon 1998).

4 Results and Discussions

4.1 Attenuation Coefficient

The attenuation coefficient and wave number versus the

component wave frequency are shown in Fig. 3. It can be

observed that both the attenuation coefficient and the wave

number are frequency dependent. The attenuation coeffi-

cient increases with the increase of the component wave

frequency, which reveals that the component wave with a

higher frequency will attenuate much faster than those with

lower frequencies. Because the stress wave can always be

regarded as the sum of a series of harmonic component

waves with different frequencies from low to high, it is

resulted that a stress wave dissipates when it propagates

through a viscoelastic sedimentary rock bar.

It is also seen from Fig. 3 that the wave number is

approximately proportional to the frequency. The phase

velocity of a stress wave can be defined as the ratio of the

wave frequency to the wave number. Therefore, it is

obtained that the stress wave attenuation is highly fre-

quency dependent, while the phase velocity is insensitive to

the component wave frequency.

It should be mentioned the previous investigations

(Kolsky 1963; Lundberg and Blanc 1988; Blanc 1993;

Bacon 1998; Benatar et al. 2003; Li and Ma 2009) have

showed that when the dimension of the pressure bar’s

cross-section is much smaller comparing to the wave-

lengths involved in the disturbance, the one-dimensional

wave propagation theory will be valid, and the 3D effect

can be neglected. In the present work, the pressure bar has

a uniform diameter of 4.49 cm, much smaller than the

wavelength which is about 1.76 m. Therefore, the wave

attenuation was caused by the viscosity of the material

rather than the lateral geometrical effect.
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4.2 Viscoelastic Moduli

The storage modulus and the loss modulus determined by

Eqs. 3 and 4 were plotted in Fig. 4. It can be observed that

there are three ranges for the loss modulus changing with

the component wave frequency. The loss modulus increa-

ses rapidly to a maximum value of E00max ¼ 44:6 GPa in the

first range up to approximately 0.03 kHz and then

decreases from the maximum value with increasing fre-

quency in the second range from 0.03 to approximately

1.60 kHz. In the third range when the frequency is larger

than 1.60 kHz, the loss modulus approximately keeps a

constant of 2.0 GPa with differences \1%. The storage

modulus is relatively small in the frequency range when the

frequency is smaller than 0.03 kHz, which increases rap-

idly as the corresponding frequency increasing. Then it

approaches a constant of about 71.6 GPa if the frequency is

larger than 1.60 kHz.

It is concluded that the two moduli are very sensitive to

the component wave frequency when it is less than about

1.60 kHz. Beyond this, the two moduli are less sensitive to

the component wave frequency although there are still

some small changes with the increase of the frequency.

When the frequency is sufficiently large, the storage

modulus and the loss modulus approach constants where E0

is approximately 71.6 GPa and E00 is about 2.0 GPa, the

storage modulus is much larger than the loss modulus.

Although the dynamic moduli are obtained in the fre-

quency range from 0 to 6.50 kHz in the present experi-

ments, their values in the higher frequency range can be

extrapolated based on the varying trend as shown in Fig. 4.

4.3 Parameters in the Viscoelastic Model

Experimental results of E0 xð Þ and E00 xð Þ shown in Fig. 4

are used to derive the parameters of the modified three-

element model as a function of the component wave

frequency x. The elastic modulus of the spring Ea in the

modified three-element model is assumed to be a constant

(Li et al. 2010), while gv and Ev are frequency dependent.

Trial values of Ea, gv and Ev were used to search for the

best fitting to the experiment results, the final values of Ea,

gv and Ev were determined when a negligible error was

calculated which is 0.1% in the present calculation.

Figure 5 shows the relations of the parameters of Ev(x),

gv(x) versus frequency x, in which the elastic modulus of

the spring is Ea = 55.8 GPa. It is seen that both Ev(x) and

gv(x) are highly frequency dependent, and they decrease

with the increasing component wave frequency x. Similar

to the dynamic viscoelastic moduli in Fig. 4, it can be

observed from the varying tendency of Ev(x), gv(x) that

although only the frequency range 0–6.50 kHz is calcu-

lated from the present experimental results, the parameters

of the present model can be extrapolated reasonably in the

higher frequency range.

4.4 Effect of Viscoelasticity on Stress Wave

Attenuation

A transmission coefficient is defined as the ratio of the

amplitude of the propagating wave over the amplitude of

the incident wave to evaluate the effect of rock visco-

elasticity on stress wave attenuation.

Without loss of the generality, define an incident wave

with a standard single half-cycle sinusoidal function as

einc ¼
I0 sin 2p� f0 � tð Þ when 0� t� 1=ð2f0Þ
0 others

�
ð10Þ

where f0 is the frequency of the incident wave, I0 is the

amplitude of the incident wave.

The relations of the transmission coefficient versus the

incident wave frequency f0 and the propagation distance D,

which is defined as the distance calculated between the

particle velocity peaks of the incident and propagating

Fig. 4 Dynamic complex modulus of sedimentary rock
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waves, are plotted in Fig. 6. Figure 6a and b show the

effect of the incident wave frequency f0 on the transmission

coefficient for fixed wave propagation distances and the

effect of wave propagation distance on the transmission

coefficient for fixed incident wave frequencies, respec-

tively. It is seen that the wave attenuation in the sedi-

mentary rock not only relates to the wave propagation

distance, but also highly depends on the input wave

frequency.

Figure 6a shows that the transmission coefficient

decreases as the incident wave frequency increase for a

given wave propagation distance. The stress wave with

higher frequency attenuates faster than those with lower

frequencies. The transmission coefficient in Fig. 6a also

verifies that the present modified three-element viscoelastic

model can be properly used to describe the frequency

dependent viscoelastic behavior of the sedimentary rock.

Figure 6b shows that the transmission coefficient

decreases as the wave propagation distance increasing for

an incident wave with a given frequency. However, the

decreasing rate of the transmission coefficient becomes

smaller with the increase of the wave propagation distance.

The transmission coefficient approaches 1 when the prop-

agation distance becomes zero. From Fig. 6b, it is noticed

again that the incident waves with higher frequencies

attenuate faster. When the incident wave frequency f0
approaches zero, the transmission coefficient approaches 1,

in which condition, the present three-element viscoelastic

model degrades to the traditional static elastic model as a

spring with the stiffness of Ea.

5 Conclusions

The present work experimentally investigated the dynamic

viscoelastic behavior of a sedimentary rock. Impact tests on

a slender rock pressure bar show that the sedimentary rock

exhibits obvious viscoelastic behavior under dynamic

loading. By applying one-dimensional stress wave propa-

gation theory, the wave propagation coefficients such as the

attenuation coefficient and the wave number of the sedi-

mentary rock are determined. These wave propagation

coefficients exhibit obvious frequency dependence. The

modified three-element viscoelastic model used in the

present study is capable in describing the frequency

dependence of the viscosity under dynamic loading.

The dynamic moduli of the sedimentary rock (both

storage modulus and loss modulus) are also highly fre-

quency dependent in the smaller frequency range. The

viscoelastic parameters of the modified three-element

model can be regarded as constants only if the frequency is

sufficiently large.

In addition, the traditional elastic rock model is a special

case of the present modified three-element viscoelastic

model when the wave frequency is sufficiently small.

Although only the compressive stress wave with a half

sinusoidal waveform was analyzed, other kinds of waves

(e.g. shear wave) with other waveforms (e.g. triangular

waveform, rectangular waveform) can also be adopted for

similar analysis.

The present model is applicable to practical problems,

such as to evaluate the peak particle velocity (PPV)

attenuation law in a rock blast scenario. In principle, an

incident wave with any waveform can always be regarded

as the sum of harmonic component waves by using the

Fourier transformation. The present modified three-element

viscoelastic model determines the complex moduli by

Eqs. 8 and 9 and then gives the attenuation coefficient and

the wave number of a defected rock. Therefore, the cor-

responding transmitted harmonic component waves at any
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position can be calculated. However, in a practical case

when a rock mass is under consideration, the distribution of

macro discontinuities such as rock joints and faults will

also affect stress wave propagation significantly, the

combined effect of micro defects and macro discontinuities

on stress wave propagation and their application to prac-

tical cases is not discussed in this note.
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