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Summary

This paper presents a combination of the Boundary Element Method (BEM) and the cracked ring
test to determine the mixed-mode (I–II) fracture toughness of anisotropic rocks. The proposed
BEM is used to accurately calculate the Stress Intensity Factors (SIFs) of a cracked anisotropic
plate. An anisotropic Hualien marble of Taiwan with a distinct foliation was selected to conduct
the cracked ring tests. Based on the measurement of the failure load during the test, the mixed-
mode (I–II) fracture toughness can be determined. Experimental results show that the radius ratio,
inclination and crack angle significantly affect the fracture toughness. The mode-I fracture tough-
ness (KIC) is shown to decrease with the increase in hole diameter, whereas the mode-II fracture
toughness (KIIC) increases with the increase in hole diameter when the crack angle � is equal to
0�. The experimental methods proposed have the advantage that the material is easily prepared,
the test procedure is simple, and the cost is low.

Keywords: Boundary element method, cracked ring test, fracture toughness, anisotropic rock,
stress intensity factor

Notation

ro, ri outer and inner radius of the ring specimen, respectively
a half crack length
b distance from the crack tip to the disk center
t specimen thickness
a=(ro� ri) normalized crack length
FI, FII normalized stress intensity factor of mode-I and mode-II, respectively
KI, KII stress intensity factor of mode-I and mode-II, respectively
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1. Introduction

In recent years, rock fracture mechanics has been applied as a possible tool for solving

a variety of rock engineering problems including rock cutting, hydro-fracturing, ex-

plosive fracturing, underground excavation, and rock mass stability. Rock fracture

mechanics is essentially extended from the Griffith theory (1920) and Irwin’s modifi-

cation (1957) which recognizes the importance of stress intensity near a crack tip.

Irwin introduced the Stress Intensity Factors (SIFs) to express the stress and displace-

ment field near a crack tip. The opening mode (mode-I), sliding mode (mode-II), and

tearing mode (mode-III) are three basic crack modes in a fracture process because of

the asymmetrical loading of the crack. The critical value of the SIFs is defined as the

fracture toughness when crack propagation initiates. In addition, the fracture tough-

ness can be defined as a measure of the ability of a material to resist the growth of a

preexisting crack under stress. Thus, rock fracture toughness is the most fundamental

parameter in fracture mechanics, and can be obtained by experimental procedures if

the SIFs are known for a given body under a certain type and magnitude of loading.

In the laboratory, there are many testing methods suggested by the International

Society for Rock Mechanics (ISRM) for determining the mode-I fracture toughness of

isotropic rocks, such as Chevron Bend (CB) specimens method, Short Rod (SR)

specimens method, Cracked Chevron Notched Brazilian Disk (CCNBD) method, and

Cracked Straight Through Brazilian Disk (CSTBD) method. Disadvantages of these

methods include complicated loading fixtures, complex sample preparation, limita-

tions due to the isotropic behavior of rocks and to mode-I conditions only. Recently,

investigations in linear elastic fracture mechanics have focused on fracture toughness

determination for mixed-mode (I–II) and mode-II. In engineering, we often need to

consider the problems of mixed-mode cracks. However, no suggested method has been

accepted as the standard by the ISRM, even though a broad range of testing methods

have been used to evaluate the fracture toughness parameters under mixed-mode (I–II)

loading.

The fracture of brittle materials occurs at a shear stress approximately equal to the

tensile fracture stress. Hence, it is important from an engineering point of view to

study the combined mode-I and mode-II (mixed-mode I–II) as described by Awaji

and Sato (1978), Atkinson et al. (1982), Lim et al. (1994), Chen et al. (1998b), and

Al-Shayea et al. (2000). Therefore, consideration of mixed-mode (I–II) becomes

significant in fracture toughness investigations. The major objective has been to de-

termine the SIFs near the crack tip based on linear elastic fracture mechanics.

Whittaker et al. (1992) concluded that the following methods can be used to de-

termine the SIF: (i) analytical methods (i.e. complex stress function, weight function,

KIC, KIIC fracture toughness of mode-I and mode-II, respectively
Wf failure loading
� half loading angle
� radius ratio (¼ inner to outer diameter of a ring specimen)
 inclination angle
� crack angle
� Poisson’s ratio
E Young’s modulus
G shear modulus
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stress concentration, integral transformation), (ii) numerical methods (i.e. finite ele-

ment, finite difference, boundary element, boundary collocation), (iii) experimental

methods (i.e. photo-elastic, compliance, acoustic emission), and (iv) estimative meth-

ods (i.e. superposition). The numerical method is most commonly used among these

methods.

The advantages of the boundary element method (BEM) over other numerical

solution procedures (Brebbia, 1978) include (i) a reduced set of equations and di-

mensionality of a problem, (ii) a relatively small amount of data, (iii) proper modeling

of infinite domains, (iv) no interpolation error inside the domain, and (v) a valuable

representation for stress concentration problems. In short, the formulation of BEM is

based on fundamental solutions that satisfy the governing differential equations, and

the approximate variables required only on the boundary of the numerical solution of

the boundary integral equation.

Application of the two-dimensional (2-D) elasticity problems of a circular ring

with a cracked straight through specimen has been an important topic in fracture

mechanics. Murakami and Nisitani (1975) presented the relationship of SIFs between

the radius ratio and the crack for the cracked hollow spin disk. Webster et al. (1983)

used BEM to determine the SIFs and the fatigue crack growth behavior in tubes.

Leung et al. (1999) calculated the SIFs using the superposition principle. Niu et al.

(2001) obtained the SIFs of mode-I and mode-II, and the energy release rate for crack

extension using finite element analysis.

These researchers investigated the SIFs for isotropic materials that cannot satisfy

the actual conditions for anisotropic rocks. For example, rock anisotropy affects the

stability of underground excavations, surface excavations and foundations in civil

engineering, the drilling, blasting and rock cutting in mining engineering, and is a

critical factor for controlling borehole deviation, stability, deformation and failure in

petroleum engineering. Therefore, to consider an anisotropic material is essential in

many rock engineering problems.

To easily obtain the cracked ring disk, we often drilled a hole in the center of the

Brazilian disk, and then generated the crack from the periphery of the hole. Specimens

consisted of anisotropic Hualen marble of Taiwan. A hole was drilled at the center of

each specimen to conduct the cracked ring test for measuring the fracture toughness.

The variations of the SIFs of the marble with the inclination angle, the crack angle and

the size of hole were investigated. In addition, the single domain BEM formulation

was used to calculate the SIFs of a cracked anisotropic plate. Then, a combination of

numerical analysis using the BEM and cracked ring specimen tests under diametral

loading is presented for determining the normalized fracture toughness of anisotropic

rocks under a mixed-mode (I–II) loading.

2. Theoretical background

2.1 Theoretical basis of the anisotropic disk specimen

Assume that a thin disk consists of a linearly elastic, homogeneous, continuous, and

transversely isotropic material. As shown in Fig. 1, the thickness and radius are t and

ro, respectively. Let x, y, and z be three axes of a global Cartesian coordinate system; x
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and y are horizontal and vertical axes, respectively, while z is defined as the coordinate

axis of the axle center direction of the disk.

Let Xn and Yn be the components of surface tractions in the x and y directions

applied to the disk boundary. In addition, define a local coordinate system x0, y0, and z0

as connected to the plane of transverse isotropy. The x0- and y0- axes are perpendicular

and parallel to the plane, respectively. The z0-axis coincides with the z-axis of the

global coordinate system. The inclination angle  is defined as the angle between the

plane of transverse isotropy and the x-axis.

Lekhnitskii (1957) assumed that the disk is as follows: (i) has a plane of elastic

symmetry parallel to its middle axis, (ii) is negligibly loaded by the surface forces of

its thickness direction, and (iii) deforms insignificantly, then a generalized plane stress

formulation of the disk can be used. The constitutive relation of the material in the x-y

plane is expressed as follows:

"x
"y
�xy

8<
:

9=
; ¼

a11 a12 a16

a12 a22 a26

a16 a26 a66

2
4

3
5 �

�x
�y
�xy

8<
:

9=
;; ð1Þ

where a11, a12, . . . , a66 are the compliance components dependent on the angle  and

the elastic constants in the x0, y0, z0 coordinate system.

Amadei (1996) proposed the following equations to calculate a11, a12, . . . , a66 for

the geometry of Fig. 1:

a11 ¼ sin4  

E0 þ cos4  

E
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4

1
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E0

� �
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E
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� �0
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;

a16 ¼ sin 2 
sin2  
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� �
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� �
;

Fig. 1. Coordinate systems of the anisotropic disk specimen
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a22 ¼ cos4  

E0 þ sin4  

E
þ sin2 2 

4

1
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2�0

E0

� �
;

a26 ¼ sin 2 
cos2  

E0 � sin2  
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cos 2 

� �
; ð2Þ

a66 ¼ sin2 2 
1

E0 þ
1

E
þ 2�0

E0

� �
þ cos2 2 

G0 :

where E, E0, �, �0, and G0 are five independent elastic constants of a transversely

isotropic material. E and E0 are the Young’s modulus for tension (or compression) in

the plane of transverse isotropy (y0 or z0 direction) and in a direction normal to it (x0

direction), respectively; � and �0 are the Poisson’s ratios characterizing the lateral

strain response in the plane of transverse isotropy to a stress acting parallel and normal

to it, respectively. The G0 is the shear modulus normal to the plane of transverse

isotropy. Furthermore, the shear modulus G in the plane of transverse isotropy is

equal to E=(2(1þ �)).

If we neglect the body forces, the equilibrium equations are satisfied identically by

introducing the Airy stress function F as follows:

�x ¼
@2F

@y2
; �y ¼

@2F

@x2
; �xy ¼ � @2F

@x@y
: ð3Þ

The compatibility equation is given by

@2"x
@y2

þ @2"y
@x2

¼ @2�xy
@x@y

ð4Þ

Substituting Eqs. (1) and (3) into the Eq. (4), the strains "x, "y, �xy must satisfy the

following differential equation:

a22

@4F

@x4
� 2a26

@4F

@x3@y
þ ð2a12 þ a66Þ

@4F

@x2@y2
� 2a16

@4F

@x@y3
þ a11

@4F

@y4
¼ 0; ð5Þ

the general solution of Eq. (5) depends on the roots, �i (i¼ 1�4), of the following

characteristic equation:

a11�
4 � 2a16�

3 þ ð2a12 þ a66Þ�2 � 2a26�þ a22 ¼ 0: ð6Þ

Lekhnitskii (1963) concluded that the roots of Eq. (6) are always either complex or

imaginary. Let �1, �2 be the distinct roots of the characteristic equation, and ���1, ���2

their respective conjugate roots. As shown by Lekhnitskii, the first derivatives of F by

x and y can be shown to be

@F

@x
¼ 2Re½	1ðz1Þ þ 	2ðz2Þ�;

@F

@y
¼ 2Re½�1	1ðz1Þ þ �2	2ðz2Þ�; ð7Þ

where Re denotes the real part of the complex expression in the brackets, and 	kðzkÞ
(k¼ 1, 2) are analytical functions of the complex variables zk ¼ xþ �ky, where �k are

the roots of Eq. (6).
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Combining Eqs. (3) and (7), the general expressions for the stress components

under the loading with the disk specimens of the transverse isotropy are obtained as

follows:

�x ¼ 2Re½�2
1	

0
1ðz1Þ þ �2

2	
0
2ðz2Þ�;

�y ¼ 2Re½	01ðz1Þ þ 	02ðz2Þ�;
�xy ¼ �2Re½�1	

0
1ðz1Þ þ �2	

0
2ðz2Þ�; ð8Þ

where 	0kðzkÞ (k¼ 1, 2) are the first derivatives of 	kðzkÞ with respect to zk.

Consider a uniform radial pressure �r ¼ P applied over the arcs 
=2�
�<!<
=2 þ � and 3
=2 � �<!< 3
=2 þ �, as shown in Fig. 1. The stress dis-

tribution can be approximated by the following Fourier series in cos ðn!Þ and

sin ðn!Þ:

�r ¼ A0 þ
XN�1

n¼1

ðAn cos n!þ Bn sin n!Þ; ð9Þ

with

A0 ¼ 2P�=
; An ¼
2P




�
1 þ ð�1Þn

n

�
cos

n


2
sin n�; Bn ¼ 0: ð10Þ

where n varies between 1 and N � 1; ! is an angle defined in Fig. 1 which varies

between 0 and 2
; and � is the half loading angle.

For the boundary conditions defined by Eqs. (9) and (10), no shear stress is applied

along the boundary of the disk. The surface tractions Xn, Yn depend on P only, and can

be expressed as a Fourier series. Details of the calculation procedure for boundary

conditions along the outer contour of the disk can be found in the paper of Chen et al.

(1998a). Figure 1 shows that the loading angle is 2�, and P is equal to W=ð2�rotÞ
where W is the segmental load applied on the disk in the y direction.

The components of the stress field at any point ðx; yÞ within the disk can be written

as follows (Amadei et al., 1983):

�x ¼
W

2
rot
qxx; �y ¼

W

2
rot
qyy; �xy ¼

W

2
rot
qxy; ð11Þ

where qxx, qyy, and qxy are three stress concentration factors, and they are dependent on

the modulus of the elastic constants (E, E0, �, �0, and G0), the loading angle (2�), and

the inclination angle ( ).

Substituting Eq. (11) into Eq. (1), we obtain

2
rot

W

"x
"y
�xy

8<
:

9=
; ¼

a11 a12 a16

a12 a22 a26

a16 a26 a66

2
4

3
5 �

qxx
qyy
qxy

8<
:

9=
;: ð12Þ

2.2 2-D Boundary element analysis

From the theory of anisotropic linear elasticity in Sect. 2.1, the stress and displace-

ment fields in a two-dimensional linear elastic, homogeneous and anisotropic medium
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can be formulated by two analytical functions 	kðzkÞ, where the complex variables

zk ¼ xþ �ky (k¼ 1, 2), and �k are the roots of a characteristic equation, as shown in

Eq. (6).

The general solution for the stress as shown in Eq. (8), and displacement compo-

nents are (Sih et al., 1965):

u ¼ 2Re½P11	1ðz1Þ þ P12	2ðz2Þ�;
v ¼ 2Re½P21	1ðz1Þ þ P22	2ðz2Þ�;

ð13Þ

where

P1k ¼ a11�
2
k þ a12 � a16�k;

P2k ¼ a12�k þ a22=�k � a26 ðk ¼ 1; 2Þ:
ð14Þ

Sollero and Aliabadi (1993) suggested that the fundamental solution (called

Green’s function) of the tractions T�ij and the displacements U�
ij can be given by the

following Eqs. (15) and (16) when a source point (defined as s in Fig. 1) of the

centralized load is applied on the infinite anisotropic plate, z0
k ðz0

k ¼ x0 þ �ky
0Þ:

T�ij ðzk;z0
kÞ¼ 2Re½Qj1ð�1nx�nyÞAi1ðz1 � z0

1Þ
�1 þQj2ð�2nx�nyÞAi2ðz2 � z0

2Þ
�1�; ð15Þ

and

U�
ij ðzk; z0

kÞ ¼ 2Re½Pj1Ai1 lnðz1 � z0
1Þ þ Pj2Ai2 lnðz2 � z0

2Þ� ði; j ¼ 1; 2Þ; ð16Þ

where nx and ny are the outward normal vectors of the field points zk, and Q11 ¼ �1,

Q12 ¼ �2, Q21 ¼ Q22 ¼ �1. The complex coefficients Ajk are solutions of the follow-

ing equation

1 �1 1 �1

�1 ��1 �2 ��2

P11 �P11 P12 �P12

P21 �P21 P22 �P22

2
664

3
775

Aj1

Aj1

Aj2

Aj2

2
664

3
775 ¼

�j2=ð2
iÞ
��j1=ð2
iÞ

0

0

2
664

3
775; ð17Þ

where �jk is the Kronecker’s delta function.

By the BEM formulation of Pan and Amadei (1996) for a cracked anisotropic

material, the displacement integral equation is applicable to the outer boundary only,

and its integral equation can be written as follows:

Cijðz0
k;BÞujðz0

k;BÞ þ
ð
�B

T�ij ðzk;B; z0
k;BÞujðzk;BÞd�ðzk;BÞ

þ
ð
�C

T�ij ðzk;C; z0
k;BÞ½ujðzk;CþÞ � ujðzk;C�Þ�d�ðzk;CÞ

¼
ð
�B

U�
ij ðzk;B; z0

k;BÞtjðzk;BÞd�ðzk;BÞ z0
k;B 2�B; ð18Þ

where i; j; k ¼ 1; 2; T�ij and U�
ij are the Green functions of tractions and displacements;

tj and uj are the boundary tractions and displacements; Cij are quantities that depend

on the geometry of the boundary and are equal to �ij=2 for a smooth boundary; and zk
and z0

k are the field and source points on the boundary of the domain � (� ¼ �B [ �C).

�B and �C are the no-crack boundary and crack surface, respectively. The subscript B
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(or C) denotes the outer boundary (or the crack surface). And the other subscript Cþ
(or C�) indicates the positive (or negative) side of the crack.

In addition, the traction integral equation is collocated on one side of the crack

surface only, and its result is shown as follows:

0:5tjðz0
k;CÞ þ nmðz0

k;CÞ
ð
�B

ClmikT
�
ij;kðz0

k;C; zk;BÞujðzk;BÞd�ðzk;BÞ

þ nmðz0
k;CÞ

ð
�C

ClmikT
�
ij;kðz0

k;C; zk;CÞ½ujðzk;CþÞ � ujðzk;C�Þ�d�ðzk;CÞ

¼ nmðz0
k;CÞ

ð
�B

ClmikU
�
ij;k �ðz0

k;C; zk;BÞtjðzk;BÞd�ðzk;BÞ z0
k;C 2�Cþ; ð19Þ

where Clmik is the fourth-order stiffness tensor, nm is the unit outward normal to the

contour path, and the gradient tensors T�ij;k and U�
ij;k denote the derivative of T�ij and U�

ij

on the k direction.

For source points on the boundary �, neglecting body force, the traditional dis-

placement boundary integral equation for linear elasticity can be expressed as:

cijðz0
kÞujðz0

kÞ þ
ð
�

T�ij ðzk; z0
kÞujðzkÞd�ðzkÞ ¼

ð
�

U�
ij ðzk; z0

kÞtjðzkÞd�ðzkÞ: ð20Þ

Via the discretization equation, a linear system of algebraic equations can be

solved for the unknown displacements uj and tractions tj on the boundary. The

Cauchy singularity in boundary integral equation can be kept away from the rigid

body motion method.

When the source points are located on the domain �, substituting the unknown

(uj, tj), we obtain the boundary in Eq. (21). Thus, the displacements uj are obtained at

any internal point of the domain.

ujðz0
kÞ ¼

ð
�

U�
ij ðzk; z0

kÞtjðzkÞd�ðzkÞ �
ð
�

T�ij ðzk; z0
kÞujðzkÞd�ðzkÞ: ð21Þ

Substitution of each displacement uj of the intra-domain into the compatibility

equation gives each strain intra-domain. And via the constitutive law relationship with

stress–strain, each stress of the intra-domain is obtained.

2.3 Stress intensity factor and fracture toughness

In the applied mixed-mode load, the SIF of the crack tip depends on the relative crack

displacement (RCD). Three node quadrilateral elements are employed to discretize

both the boundaries and crack surfaces. The RCD on the crack surfaces can be

approximated by their nodal values, and total displacement on each element can be

expressed as follows:

�ui ¼
X3

k¼1

	k�uki ; ð22Þ

where the subscript i ð¼ 1; 2Þ denotes the RCD component and the superscript

k ð¼ 1; 2; 3Þ denote the RCD at node positions �¼�2=3, 0, 2=3, respectively, when
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the crack tip element at �¼�1. The shape functions 	k are introduced by Pan (1997)

as follows:

	1 ¼ 3
ffiffiffi
3

p

8

ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p
½5 � 8ð� þ 1Þ þ 3ð� þ 1Þ2�;

	2 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p
½�5 þ 18ð� þ 1Þ � 9ð� þ 1Þ2�;

	3 ¼ 3
ffiffiffi
3

p

8
ffiffiffi
5

p
ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p
½1 � 4ð� þ 1Þ þ 3ð� þ 1Þ2�:

ð23Þ

Assume that the symmetric plane is normal to the z-axis (or z-axis is a two fold

symmetry axis). For this case, the relation of the RCDs at a distance b behind the crack

tip and the SIFs can be found as (Sih et al., 1965; Sollero and Aliabadi, 1993):

�u1 ¼ 2

ffiffiffiffiffi
2b




r
ðH11KI þ H12KIIÞ;

�u2 ¼ 2

ffiffiffiffiffi
2b




r
ðH21KI þ H22KIIÞ;

ð24Þ

where b is the distance from the crack tip to the disk center, and Hij is material

coefficient related to the following material elastic parameters in Eq. (25) (Pan and

Amadei, 1996):

H11 ¼ Im

�
�2P11 � �1P12

�1 � �2

�
; H12 ¼ Im

�
P11 � P12

�1 � �2

�
;

H21 ¼ Im

�
�2P21 � �1P22

�1 � �2

�
; H22 ¼ Im

�
P21 � P22

�1 � �2

�
;

ð25Þ

where �i (i¼ 1, 2) are two roots of the characteristic Eq. (6). Pij is the relative function

of �i and the compliance components (a
11

, a
12

, a
16

, a
22

, a
26

); Im denotes the imaginary

part of a complex variable or function.

On the crack tip element, the RCD from the numerical calculation Eqs. (22) and

(23) to the analytical Eqs. (24) and (25), then can be used to solve the SIFs of mode-I

and mode-II (KI and KII). In this study, the fracture mode-I and mode-II are defined to

be opening and sliding modes, respectively (Fig. 2). And the sign could be positive in

compression (crack closing) or negative in tension (crack opening). Consider a

cracked ring specimen under diametrical arc loading, as shown in Fig. 3. Let the inner

radius, half crack length and distance from the crack tip to the disk center of the ring

specimen be ri, a and b, respectively. Then, the normalized SIFs (FI and FII) can be

calculated as follows (Chen et al., 1998b):

FI ¼
KI

K0

; FII ¼
KII

K0

; ð26Þ

where the regular factor K0 ¼ W
ffiffiffiffiffiffi

b

p
=
rot.

From Eq. (26), the maximum failure loading Wf is recorded, and the critical SIF of

mode-I and mode-II (KIC and KIIC) can then be determined to denote the fracture

toughness of the mixed-mode (I–II).
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3. Numerical examples of SIFs for isotropic material

The geometry of the problems analyzed here is that of a cracked ring disk of radius ro
and thickness t with a crack of length a loaded by a pair of diametrical loading (Fig. 3).

Outer and inner boundaries and the crack surface are discretized with 30, 10 continu-

ous and 10 discontinuous quadratic elements, respectively (Fig. 4).

The Green’s function and the particular solution were substituted into the bound-

ary integral Eqs. (18–21), and the whole procedures were programmed in FORTRAN

language to automatically determine the SIFs of the disk problems. In this section,

three numerical examples are presented to verify the proposed BEM program.

Example 1. Isotropic Brazilian disk with a central crack

In this example, an isotropic cracked Brazilian disk with a central slant crack under a

diametric loading is considered as shown in Fig. 5. In the boundary element division,

Fig. 2. The failure models of mode-I and mode-II

Fig. 3. Cracked ring specimen of anisotropic rock under diametral loading
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the outer boundary and the crack surface are discretized with 28 continuous and 10

discontinuous quadratic elements, respectively. The normalized SIFs analytically de-

termined by Atkinson et al. (1982) using a continuous distribution dislocation method

and simulated by Chen et al. (1998b) using the BEM combined with the J-integrate

method were used to investigate the correctness of the new proposed BEM program.

Two cases are discussed as follows: (i) the normalized crack length a=ro is equal to

0.5, and the crack angle � varies between 0 and 90�. As shown in Table 1, the

simulation results correlate well with Atkinson’s and Chen’s solutions. (ii) The nor-

malized crack length a=ro varies between 0.1 and 0.7 when the crack angle is equal to

45�. Table 2 shows the normalized SIFs of cracks having different orientations from

vertical to horizontal, and different lengths from short to long.

Fig. 4. Boundary element meshes for cracked ring disk

Fig. 5. A cracked Brazilian disk with inclined angle of crack � for a=ro¼ 0.5
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Example 2. Isotropic ring disk with a single crack

The second example considers a ring disk with a vertical radial crack under a diamet-

ric loading, as shown in Fig. 6. The outer, inner boundaries and the single crack

surface are discretized with 30, 10 continuous and 5 discontinuous quadratic elements,

respectively (see Fig. 4). In this case, the radius ratio �, defined as ri=ro, is fixed to be

Table 1. Normalized SIFs of isotropic Brazilian disk with the crack angle � (a=ro¼ 0.5)

� (deg) Atkinson et al. (1982) Chen et al. (1998b) This study

KI=K0 KII=K0 KI=K0 KII=K0 KI=K0 KII=K0

0 �1.387 0 �1.339 0 �1.343 0
11.25 �0.970 1.340 �0.960 1.275 �0.952 1.281
22.5 �0.030 2.113 �0.074 2.061 �0.056 2.050
33.75 0.946 2.300 0.903 2.275 0.915 2.262
45 1.784 2.132 1.737 2.103 1.749 2.098
56.25 2.446 1.728 2.377 1.711 2.395 1.714
67.5 2.885 1.188 2.826 1.197 2.851 1.202
78.75 3.127 0.604 3.092 0.614 3.123 0.617
90 3.208 0 3.180 0 3.213 0

Table 2. Normalized SIFs with the normalized crack length (�¼ 45�)

a=ro Atkinson et al. (1982) Chen et al. (1998b) This study

KI=K0 KII=K0 KI=K0 KII=K0 KI=K0 KII=K0

0.1 1.035 2.010 1.020 1.968 1.018 1.965
0.2 1.139 2.035 1.116 1.995 1.116 1.992
0.3 1.306 2.069 1.272 2.036 1.277 2.029
0.4 1.528 2.100 1.484 2.069 1.492 2.065
0.5 1.784 2.132 1.737 2.103 1.749 2.098
0.6 2.048 2.200 2.020 2.148 2.039 2.139
0.7 – – 2.337 2.213 2.364 2.224

Fig. 6. A ring specimen with crack length a for �¼ 0.5
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0.5, and the normalized crack length a=ðro � riÞ varies from 0.2 to 0.8. A comparison

of the normalized SIF of mode-I determined by Ahmad and Ashbaugh (1982) using a

finite element and by the proposed BEM in this study is shown in Table 3. The

calculation results of our BEM program agree well with those determined by

Ahmad and Ashbaugh (1982).

Example 3. Cracked isotropic ring disk

In the final example, consider a ring disk with a central straight notch under diametric

loading, as shown in Fig. 7. The crack is described by 10 discontinuous quadratic

elements with a total of 30 crack nodes. The normalized crack length a=ðro � riÞ is

fixed to be 0.27 where a and ri are 11 mm and 1.5 mm, respectively. Two normalized

SIFs calculated with the BEM numerical solution are compared with the analytical

solution proposed by Al-Shayea et al. (2000) and Atkinson et al. (1982).

In the research of Al-Shayea et al. (2000) a hole was drilled in the center of the

Brazilian disk, and then the wire saw could easily pass through the drilled hole to

generate the notch. However, the hole results in a singularity and must be neglected in

the analytical solution. On the contrary, our numerical method can solve the problem

Table 3. Normalized SIF of mode-I (KI=K0) with the normalized crack
length (�¼ 0.5)

a=(ro� ri) Ahmad and
Ashbaugh (1982)

This study

0.2 2.447 2.417
0.3 2.618 2.638
0.4 2.673 2.668
0.5 2.679 2.682
0.6 2.616 2.610
0.7 2.541 2.500
0.8 2.411 2.368

Fig. 7. A ring specimen with inclined angle of crack � for a=(ro� ri)¼ 0.27
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including a hole. Table 4 shows that SIFs are relatively big when the hole exists. This

case indicated that the influence of a hole is noticeable.

In addition, a pure tensile stress results along the x direction, when �¼ 0�, as the

stress along the y direction vanishes. On the other hand, a pure compressive stress is

present along the y direction when �¼ 90�. Consequently, the cracked isotropic disk

can avoid the bi-axial state of stress in Brazilian disk and can accurately measure KI

with pure tensile or compressive stress.

4. Experimental investigation

4.1 Rock description

A Hualien marble from Eastern Taiwan with clear white–black foliations was selected

to conduct both Brazilian and cracked ring tests. This marble is composed primarily of

Table 4. Normalized SIFs with the crack angle � (a=(ro� ri)¼ 0.27)

� (deg) Al-Shayea et al. (2000) Atkinson et al. (1982) This study

KI=K0 KII=K0 KI=K0 KII=K0 KI=K0 KII=K0

0 �1.000 0 �1.136 0 �1.309 0
15 �0.682 1.085 �0.750 1.214 �0.926 1.231
30 0.137 1.791 0.200 1.956 0.099 1.710
45 1.137 1.931 1.306 2.069 1.433 1.928
60 2.000 1.554 2.246 1.656 2.437 1.640
75 2.545 0.847 2.850 0.906 3.070 1.028
90 2.726 0 3.056 0 3.153 0

Fig. 8. Polarized micrograph of the Hualien marble
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dolomite and calcite, with an average grain size of 0.3 mm, as shown in Fig. 8. The

polarized micrograph illustrates a thin cross section of fine rulings from deformational

intra-crystalline gliding and preferred orientation. Because the marble exhibits a series

of thin and parallel layers, it was assumed to be transversely isotropic, with the plane

of transverse isotropy parallel to the apparent direction of rock symmetry.

Table 5 gives the physical properties of the marble including dry water content of

0.12%, specific gravity of 2.66, porosity of 0.24%, uniaxial compressive strength of

84.69 MPa ( ¼ 0�) and 56.7 MPa ( ¼ 90�). The tensile strength is 7.27 MPa for

isotropic marble, and it is 11.07 MPa ( ¼ 15�), 7.47 MPa ( ¼ 45�) and 4.56 MPa

( ¼ 75�) for transversely isotropic marble.

4.2 Sample preparation

Two types of experiments were conducted with the core samples taken from the blocks

of marble.

In the first type of experiment, the elastic constants of the marble were deter-

mined by Brazilian test. A 74 mm diameter coring set was used to generate the

samples. The cores were sliced and grinded into circular disks 11 mm thick using

a high-speed circular saw and a grinding machine. Specimen preparation followed

the ISRM Suggested Methods proposed by Bieniawski and Hawkes (1978). Three

isotropic disks (BVE01, BVE02 and BVE03) and three transverse isotropic ones

(BHE15, BHE45 and BHE75) having  ¼ 15�, 45�, 75� were respectively prepared

for the tests.

In the second type of experiment, cracked ring tests with 80 mm diameter and

11 mm thickness were prepared. The specimens were obtained from the marble blocks

by drilling in the direction parallel to the apparent plane of isotropy. Three drills with

diameters 1=400, 1=200, and 3=400 were used to drill a hole in the center of each disk

obtaining the following diameters: 6 mm, 12 mm, and 18 mm, respectively, to investi-

gate the effect of a hole in determining the SIFs. Three ring specimens with �¼ 0.075,

0.15 and 0.225 (where � is the radius ratio, defined to be the ratio of the inner to the

outer diameter) were obtained. A straight notch was formed at the center of the disks

with different inclination angles ( ¼ 30�, 60�) and crack angles (�¼ 0�, 45�) using a

0.4 mm steel wire saw. The wire was passed through the drilled hole and each crack

length of 12 mm was made, referred to as types RFA30-A (or B), RFA60-A (or B),

RFB30-A (or B), RFB60-A (or B), RFC30-A (or B) and RFC60-A (or B), respective-

ly, for the cracked ring test.

Table 5. Physical properties of the Hualien marble

Dry water
content (%)

Specific
gravity

Porosity
(%)

Uniaxial compressive
strength (MPa)

Tensile strength (MPa)

 ¼ 0�  ¼ 90� isotropic transverse isotropic

 ¼ 15�  ¼ 45�  ¼ 75�

0.12 2.66 0.24 84.69 56.70 7.27 11.07 7.47 4.56
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4.3 Elastic constants of the Hualien marble

The five elastic constants of the transversely isotropic Hualien marble can be deter-

mined by the Brazilian tests using three specimens having different angles ( ¼ 15�,
45�, 75�) to the plane of transverse isotropy (Chen et al., 1998a). In addition, a 45�

strain gage rosette (Japan, TML type FRA-2-11 with factor of 2.11 and resistance of

120 � 0.5�) was attached to the center of each marble disk, as shown in Fig. 9,

to measure strains. The specimens were placed between the steel loading jaws

with a loading angle 2�¼ 10�, as suggested by the ISRM (1978). All the specimens

Fig. 9. Brazilian test device for determining elastic constants

Fig. 10. Stress–strain curves of isotropic marble for sample BVE01
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were loaded up to failure with a loading rate of 1 mm=min using a MTS-407 loading

system.

Two sets of disk specimens were prepared to determine the elastic constants of the

Hualien marble under diametral loading.

(i) One set of specimens, cored normal to the plane of transverse isotropy, was

used to determine the isotropic constants E and �. Figure 10 shows the typical re-

sponse curves from the strain gage of specimen BVE01. From the stress–strain curves,

the strain reaching 50% of the ultimate strength of Cure a was considered to be the

transverse extensional strain, "x, negative. In the same process, the axial strain "y of

Cure b was positive. For the plane of transverse isotropy of the medium, the stress

concentration factors were set to be qxx¼�2, qyy¼ 6 and qxy¼ 0 with the small half

loading angle � (7:5�) for the isotropic media.

The constitutive equations in generalized plane stress conditions from Eq. (12) can

be written as follows:

2
rot

W

"x
"y
�xy

8<
:

9=
; ¼

1=E ��=E 0

��=E 1=E 0

0 0 2ð1 þ �Þ=E

2
4

3
5 �

�2

6

0

8<
:

9=
;: ð27Þ

Hence, the solution of Eq. (27) results in the following expressions for the secant

modulus of elasticity and Poisson’s ratio:

E ¼ 16W

2
rotð3"y þ "xÞ
; � ¼ � 3"x þ "y

3"y þ "x
: ð28Þ

(ii) Another set of specimens was cored parallel to the plane of transverse isotropy

and was used to determine the other three constants E0, �0 and G0. Figure 11 illustrates

typical stress–strain response of specimen BHE45 obtained from the central strain

Fig. 11. Stress-strain curves of transversely isotropic marble for sample BHE45
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gage. The strains at 50% of the ultimate strength were used as in case (i). Thus, the

constitutive relations can be written as follows (Chen et al., 1998a):

2
rot

W

"x
"y
�xy

8<
:

9=
;� 1

E

c1

c2

c3

8<
:

9=
; ¼

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
4

3
5 �

1=E0

�0=E0

1=G0

8<
:

9=
;; ð29Þ

where coefficients ci and Tij (i, j¼ 1–3) depend on qxx, qyy, qxy and  .

Lempriere (1968) and Amadei et al. (1987) concluded that the elastic constants for

a transversely isotropic medium must satisfy the following thermodynamic constraints:

E;E0G and G0> 0; 1 � � � 2
E

E0 �
0ð Þ2
> 0; ð30Þ

Equation (29) is a nonlinear system with three unknowns (1=E0, �0=E0 and 1=G0) which

are constrained by the inequalities in Eq. (30).

Fig. 12. Testing device of cracked ring disks

Table 6. Elastic constants in the plane of isotropy

Sample D (mm) t (mm) m"a
Dt=W m"b
Dt=W m"c
Dt=W E (GPa) � G (GPa)

BVE01 74 11.45 �0.042 0.073 0.012 90.40 0.30 34.76
BVE02 74 11.78 �0.044 0.070 0.010 96.77 0.38 34.96
BVE03 74 11.82 �0.049 0.079 0.015 85.61 0.36 31.49

Average 90.93 0.35 33.74

� "a, "b and "c represent the strains in the x, y and 45� directions, respectively.

Table 7. Elastic constants in the plane of transverse isotropy

Sample  D (mm) t (mm) m"a
Dt=W m"b
Dt=W m"c
Dt=W E0 (GPa) �0 G0 (GPa)

BHE15 15 74 12.24 �0.068 0.110 0.024 57.38 0.45 22.03
BHE45 45 74 12.34 �0.072 0.093 0.021 61.69 0.47 24.19
BHE75 75 74 12.24 �0.098 0.134 0.042 48.21 0.47 22.08

Average 55.76 0.46 22.77
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Finally, the elastic constants E, E0, �, �0 and G0 are obtained from Eqs. (28) and

(30), which completely describe the deformability of the transversely isotropic

rock.

Table 8. Elastic independent constants for Hualien marble

E (GPa) E0 (GPa) � �0 G0 (GPa) E=E0 G=G0

90.93 55.76 0.35 0.46 22.77 1.63 1.48

Fig. 13. Failure mode and failure loading of the cracked ring specimens
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4.4 Cracked ring tests

A total of 24 mixed-mode cracked ring specimens were prepared with two inclination

angles ( ¼ 30�, 60�), two crack angles (�¼ 0�, 45�), and three specimen geometries

(�¼ 0.075, 0.15, 0.225). Each specimen characteristics are listed in Tables 9, 10, and 11

for disks RFA, RFB, and RFC. The cracked ring specimens were taken to failure under

an arc load with a loading angle of 2� ¼ 10� at a slow deformation rate of 1 mm=min

using a 1 MN MTS-407 loading system, as shown in Fig. 12. The specimens used steel

loading jaws to decrease the concentrated loading with the contact surface. Failure

generally occurs within 5 min, while recording the maximum load of Wf. The mixed-

mode (I–II) fracture toughness of each condition can be obtained using Eq. (26).

5. Experimental results and discussions

5.1 Five elastic constants by Brazilian test

The five independent elastic constants of the Hualien marble were determined by

diametral loading on two sets of samples. The first set was loaded on the plane of

transverse isotropy, and the strains were measured at 50% of the ultimate strength,

where the failure stress was defined to be Wf=2
rot, as shown in Fig. 10. The elastic

constants can be determined to be E¼ 90.93 GPa and �¼ 0.35, as shown in Table 6. In

this table, "a and "b represent the strains measured in the x (horizontal) and y (vertical)

directions, respectively.

The second set was loaded in the plane perpendicular to the plane of transverse

isotropy (Fig. 11). The other three constants can be determined in Sect. 4.3 as

E0 ¼ 55.76 GPa, �0 ¼ 0.46 and G0 ¼ 22.77 GPa, as shown in Table 7. Table 8 shows

that the ratio E=E0 of Hualien marble was equal to 1.63 (<2), and can be classified as a

moderately anisotropic rock.

5.2 Fracture toughness by cracked ring test

Figure 13 shows the apparent failure modes for 12 cracked ring specimens (RFA30-A

or B, RFA60-A or B, RFB30-A or B, RFB60-A or B, RFC30-A or B, RFC60-A or B).

The following observations can be made: (i) the crack propagated along the loading

direction when �¼ 0�, (ii) the RFC60-B1 and RFC60-B2 specimens failed initially

Table 9. Fracture toughness of cracked ring disk for type RFA (�¼ 0.075)

Sample ro
(mm)

ri
(mm)

t
(mm)

 
(deg)

�
(deg)

Wf

(kN)
KIC

ðMPa
ffiffiffiffi
m

p
Þ

KIIC

ðMPa
ffiffiffiffi
m

p
Þ

KIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

KIIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

RFA30-A1 40 3 11.16 30 0 6.13 �1.52 0.17 �1.53 0.17
RFA30-A2 40 3 11.06 30 0 6.11 �1.53 0.17
RFA60-A1 40 3 10.98 60 0 4.08 �0.84 0.11 �0.83 0.11
RFA60-A2 40 3 11.00 60 0 3.97 �0.82 0.11
RFA30-B1 40 3 11.04 30 45 3.70 0.95 1.11 0.95 1.11
RFA30-B2 40 3 10.96 30 45 3.69 0.95 1.11
RFA60-B1 40 3 10.94 60 45 2.51 0.80 0.82 0.84 0.86
RFA60-B2 40 3 11.02 60 45 2.80 0.88 0.90
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along the foliation with �¼ 45�, (iii) the maximum failure loading Wf decreased with

the increase in the radius ratio; its value for �¼ 0� is greater than for �¼ 45�, when

 ¼ 30� or 60�, and of  ¼ 30� is greater than  ¼ 60� when �¼ 0� or 45� for each

type of radius ratio, and (iv) the specimens did undergo after the first failure, and

mostly located along the foliation because the load did not stop immediately.

Table 10. Fracture toughness of cracked ring disk for type RFB (�¼ 0.150)

Sample ro
(mm)

ri
(mm)

t
(mm)

 
(deg)

�
(deg)

Wf

(kN)
KIC

ðMPa
ffiffiffiffi
m

p
Þ

KIIC

ðMPa
ffiffiffiffi
m

p
Þ

KIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

KIIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

RFB30-A1 40 6 11.00 30 0 3.84 �1.35 0.19 �1.38 0.19
RFB30-A2 40 6 10.84 30 0 3.91 �1.40 0.19
RFB60-A1 40 6 10.96 60 0 3.08 �0.97 0.15 �0.97 0.15
RFB60-A2 40 6 11.06 60 0 3.12 �0.97 0.15
RFB30-B1 40 6 10.98 30 45 2.86 0.69 1.08 0.73 1.14
RFB30-B2 40 6 11.00 30 45 3.18 0.76 1.20
RFB60-B1 40 6 10.96 60 45 2.44 0.73 0.90 0.68 0.83
RFB60-B2 40 6 11.14 60 45 2.10 0.62 0.76

Table 11. Fracture toughness of cracked ring disk for type RFC (�¼ 0.225)

Sample ro
(mm)

ri
(mm)

t
(mm)

 
(deg)

�
(deg)

Wf

(kN)
KIC

ðMPa
ffiffiffiffi
m

p
Þ

KIIC

ðMPa
ffiffiffiffi
m

p
Þ

KIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

KIIC,avg

ðMPa
ffiffiffiffi
m

p
Þ

RFC30-A1 40 9 10.92 30 0 3.05 �1.73 0.21 �1.67 0.21
RFC30-A2 40 9 11.18 30 0 2.90 �1.61 0.20
RFC60-A1 40 9 10.74 60 0 2.15 �1.08 0.14 �1.13 0.15
RFC60-A2 40 9 10.88 60 0 2.38 �1.17 0.15
RFC30-B1 40 9 11.04 30 45 2.23 �0.30 0.07 �0.30 0.07
RFC30-B2 40 9 11.04 30 45 2.23 �0.30 0.07
RFC60-B1 40 9 11.00 60 45 1.29 �0.17 0.07 �0.19 0.08
RFC60-B2 40 9 10.84 60 45 1.50 �0.20 0.09

Fig. 14. Fracture toughness of mode-I vs. radius ratio � for different  and �
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With the specimen geometry and the elastic constants of the marble known, a BEM

analysis was conducted to determine the mixed-mode (I–II) fracture toughness. Once

the failure loading was determined by the laboratory testing of cracked ring disks, the

fracture toughness of the marble could be obtained. The laboratory test results for three

(�¼ 0.075, 0.15, 0.225) are shown in Tables 9, 10, and 11, respectively. Obviously, the

fracture toughness of mode-II is greater than mode-I (KIIC>KIC). It means that for

anisotropic materials the effect of sliding is greater than that of opening.

Figures 14 and 15 show the variation of the fracture toughness of mode-I and

mode-II, respectively, for the anisotropic marble with different values of  , � and �.

For mode-I, the fracture toughness decreased with the increase in the diameter of the

inner hole but increased in the radius ratio between 0.075 and 0.15. For mode-II, the

fracture toughness increased with the increase in the diameter of hole when the angle

Fig. 15. Fracture toughness of mode-II vs. radius ratio � for different  and �

Fig. 16. Normalized SIF of mode-I vs. radius ratio � for different  and �
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� was equal to 0�. However, the fracture toughness decreased in the value of the radius

ratio between about 0.14 and 0.225 when the angle �¼ 45�. From Eq. (26), the

normalized SIFs of mode-I and mode-II can be obtained in Figs. 16 and 17 to investi-

gate the relationship between fracture toughness and regular factor. The analysis

results show that the crack changes its orientation � from 0� to 45�, the FI changes

from negative to positive indicating crack closure. In addition, the SIF of mode-I (KI)

coincided with the one of mode-II (KII) well for anisotropic materials when �¼ 0� or

45�, and the KI with pure tensile or compressive stress can be measured in the

isotropic material when �¼ 0� according to the numerical results of example 3.

6. Conclusions

This paper shows that the cracked ring disk under a diametral arc loading is a practical

testing method for determining the mixed-mode fracture toughness of anisotropic

rocks. This testing method has advantages due to convenient specimen preparation,

simple apparatus and testing procedure, and no stress concentrations at the interface of

the vertically loaded diameter and the outer boundary of disk. Combined with the

BEM analysis and the cracked ring test, the mixed-mode SIFs can be successfully

obtained. Numerical examples of SIFs for isotropic materials were conducted and

good agreement was found.

The Hualien marble with clearly white–black foliations was selected to perform

both Brazilian tests and cracked ring tests. A total of 6 Brazilian disks and 24 cracked

ring disks were used to determine five elastic constants and the mixed-mode fracture

toughness, respectively. The cracked ring specimen considered three values for the

radius ratio (0.075, 0.15, 0.225), two different inclination angles (30�, 60�), and two

crack angles (0�, 45�) to investigate the fracture toughness of mode-I (KIC) or mode-II

(KIIC). The results obtained show that the KIC decreased substantially with increased

radius ratio. The KIIC increased 37% with increased radius ratio and decreased with

remaining 63% when the crack angle was equal to 45�, and another crack angle was

Fig. 17. Normalized SIF of mode-II vs. radius ratio � for different  and �
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slowly increased. Thus, the mixed-mode SIFs of anisotropic rocks are influenced by

above mentioned three kinds of factors.
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