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Abstract A stress–strain relationship within porous rock

under anisotropic stress conditions is required for modeling

coupled hydromechanical processes associated with a

number of practical applications. In this study, a three-

dimensional stress–strain relationship is proposed for por-

ous rock under elastic and anisotropic stress conditions.

This relationship is a macroscopic-scale approximation

that uses a natural-strain-based Hooke’s law to describe

deformation within a fraction of pores and an engineering-

strain-based Hooke’s law to describe deformation within

the other part. This new relationship is evaluated using data

from a number of uniaxial and triaxial tests published in the

literature. Based on this new stress–strain relationship, we

also develop constitutive relationships among stress, strain,

and related stress-dependent hydraulic/mechanical proper-

ties (such as compressibility, shear modulus, and porosity).

These relationships are demonstrated to be consistent with

experimental observations.

Keywords Constitutive relationship � Coupled

hydromechanical processes � Stress-dependent properties �
Anisotropic stress conditions

1 Introduction

The stress–strain relationship is the most fundamental part

of constitutive relationships. According to Hooke’s Law,

which has been generally used to describe this stress–strain

relationship for elastic mechanical processes, a stress–

strain relationship should be linear. However, this linearity

does not always apply to every case, and related moduli are

stress-dependent for many applications (e.g., Cazacu 1999;

Lionço and Assis 2000; Brown et al. 1989; Johnson and

Rasolofosaon 1996; Brady 1969). A number of efforts have

been made to relate this stress-dependent behavior to the

microstructures of ‘‘cracks’’ in porous rock (Walsh 1965;

Nur 1971; Mavko and Nur 1978); an excellent review of

these efforts is provided in a chapter entitled ‘‘Microme-

chanical models’’ in Jaeger et al. (2007). Because it is

generally difficult to characterize small-scale structures

accurately and then relate their properties to large-scale

mechanical properties that are of practical interest, it is

desirable to have a macroscopic-scale theory that does not

rely on the detailed description of small-scale structures

and that can physically incorporate the stress-dependent

behavior of relevant mechanical properties. A theory of this

kind was recently developed within the framework of

Hooke’s law by Liu et al. (2009).

Liu et al. (2009) argued that the natural strain (volume

change divided by rock volume at the current stress state),

rather than the engineering strain (volume change divided

by the unstressed rock volume), should be used in Hooke’s

law for accurately modeling elastic deformation, unless the

two strains are essentially identical (i.e., as they might be

for small mechanical deformations). They indicated that a

rock body could be conceptualized into two distinct parts, a

‘‘hard’’ part and a ‘‘soft’’ part. The soft part corresponds to

a fraction of the pore volume subject to a relatively large
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degree of deformation (i.e., cracks or fractures). The com-

plexity of pore structures at different scales has been studied

in the literature (e.g., Mavko and Jizba 1991; Damjanac et al.

2007). Deformation is small in the hard part, and, thus,

engineering strain can still be used for that part. This

approach permits the derivation of constitutive relations

between stress and a variety of mechanical and hydraulic

rock properties. These theoretically derived relations are

generally consistent with empirical expressions and also

laboratory experimental data for sandstone rock (Liu et al.

2009). As shown later in this paper, the soft part plays an

important role in constitutive relationships and, without

considering it, a significant error would occur in describing

mechanical deformation. However, the work of Liu et al.

(2009) is limited to isotropic stress conditions corresponding

to the hydrostatic stress state; in reality, porous rock is

generally subject to complex, anisotropic stress conditions.

The major objective of this work is to extend the work of Liu

et al. (2009) to anisotropic stress conditions.

2 Stress–Strain Relationships

This section presents the theoretical development of the

stress–strain relationship under elastic and anisotropic

stress conditions. Comparisons between the relationship

and relevant experimental observations will be given in the

next section.

2.1 Stress–Strain Relationships Under Isotropic Stress

Conditions

The new stress–strain relationship to be developed herein is

based on the work of Liu et al. (2009) for isotropic (or

hydrostatic) stress conditions. For the sake of completeness,

the results of Liu et al. (2009) are briefly discussed here.

The major reasoning of Liu et al. (2009) is that the two

kinds of strains (natural and engineering) should be carefully

distinguished, and the natural (or true) strain should be used

in Hooke’s law for accurately describing material defor-

mation (Freed 1995). When a uniformly distributed force is

imposed on the surface of a homogeneous and isotropic

material body subject to elastic deformation, the natural (or

true)-strain-based Hooke’s law can be expressed as:

drh ¼ �K
dV

V
¼ K dev;t ð1Þ

where V is the total volume of the material body under the

current stress state, rh is the hydrostatic stress, K is the bulk

modulus, the subscript h refers to hydrostatic (or isotropic)

stress conditions, and ev;t is the natural volumetric strain. The

engineering-strain-based Hooke’s law can be expressed as:

drh ¼ �K
dV

V0

¼ K dev;e ð2Þ

where V0 is the unstressed bulk volume and ev;e is the

engineering volumetric strain. Note that the two strains

are practically identical for small mechanical defor-

mations.

Engineering strain has been exclusively used in the lit-

erature of rock mechanics, considering that the elastic

strain is generally small. However, Liu et al. (2009) indi-

cated that the strain could be considerably larger within

some portion of a rock body, because of its inherent het-

erogeneity, and they divide rock mass into two parts in

order to consider the impact of heterogeneity. As previ-

ously indicated, for the soft part, the natural (or true)-

strain-based Hooke’s law is applied. For the hard part, the

engineering-strain-based Hooke’s law is applied as a result

of small deformation. In this work, we also use subscripts

0, e, and t to denote the unstressed state, the hard part, and

the soft part, respectively. According to Liu et al. (2009),

the stress–strain relationship for porous and fractured rock

under the hydrostatic stress state can be expressed as:

� dV

V0

¼ ce

drh

Ke
þ ct exp � rh

Kt

� �
drh

Kt
ð3Þ

dV ¼ dVe þ dVt ð4Þ
V0 ¼ V0;e þ V0;t ð5Þ

ct ¼
V0;t

V0

ð6Þ

ce ¼ 1� ct ð7Þ

where Ke and Kt refer to the bulk modulus for the hard and

soft parts, respectively.

2.2 Stress–Strain Relationship Under Anisotropic

Stress Conditions

Without losing generality, we consider stress–strain rela-

tionships corresponding to the three principal stresses

(Fig. 1).

To extend the work of Liu et al. (2009), we further

assume that the principal strain resulting from the soft part

is a function of the principal stress along the same direction

only and has nothing to do with the other principal stresses.

The validity of this assumption will be evaluated by

comparing our results with experimental observations.

Following the procedure of Liu et al. (2009) to derive

Eq. 3, we derive the expressions for principal strains:

de1 ¼
c
0
e

Ee
½dr1 � mðdr2 þ dr3Þ� þ

c
0
t

Et
exp � r1

Et

� �
dr1
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de2 ¼
c
0

e

Ee
½dr2 � mðdr1 þ dr3Þ� þ

c
0

t

Et
exp � r2

Et

� �
dr2 ð8Þ

de3 ¼
c
0
e

Ee
½dr3 � mðdr1 þ dr2Þ� þ

c
0
t

Et
exp � r3

Et

� �
dr3

dei ¼ �
dli

li
0

ði ¼ 1; 2; 3Þ ð9Þ

dli ¼ dli
e þ dlit ði ¼ 1; 2; 3Þ ð10Þ

li
0 ¼ li

0;e þ li0;t ði ¼ 1; 2; 3Þ ð11Þ

c
0

t ¼
li
0;t

li0
ði ¼ 1; 2; 3Þ ð12Þ

c
0

e ¼ 1� c
0

t ði ¼ 1; 2; 3Þ ð13Þ

where r1; r2; r3 are the principal stresses, e1; e2; e3 are the

principal engineering strains, m is the Poisson ratio for the

hard part, c
0

t is the ratio of the soft part to the entire rock

body in one principal direction (under unstressed condi-

tions), li is the length in the ith principal direction, and Ee

and Et refer to Young’s (elastic) modulus for the hard and

soft parts, respectively.

The first term on the right-hand side of Eq. 8 results

from the hard part and the second term from the soft part.

Without the second part, our developed strain–stress rela-

tionship is reduced to the general engineering-strain-based

Hooke’s Law (Jaeger et al. 2007).

To derive the relationship between the ct and c
0

t for the

soft part, we consider a rock element and relate the volume

of the element V0 to li0 ði ¼ 1; 2; 3Þ by:

V0 ¼ ðl10;e þ l1
0;tÞðl2

0;e þ l20;tÞðl30;e þ l3
0;tÞ

¼ l10;el2
0;el30;e þ 3 l10l20l3

0c
0

tð1� c
0

tÞ
2

þ 3l1
0l2

0l3
0ðc

0

tÞ
2ð1� c

0

tÞ þ l1
0l2

0l3
0ðc

0

tÞ
3 ð14Þ

Because c
0
t is generally much smaller than 1, we can

neglect it in Eq. 14. Then, V0 can be written as:

V0 � l10;el2
0;el30;e þ 3 c

0

tl
1
0l2

0l3
0 ¼ V0;e þ 3 c

0

tV0 ð15Þ

Combining Eqs. 4, 5, 6, and 15 yields:

c
0

t ¼
ct

3
ð16Þ

It is well known that the engineering volumetric strain is

the sum of three principal strains (Jaeger et al. 2007):

dev ¼ �
dV

V0

¼ de1 þ de2 þ de3 ð17Þ

where ev is the volumetric strain. Combining Eqs. 8, 16,

and 17 yields:

dev¼
ð3�ctÞð1�2mÞ

3Ee
ðdr1þdr2þdr3Þþ

ct

3Et
exp �r1

Et

� �
dr1

þ ct

3Et
exp �r2

Et

� �
dr2þ

ct

3Et
exp �r3

Et

� �
dr3 ð18Þ

To make Eqs. 3 and 18 consistent under isotropic stress

conditions, we can relate the Young’s modulus Ee to the

bulk modulus Ke by:

Ke ¼
Eece

3ð1� 2mÞc0e
¼ Eeð1� ctÞ

3ð1� 2mÞð1� c0tÞ
ð19Þ

where ct and c
0

t are on the order of 10-1–10-2, much

smaller than 1 for most porous rocks and, therefore, can be

neglected in Eq. 19. In this case, we obtain:

Ke ¼
Ee

3ð1� 2mÞ ð20Þ

Furthermore, consistency between Eqs. 3 and 18

requires:

Kt ¼ Et ð21Þ

With the definitions given in Eqs. 19 and 21, the stress–

strain relationship of Liu et al. (2009), or Eq. 3, becomes a

special case of Eq. 18.

Based on Eq. 16 and the condition that strains are zero

under an unstressed state, principal strains can be solved

from Eq. 8 as:

e1 ¼
ð3� ctÞ

3Ee
½r1 � mðr2 þ r3Þ� þ

ct

3
1� exp � r1

Et

� �� �

e2 ¼
ð3� ctÞ

3Ee
½r2 � mðr1 þ r3Þ� þ

ct

3
1� exp � r2

Et

� �� �

e3 ¼
ð3� ctÞ

3Ee
½r3 � mðr2 þ r1Þ� þ

ct

3
1� exp � r3

Et

� �� �

ð22Þ

Note that the second term on the right-hand side is from the

soft part in Eqs. 8 and 22. That term, unlike the first term

resulting from the hard part, is only a function of the

corresponding principal stress and is not related to other

stresses. In other words, we ignore Poisson’s ratio for the soft

part in Eqs. 8 and 22.

Fig. 1 Principal stresses
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Our treatment of Poisson’s ratio, as the first step, is

considered to be a rough approximation, and further

research may be needed in order to refine the treatment (by

incorporating Poisson’s ratio for the soft part). Poisson’s

ratio v is defined as the negative of the ratio of the trans-

verse strain to the longitudinal strain, under conditions of

uniaxial stress (Jaeger et al. 2007). Although the use of

approximate or typical values in most rock mechanics

applications does not create significant problems, Poisson’s

ratio plays an undeniably important role in the elastic

deformation of rocks and rock masses subjected to static or

dynamic stresses. Furthermore, its effects emerge in a wide

variety of rock engineering applications, ranging from

basic laboratory tests on intact rocks to field measurements

for in situ stresses or the deformability of rock masses

(Gercek 2007). Poisson (1829) recommended a value for

the Poisson’s ratio of 1/4. To make Young’s, shear and

bulk, modulus of a material positive, the theoretical value

of Poisson’s ratio must lie in the range -1 and 1/2 (Jaeger

et al. 2007). According to Gercek (2007), the values of

Poisson’s ratio for many elements and materials are

between 0 and 0.5. For the case of rock, while one may

anticipate that the porosity of rock material will influence

the value of Poisson’s ratio, the geometry (size and shape),

orientation, distribution, and connectivity of pores are

expected to complicate such influence (Gercek 2007). In

this study, we assumed that only the hard part has Poisson’s

effect. As demonstrated later in this section, this assump-

tion may be adequate for most practical applications in

rock mechanics.

Equations developed in this section are for the principal

stress/strain coordinate system. The relationships between

stress and strain in a general coordinate system (x, y, z) can

be obtained from the equations in this section and are given

in the ‘‘Appendix’’.

3 Comparisons with Experimental Observations

To evaluate the validity of the developed stress–strain

relationship, we use it to fit the unconfined compression

tests presented by Corkum and Martin (2007) and Olalla

et al. (1999) for Opalinus Clay rock. In Corkum and Martin

(2007), rock samples (83 mm in diameter) were saw-cut

core from Boreholes BRA-1 and BRA-2, drilled with oil

and air drilling fluids, respectively (Corkum and Martin

2007). In Olalla et al. (1999), rock samples were 78 mm in

diameter.

To avoid (as much as possible) the non-uniqueness of

parameter values determined from curve fitting, we used a

simple procedure to estimate these values from stress–

strain data. As shown in Figs. 2 and 3, measured relations

between stress and strain are very well represented by a

straight line for relatively high stresses. The slope of the

straight line is used to determine Ee

c0e
because the exponential

terms on the right-hand side of Eq. 22 are negligible for

high stress values. The strain value at the intersection

between the straight line and the strain axis in Figs. 2 and 3

gives the c
0

e value, considering that the straight line rep-

resents the first term on the right-hand side of Eq. 22. The

above procedure and Eq. 3 allow for the direct determi-

nation of values for Ee; c
0

e; and c
0

t: The remaining parameter

Et can be estimated using a data point at relatively low

stress.

As indicted in Figs. 2 and 3, the data are in excellent

agreement with our theoretical results, suggesting that our

assumption regarding Poisson’s ratio for the soft part seems

to be adequate. Fitted parameter values are given in

Table 1. As an example, Fig. 4 also shows a comparison

between the hard- and soft-part strains for specimen 9963.

Several interesting observations can be made when
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Fig. 2 Matches between the

results calculated from Eq. 22

and experimental data from

unconfined compression tests on

claystone rock (Corkum and

Martin 2007)
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comparing theoretical with experimental results. (1) the

soft part has a larger strain than the hard part at an early

stage of uniaxial loading, even though the volumetric ratio

ct is much lower than that for the hard part (Fig. 4). It is

very likely that the stress sensitivity or the nonlinear

responses of the rock can be generally attributed to the

deformation or closure of some pores. (2) When applied

stress loading on the rock frame increases, the shape of the

soft-part pores changes, tending toward complete closure,

while the hard-part pores remain hard and resist closure.

Note that the Young’s (elastic) modulus for the soft part Et

ranges from 0.2 to 1.2 MPa, which is much smaller than

the Young’s (elastic) modulus for the hard part Ee; which

ranges from 2,164.5 to 3,345.1 MPa (Table 1). The dif-

ference between the Young’s (elastic) moduli indicates that

the soft part, as expected, is subject to relatively larger

deformation at low stress. (3) The estimated ct values for

the 11 clay rock samples under consideration range from

0.11 to 0.69%, smaller than the typical porosity of Opalinus

Clay rock (12–21%) (Corkum and Martin 2007). This

difference suggests that the soft part is only a small

percentage of the pore volume, if we assume that the soft

part results purely from the pore space. The nonlinear

response of porous rock mainly depends on the soft part

rather than the entire pore space.

MacBeth (2004) also found that the pressure-sensitivity

of sandstone resulted from the closure of intra- and inter-

granular cracks, small-aspect-ratio pore spaces, and broken

grain contacts, none of which consume any significant

portion of the pore volume. Shapiro and Kaselow (2005)

assumed that the main reason for load-induced changes in

the elastic properties of a rock is the load-induced defor-

mation of the pore space, and that a compliant part of the

pore space played the more important role. Our work is

generally consistent with these previous studies. However,

it differs from them in that we are directly based on the

reasoning that Hooke’s law should use natural strains, and

that rock mass can be divided into hard and soft parts. This

notion allows for the derivation of our stress–strain rela-

tionship, one that can be further used, in a systematic way,

to generate formulations for stress-dependent rock prop-

erties with physically defined parameters. In contrast, most

of the other studies focus primarily on some specific
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Fig. 3 Matches between the

results calculated from Eq. 22

and experimental data from

unconfined compression tests on

claystone rock (Olalla et al.

1999)

Table 1 Fitted parameter values from the experimental data for

Opalinus Clay rock

Specimen Ee (MPa) ce Et (MPa) ct

Bra2-2a 2,537.5 0.99310 0.3 0.00690

Bra1-7a 2,643.5 0.99490 0.7 0.00510

Bra1-3a 2,438.8 0.99640 1.2 0.00360

Bra2-2b 2,414.4 0.99817 1.0 0.00183

Bra1-7b 2,682.9 0.99892 0.7 0.00108

9949a 2,080.0 0.99520 0.3 0.00480

9963 2,448.8 0.99640 0.2 0.00360

9949b 2,326.9 0.99703 0.5 0.00297

9972 2,164.5 0.99793 0.6 0.00207

9957 2,804.4 0.99844 0.6 0.00156

9984b 3,345.1 0.99847 0.6 0.00153
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Fig. 4 Comparisons between the hard-part and soft-part strains for

specimen 9963
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mechanical parameters, rather than general stress–strain

relationships.

To further verify our stress–strain relationship, we

compare our theoretical results with data from triaxial

compression tests for shale rock (Xu et al. 2006) and

conglomerate rock (Hu and Liu 2004). These triaxial tests

involve a cylindrical rock sample subjected to confining

pressure rc (corresponding to axial strain ecÞ and a constant

confining pressure rc; and then controlled increases in r1

stresses. In these tests, the measured relationship between

deviatoric stress ðr1 � rcÞ and axial strain ðe1 � ecÞ are

generally reported and used in our evaluation. When the

confining pressure is constant, applying Eq. 22 yields:

e1 � ec ¼
ð3� ctÞ

3Ee
ðr1 � rcÞ

þ ct

3
exp � rc

Et

� �
1� exp � r1 � rc

Et

� �� �
ð23Þ

Figures 5 and 6 show the satisfactory matches of Eq. 23

with observed data from rock samples under triaxial

compression conditions. The curve-fitted results indicate

that the ct value ranges from 0.9 to 1.02% for the

conglomerate rock, and is 1.65% for the shale rock.

Because different rock samples are used for different stress

conditions during triaxial compression tests, some variation

in the fitted values for rock parameters are observed for a

given rock type. The fitted parameter values are listed in

Table 2.

To demonstrate the relative importance of the soft part

under a triaxially stressed state, Fig. 7 shows the results of

both the soft-part strain and the ratio of the soft-part strain

to the hard-part strain as a function of axial stress

(R denotes the ratio in the figure). The curve describes the

overall deformation behavior of the soft part, showing

a significant initial increase in strain with stress and then a

slower change later. The shale rock sample shows a

decrease in R with increased confining pressure at a given

deviatoric stress, and also with increased axial stress at a

given deviatoric stress. The conglomerate rock samples

show behavior similar to clay rock.
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Fig. 5 Matches between results

calculated from Eq. 23 and

experimental data from triaxial

compression tests on a

conglomerate rock (Hu and Liu

2004)
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4 Stress-Dependent Mechanical and Hydraulic Rock

Properties

Our newly developed stress–strain relationship allows the

derivation of a variety of additional constitutive relation-

ships among mechanical and hydraulic properties. This

section presents the stress dependence of porosity, com-

pressibility, and shear modulus as illustrative examples.

4.1 Porosity

Rock porosity is an important parameter for modeling

coupled hydrological and mechanical processes, because

flow processes occur in pore spaces. Following Liu et al.

(2009), we assume that the soft part is a fraction of pore

space. In this case, the rock porosity is defined by:

d/ ¼ dVp

V
¼ dVp

e þ dVt

V
� dVp

e þ dVt

V0

ð24Þ

where V is the bulk volume of rock and the superscript p

refers to pore space. Liu et al. (2009) indicated that, for the

purpose of calculating porosity, the total rock volume

V could be approximated with the unstressed volume V0,

because their differences are small in practical

applications.

For the hard part of the pore space, we have:

dVp
e

V0

¼
V

p
0;e

V0

dVp
e

Vp
0;e

¼ � u0 � ctð ÞCeðdr1 þ dr2 þ dr3Þ ð25Þ

To derive the above equation, we use the following

relations:

Vp
0;e

V0

¼ u0 � ct ð26Þ

and:

Ce ¼ �
1

3 Vp
0;e

oVp
e

ori
ði ¼ 1; 2; 3Þ ð27Þ

where Vp
0;e is the hard part of the pore volume under

unstressed conditions, /0 is the porosity under unstressed

conditions, and Ce is the pore compressibility (and

constant).

From Eq. 18 and its derivation procedure, it can be

mathematically shown that the porosity change owing to

the soft part, dVt

V0
; is the same as the last three terms on the

right-hand side of Eq. 18. Thus, based on Eqs. 24 and 25,

we have:

d/¼�ð/0�ctÞCeðdr1þdr2þdr3Þ

� ct

3Et
� exp �r1

Et

� �
dr1þexp �r2

Et

� �
dr2þexp �r3

Et

� �
dr3

� �

ð28Þ

Using the condition that the unstressed porosity is /0;

we obtain:

/ ¼ /0 � ct � u0 � ctð ÞCeðr1 þ r2 þ r3Þ

þ ct

3
exp � r1

Et

� �
þ exp � r2

Et

� �
þ exp � r3

Et

� �� �
ð29Þ

We use the experimental results from uniaxial strain

tests to verify our porosity–stress relation, or Eq. 29;

relevant data are very limited for more complex stress

conditions. Peng and Zhang (2007) reported a data set of

porosity (as a function of axial stress) under uniaxial strain

Table 2 Fitted parameter values from the experimental data

Sample Confining

pressure

(MPa)

Ee

(MPa)

ce Et

(MPa)

ct

Conglomerate

rock

2 4,670.0 0.9910 1.6 0.0090

3 4,670.0 0.9898 2.0 0.0102

4 4,670.0 0.9898 2.0 0.0102

Shale rock 0 6,100.0 0.9835 5.0 0.0165

4 6,100.0 0.9835 5.0 0.0165

7 6,100.0 0.9835 5.0 0.0165
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Fig. 7 Soft-part strain and

R (the ratio of the soft-part

strain to the hard-part strain) as

a function of axial stress at

different confining pressure for

shale rock
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conditions for two sandstone specimens cored 1,000 m

below the sea floor. Satisfactory matches between results

calculated from Eq. 29 and porosity data are shown in

Fig. 8. The curve-fitted results indicate that the value for ct

ranges from 1.77 to 2.04% for the sandstone samples under

consideration, and the Et value is 5.0 MPa (Table 3).

A similar relationship between stress and porosity was

also reported by Shapiro and Kaselow (2005). They

assumed that pore space contains the so-called compliant

porosity (similar to the ‘‘soft part’’ in this study) and also

derived a number of relationships between stress and

other mechanical properties under anisotropic conditions

(Shapiro and Kaselow 2005). However, several important

differences can be observed when comparing our theory

with theirs. First, our theory is based on the natural-strain-

based Hooke’s law, which is fundamentally different from

the physical origin of Shapiro and Kaselow (2005). Second,

their theory is theoretically valid only for rocks with

moderate or small porosity, on the order of 0.1 or less

(Shapiro and Kaselow 2005). As evidenced by the corre-

sponding derivation procedures, our results are not subject

to this limitation. Finally, the validity of Shapiro and

Kaselow’s (2005) theory requires that their compliant

porosity must be a very small part of the total porosity.

Again, our theory is not limited by this constraint, largely

because our theory has a different physical origin. It can be

applied to cases in which the soft porosity is large. For

example, Liu et al. (2009) successfully derived a relation-

ship between stress and fracture aperture. Unlike the ‘‘soft’’

part of porous rock, the ‘‘soft’’ part in a fracture corre-

sponds to a much larger portion of fracture voids than the

hard part (Liu et al. 2009).

4.2 Bulk Compressibility

Bulk compressibility is often used to quantify the ability of

a rock to reduce in volume with applied pressure. It may be

defined in different ways. In this study, we define the bulk

compressibility (associated with a principal stress riÞ by:

Ci ¼
oev

ori
ði ¼ 1; 2; 3Þ ð30Þ

Based on the above equation and Eq. 18, the

compressibility can be readily determined as:

Ci ¼
ð3� ctÞð1� 2cÞ

3Ee
þ ct

3Et
exp � ri

Et

� �
ði ¼ 1; 2; 3Þ

ð31Þ

Morgenstern and Tamuly Phukan (1969) investigated

the relationship between the modulus of compressibility

and stress for Bunter sandstone. We use the results from

unconfined compression tests of Morgenstern and Tamuly

Phukan (1969) to verify our compressibility–stress relation

(Eq. 30). For unconfined compression tests, we need only

to consider C1; because r2 ¼ r3 ¼ 0: As shown in Fig. 9,

our relationship can satisfactorily match the data, further

supporting our overall theoretical results developed for

anisotropic conditions. The estimated parameter values

for sandstone are presented in Table 4. Note that the

compressibility, C, defined by Morgenstern and Tamuly

Phukan (1969), is thrice the compressibility given in

Eq. 30. In Fig. 9, the former is used. Note that the value for

Et is generally consistent with that reported in Table 3 for

sandstone. However, the estimated ct values are much

lower than those given in Table 3, which may be a result of

rock porosity values in this part of the study being much

lower as well.

4.3 Shear Modulus

The shear modulus is an important parameter for various

engineering projects. It can be described as:
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Fig. 8 Matches between the

results calculated from Eq. 29

and experimental data from

uniaxial strain tests for two

sandstone specimens (Peng and

Zhang 2007)

Table 3 Fitted parameter values from the experimental data of

sandstone samples

Specimens /0 (%) Ce (10-4 MPa-1) Et (MPa) ct

1 36.75 5.11 5.0 0.0180

2 33.60 4.44 5.0 0.0144
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Kxy ¼
dsxy

dcxy

; Kxz ¼
dsxz

dcxz

; Kyz ¼
dsyz

dcyz

ð32Þ

where s and c are the shear stress and strain, respectively,

sand x, y, and z are spatial coordinates. Based on the above

definitions and the results from the ‘‘Appendix’’, the shear

modulus Kxy can be easily determined as:
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Fig. 9 Matches between the

unconfined compression test

data for Bunter sandstone

(Morgenstern and Tamuly

Phukan 1969) and the

compressibility–stress

relationship (Eq. 31). Imperial

units are used here because of

the source of the original data

Table 4 Fitted parameter values from the experimental data for

Bunter sandstone

/ð%Þ Ee (103 psi) ce Et (103 psi) ct

12.0 9,914.000 0.99914 0.575 0.00086

15.3 7,187.544 0.99827 0.575 0.00173

16.8 7,187.544 0.99827 0.575 0.00173
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Fig. 10 Shear modulus versus r1for three rock samples with the

parameter values given in Table 1

Kxy ¼
1

2ð3�ctÞð1þmÞ
3Ee

þ 2ct

3Et
exp � r1

Et

� �
dr1

dsxy
l1m1 þ exp � r2

Et

� �
dr2

dsxy
l2m2 þ exp � r3

Et

� �
dr3

dsxy
l3m3

h i ð33Þ

An Elastic Stress–Strain Relationship for Porous Rock Under Anisotropic Stress Conditions 397

123



Under the stress condition of r2 ¼ r3; one can obtain:

Kxy¼
dr1�dr2

2ð3�ctÞð1þmÞðdr1�dr2Þ
3Ee

þ2ct

3Et
exp �r1

Et

� �
dr1�exp �r2

Et

� �
dr2

h i

ð34Þ
Kxy ¼ Kyz ¼ Kxz ð35Þ

Stress-dependent data for the shear modulus are

relatively limited in the literature. Thus, we use the results

calculated from Eq. 34 (with estimated parameters from

Table 1) to demonstrate the stress-dependent behavior of

the shear modulus in Fig. 10. No comparison is made with

experimental observations. However, note that Eq. 34 is the

direct result of a mathematical transformation of Eq. 8. The

validation of Eq. 8, discussed above, is equivalent to that of

Eq. 34. For simplicity, we set r2 ¼ r3 ¼ 0 in Fig. 10,

which shows the strong stress dependence of the shear

modulus at low stress values.

5 Conclusions

In this paper, we describe the development of a stress–strain

relationship for porous rock under elastic and anisotropic

conditions. We showed that this new relationship could

satisfactorily represent a number of experimental observa-

tions. Furthermore, based on this relationship, we derived

additional constitutive relations between stress and selected

mechanical and hydraulic properties. The consistency

between this relationship and the gathered data further

supports its usefulness and validity. However, the work only

deals with isotropic rocks and further studies are needed for

structurally anisotropic rocks.
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Appendix: Coordinate System Transformation

The transformation of Eq. 22 from a principal stress/strain

coordinate system to a general coordinate system, as shown

in Fig. 11, yields (Poulos and Davis 1974):

ex ¼
ð3� ctÞ

3Ee
½rx � mðry þ rzÞ�

þ ct

3
1� exp � r1

Et

� �
l2
1 � exp � r2

Et

� �
l2
2 � exp � r3

Et

� �
l2
3

� �

ey¼
ð3�ctÞ

3Ee
½ry�mðrxþrzÞ�

þct

3
1�exp �r1

Et

� �
m2

1�exp �r2

Et

� �
m2

2�exp �r3

Et

� �
m2

3

� �

ez¼
ð3�ctÞ

3Ee
½rz�mðrxþryÞ�

þct

3
1�exp �r1

Et

� �
n2

1�exp �r2

Et

� �
n2

2�exp �r3

Et

� �
n2

3

� �

cxy ¼
2ð3� ctÞð1þ mÞ

3Ee
ðr2 � r1Þl2m2 þ ðr3 � r1Þl3m3½ �

þ 2ct

3
exp � r1

Et

� �
� exp � r2

Et

� �� �
l2m2

þ 2ct

3
exp � r1

Et

� �
� exp � r3

Et

� �� �
l3m3

cxz ¼
2ð3� ctÞð1þ mÞ

3Ee
½ðr2 � r1Þl2n2 þ ðr3 � r1Þl3n3�

þ 2ct

3
exp � r1

Et

� �
� exp � r2

Et

� �� �
l2n2

þ 2ct

3
exp � r1

Et

� �
� exp � r3

Et

� �� �
l3n3

cYz ¼
2ð3� ctÞð1þ mÞ

3Ee
½ðr2 � r1Þm2n2 þ ðr3 � r1Þm3n3�

þ 2ct

3
exp � r1

Et

� �
� exp � r2

Et

� �� �
m2n2

þ 2ct

3
exp � r1

Et

� �
� exp � r3

Et

� �� �
m3n3

ðA� 1Þ

where, li ¼ cosði; xÞ; mi ¼ cosði; yÞ; i ¼ 1; 2; 3; ni ¼ cos

ði; zÞ; i ¼ 1; 2; 3 and i ¼ 1; 2; 3 is the index for the

direction of the ith principal stress. The functions

cosði; xÞ; cosði; yÞ and cosði; zÞ are the cosine of the angles

between i and the x, y, and z directions, respectively, and

are given as:

Fig. 11 Stress components of any pane in the global coordinate

system
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