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Summary

A new spreadsheet-based algorithm for the first-order reliability method (FORM) is illustrated for
a two-dimensional rock slope of Hong Kong. The new algorithm combines inverse distribution
functions and a refined Newton method with the automatic constrained-optimization search of the
design point in the original space of the random variables; it obviates the need for computations of
equivalent normal means and equivalent normal standard deviations. In the rock slope analysis,
the versatile 4-parameter beta distribution is used in lieu of a truncated normal distribution.
Probabilities of failure inferred from reliability indices are compared with those from Monte
Carlo simulations. The effects of parametric correlations on the required reinforcing force for a
target reliability index value are studied. The intuitive perspective of an expanding equivalent
dispersion ellipsoid in the original space of the basic random variables is also described as it is the
basis from which the new approach evolved.
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1. Introduction

The conventional factor of safety in geotechnical engineering cannot reflect the uncer-

tainty of its underlying parameters. A more rational approach is to evaluate a reliabil-

ity index � that depends not only on the mean values of the parameters but also on

their scatter and correlations. Among the various definitions of reliability indices, the

Hasofer-Lind (1974) index for normal random variables and the first-order reliability

method (FORM) for nonnormal random variables are more consistent and rigorous,

but – as traditionally presented – also more mathematical. These conceptual and

implementation barriers can largely be overcome, by adopting the alternative perspec-

tive of an expanding equivalent dispersion ellipsoid in the original space of the vari-

ables, and using an optimization routine available in the Microsoft Excel spreadsheet



software, as described in Low and Tang (1997a, 2004) and further illustrated in Low

(2005). Correlated nonnormal random variables can be viewed as forming a tilted

equivalent ellipsoid in the original space of the random variables, centered not at the

original mean values of the nonnormal variates but at their equivalent normal means.

There is no need to diagonalize (tantamount to rotating the frame of reference) the

covariance or correlation matrix.

This paper aims to further reduce the computational and conceptual barriers of

the first-order reliability method (FORM) for correlated nonnormals, using the Sau

Mau Ping rock slope of Hong Kong as an illustration. The new spreadsheet-based

practical algorithm presented herein is an alternative to the Low and Tang 1997 and

2004 approaches. Unlike the earlier approaches, the new algorithm obviates the need

for computations of the means and standard deviations of equivalent normal dis-

tributions, and varies (automatically during constrained optimization) a set of di-

mensionless numbers rather than the basic random variables with its miscellaneous

units. The Sau Mau Ping rock slope was analyzed in Low (2007) using the Low and

Tang (2004) approach. The random variables were modelled using the normal and

the truncated exponential distributions. In this study the same slope is revisited, and

analyzed using the Low and Tang (2007) new algorithm and different probability

distributions.

Some concepts pertaining to the reliability index are presented next. Subsequent

sections will present the application of the new probabilistic algorithm to the rock

slope in Hong Kong, in which the random variables are modeled by truncated expo-

nential distributions and the versatile 4-parameter beta distributions. The effects of

correlations on the required reinforcing force for a desired reliability index are stud-

ied. Comparisons are made with Monte Carlo simulations. It will be shown that the

new algorithm is particularly convenient with respect to its choice of the initial point

prior to constrained optimization, and when there is a need to test the robustness of the

search through randomization of initial points.

The emphasis of the new algorithm in this study is on obtaining the FORM so-

lution with efficiency, understanding, intuitive appreciation, and relative transparency.

2. Perspective of Expanding Equivalent Dispersion

Ellipsoid for Normals and Nonnormals

The Hasofer-Lind (1974) index for cases with correlated normal random vari-

ables and the first-order reliability method (FORM) for cases with correlated

nonnormals are well explained in Ditlevsen (1981), Shinozuka (1983), Ang and

Tang (1984), Melchers (1999), Haldar and Mahadevan (1999), and Baecher and

Christian (2003), for example. The potential inadequacies of the FORM in some

cases have been recognized, and more refined alternatives proposed, in Chen and

Lind (1983), Der Kiureghian et al. (1987), Wu and Wirsching (1987), and Zhao and

Ono (2001), among others. On the other hand, the usefulness and accuracy of the

FORM in most applications are well recognized, for instance in Rackwitz (2001).

The focus of this paper is on the FORM, which includes the Hasofer-Lind index as a

special case.
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Low and Tang (1997a) presented a practical and transparent FORM procedure

using spreadsheet-automated constrained optimization based on the perspective of an

expanding equivalent dispersion ellipsoid in the original space of the basic random

variables (Fig. 1). The Rackwitz-Fiessler (1978) equivalent normal transformation was

used, but the concepts of coordinate transformation and frame-of-reference rotation

were not required. Correlation was accounted for by setting up the quadratic form

directly. Iterative searching and partial derivatives were automatic. This spreadsheet-

cell-object-oriented constrained optimization approach was subsequently extended in

Low and Tang (2004), by testing robustness and accuracy for various nonnormal dis-

tributions and more complicated performance functions, and by providing enhanced

operational convenience and versatility.

The matrix formulation (Veneziano 1974, Ditlevsen 1981) of the Hasofer-Lind

(1974) index � is:

� ¼ min
x 2 F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� �ÞTC�1ðx� �Þ

q
ð1aÞ

or, equivalently:

� ¼ min
x 2 F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xi � �i
�i

�T
½R��1

�
xi � �i
�i

�s
ð1bÞ

where x is a vector representing the set of random variables xi, � the vector

of mean values �i, C the covariance matrix, R the correlation matrix, �i the stan-

dard deviation, and F the failure domain. Low and Tang (1997b and later) used

Eq. (1b) in preference to Eq. (1a) because the correlation matrix R is easier to set

up, and conveys the correlation structure more explicitly than the covariance

matrix C.

The point denoted by the xi values which minimize Eq. (1) and satisfies x2F is the

design point – the point of tangency of an expanding dispersion ellipsoid with the

limit state surface which separates safe combinations of parametric values from unsafe

combinations (Fig. 1). For correlated normals, one may note that the quadratic form in

Fig. 1. Illustration of the reliability index � in the plane. The symbols � and � denote the mean value and
the standard deviation, respectively
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Eq. (1a) appears also in the negative exponent of the established probability density

function of the multivariate normal distribution:

f ðxÞ ¼ 1

ð2�Þ
n
2jCj0:5

exp

�
� 1

2
ðx� �ÞTC�1ðx� �Þ

�
ð2aÞ

¼ 1

ð2�Þ
n
2jCj0:5

exp

�
� 1

2
�2

�
ð2bÞ

where � is defined by Eq. (1a) or (1b), without the ‘‘min’’. As a multivariate normal

dispersion ellipsoid expands from the mean-value point, its expanding surfaces are

contours of decreasing probability values. Hence, to obtain � by Eq. (1) means max-

imizing the value of the multivariate normal probability density function (Eq. (2)), and

is graphically equivalent to finding the smallest ellipsoid tangent to the limit state

surface at the most probable failure point (the design point). This intuitive and visual

understanding of the design point is consistent with the more mathematical approach

in Shinozuka (1983), in which all variables were standardized and the limit state

equation was written in terms of standardized variables.

For correlated nonnormals, the ellipsoid perspective still apply in the original co-

ordinate system, except that the nonnormal distributions are replaced by an equivalent

normal ellipsoid, centered not at the original mean values of the nonnormal distribu-

tions, but at the equivalent normal mean �N :

� ¼ min
x 2 F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xi � �Ni �

T ½CN ��1½xi � �Ni �
q

ð3aÞ

or, equivalently, in terms of correlation matrix R,

� ¼ min
x 2 F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xi � �Ni
�Ni

�T
½R��1

�
xi � �Ni
�Ni

�s
ð3bÞ

In Eq. (3a), CN is covariance matrix based on the equivalent normal standard deviation

�N . The values of �Ni and �Ni in both equations can be obtained by equating the

cumulative probability as well as the probability density ordinate of the equivalent

normal distribution to those of the corresponding nonnormal distribution at the point x,

resulting in the following Rackwitz-Fiessler (1978) two-parameter equivalent normal

distribution:

Equivalent normal standard deviation:

�N ¼ �f��1½FðxÞ�g
f ðxÞ ð4Þ

Equivalent normal mean:

�N ¼ x� �N ���1½FðxÞ� ð5Þ

where x is the original nonnormal variate, ��1½�� is the inverse of the standard normal

cumulative distribution (CDF), FðxÞ is the original nonnormal CDF evaluated at

x; �f�g is the probability density function (pdf) of the standard normal distribution,

and f ðxÞ is the original nonnormal probability density ordinate at x.
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The next two sections compare the reliability analyses of a Hong Kong slope

based on the two different spreadsheet algorithms of Low and Tang (2004, 2007),

respectively.

3. Rock Slope Analyzed using 2004 Algorithm for the FORM

via Varying Basic Random Variables xi

The spreadsheet FORM procedure of this section was described in Low and Tang

(1997a, b, 2004), using Eqs. (3a), (1b) and (3b), respectively. It is the basis from

Fig. 2. Analytical model and data of the Sau Mau Ping slope
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which the new alternative procedure of the next section evolved. Both proce-

dures will be illustrated in the context of the Sau Mau Ping slope of Hong Kong

(Fig. 2).

Hoek (2006) used the horizontal distance b of the tension crack behind the slope

crest as input in place of the tension crack depth z because b can be measured in

the field and also because it is not influenced by the inclination of the upper slope.

Statistical data for z was given as � ¼ 14 m and � ¼ 3 m, and for b as � ¼ 15:3 m and

� ¼ 4:2 m. These two sets of data are consistent because b and z are geometrically

related by the two equations of b and z shown in Fig. 2 and, for the given H,  p,  f,

reduces to b¼ 35.3� 1.43 z, from which the � and � of b are obtained when those of z

are known. Because z and b are geometrically related, either can be treated as a

random variable, but not both. The reliability analyses of this and the next sections

consider b as random, as did Hoek (2006) in his Monte Carlo simulations.

Figure 3 obtains the reliability index for Sau Mau Ping slope based on Eqs. (3b),

(4) and (5). It invokes a user-created Microsoft Excel VBA function EqvN, described

Fig. 3. First-order reliability method (FORM) for the Sau Mau Ping slope, using the Low and Tang (2004)
algorithm. Initially the x�i column values were (35, 10, 15.3, 0.5, 0.08)
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in Low and Tang (2004), to compute the equivalent normal �Ni and �Ni by Eqs. (4) and

(5) for various nonnormal distributions. This approach results in a clear and conve-

nient user interface where various nonnormal distributions can be selected at ease

without the need to modify the template for different probability distributions. The key

feature was that distribution-specific equations were relegated to a short program code

(created inside Microsoft Excel) which was called by cells beneath the headings �Ni
and �Ni in Fig. 3. (An Excel file of the Low and Tang (2004) procedure, with per-

formance function gðXÞ ¼ YZ � M, can be downloaded from http:==alum.mit.edu=
www=bklow, for better understanding by doing this hands-on.)

Instead of the truncated normal distributions used in Hoek (2006), Fig. 3 uses the

4-parameter bounded beta distributions for �, c and b, with bounded range (10, 60),

(0, 20) and (0, 35.3), respectively. The versatility of the 4-parameter beta distribution

is illustrated in Fig. 4 for a random variable with a bounded range (0, 1). In the beta

distribution with parameters a1, a2, min and max, the third and fourth parameters de-

fine the lower and upper limits of the range, while the first two parameters are shape

parameters. If a1¼ a2, the beta distribution curve is non-skew, as shown by the curves

labeled (2, 2, 0, 1), (3, 3, 0, 1), (5, 5, 0, 1) and (9, 9, 0, 1). Also, the curves labeled

(1.5, 4, 0, 1) and (4, 1.5, 0, 1) exhibit symmetry.

Comparisons between the normal distributions and the bounded beta distributions

of �, c and b, and between the truncated exponential distribution (of iw and �) and a

Fig. 4. Versatility of the 4-parameter general beta distribution; the first 2 parameters are shape parameters,
the last two parameters define the range
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special triangular form of the beta distribution, are shown in Fig. 5. It can be seen from

the PDF curves of � and cohesion that the beta distribution with the four parameters

a1¼ 12.6, a2¼ 12.6, min ¼ �� 5� and max ¼ �þ 5� are very good approximations

of the Normal distribution Nð�; �Þ, and has advantage over the latter in being bound-

ed. The PDF of width b is asymmetrical because its mean (15.3 m) is not at the centre

of its range (0, 35.3).

Fig. 5. General beta distributions for �, c and b, in lieu of truncated normals, and exponentials of iw (¼ zw=z)
and �, the latter with original mean values 0.5 and 0.08, truncated to (0, 1) and (0, 0.16), respectively
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The performance function (cell G13, Fig. 3) is based on the following entered

equations:

gðxÞ ¼ cAþ N 0 tan�� ½Wð sin p þ � cos pÞ þ V cos p � T sin �� ð6Þ
where the symbols are as defined in Fig. 2. One can also define gðxÞ ¼
Fsðc; �; . . .Þ � 1, which is equivalent to Eq. (6) when g(x) is constrained to be zero

during Solver optimization.

The equation for N0 (cell N3, Fig. 3) is entered as follows:

N 0 ¼ maxð0;Wð cos p � � sin pÞ � U � V sin p þ T cos �Þ ð7Þ
This constrains N0 to be 50 (i.e., non-negative), consistent with physical considerations.

The square root of the quadratic form in Eq. (3b) was computed directly as � in

cell H13 using the array formula:

‘‘ ¼ sqrtðmmultðtransposeðnxÞ; mmultðminverseðcrmatÞ; nxÞÞÞ’’ ð8Þ
in which mmult, transpose and minverse are Excel’s built-in functions, each being a

container of program codes for matrix operations. The nx vector in cells O6:O10

contain equations ðxi � �Ni Þ=�Ni .

The design point (x� values) was obtained by using Microsoft Excel’s built-in

optimization routine Solver, to minimize the � cell, by changing the x� values, subject

to the constraint that the performance function gðxÞ¼ 0. Prior to the Excel Solver

search, the x� values had values equal to the mean values (35, 10, 15.3, 0.5, 0.08) of

the original random variables. Iterative numerical derivatives and directional search

for the design point x� were automatic.

From the computed reliability index � of 1.557 in Fig. 3, the probability of failure

can be estimated from Pf � �ð��Þ, where �ð�Þ is the standard normal cumulative

distribution. For this, the equation ‘‘¼NormSDist(-H13)’’ was entered in cell I13,

yielding a Pf value of about 6.00%.

Five Monte Carlo simulations each with 50,000 trials were carried out using the spe-

cialized software @RISK (http:==www.palisade.com), based on the original nonnormal

distributions (beta and truncated exponential distributions). The probabilities of failure

ðgðxÞ< 0Þ were 6.12, 6.28, 6.15, 6.11, 6.29%, respectively, averaging 6.19%. A separate

run with 200,000 trials yielded 6.15%, taking 56 sec. Another run with 200,000

trials yielded 6.24%. For comparison, the Pf¼ 5.98% (from reliability index �¼ 1.557)

in Fig. 3 were obtained using the Low and Tang (2004) procedure in about 2 sec.

(If desired, the original correlation matrix (�ij) of the nonnormals can be modified to

�0ij in line with the equivalent normal transformation, as suggested in Der Kiureghian

and Liu (1986). Some tables of the ratio �0ij=�ij are available in Melchers (1999),

including the closed form solution for the special case of lognormals. For simplicity,

the examples of this study retain the original unmodified correlation matrices.)

4. Rock Slope Analyzed using the Alternative Algorithm

for the FORM via Varying Dimensionless Numbers ni

In Fig. 3, the xi values (cells G6:G10) were changed during the constrained optimi-

zation. The nx column (cells O6:O10) contain equations to compute (x� � �NÞ=�N .
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In this section, a new approach is presented that varies the dimensionless numbers

ni (cells M6:M10, Fig. 6) during constrained optimization, and computes each xi
as a function of ni. Equivalent normal means and equivalent normal standard devia-

tions are not computed. This alternative approach has some advantages over that

of Fig. 3.

The first and third terms under the square root sign in Eq. (3b) are the equivalent

standard normal vector and, being functions of xi, were denoted as nx in Fig. 3 (under

column O). In the alternative approach of this section, the equivalent standard normal

vector will be varied (automatically during Excel Solver’s constrained optimization

search) as numerical values (void of equations), hence ni is used in Fig. 6 (to denote

the cells M6:M10) instead of the nx of Fig. 3. Equation (3b) then becomes:

� ¼ min
x 2 F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�T ½R��1½n�

q
ð9Þ

where n is a column vector of dimensionless number ni.

Fig. 6. Alternative first-order reliability method (FORM) for the Sau Mau Ping slope. Initially the ni column
values were zeros
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One notes that Eq. (5) can be rearranged a follows:

xi � �Ni
�Ni

¼ ��1½FðxiÞ� ð10Þ

However, in the approach of this section, the entity on the left side of Eq. (10) will be

varied as a dimensionless number ni (without computing the equivalent normal mean

�Ni and the equivalent normal standard deviation �Ni ), while the original random

variable xi will be computed as a function of ni. Hence Eq. (10) is used in reverse,

as follows:

�ðniÞ ¼ FðxiÞ; ð11aÞ
i.e.,

xi ¼ F�1½�ðniÞ� ð11bÞ
Equation (11b) renders it possible to back-calculate xi for each trial value of ni during

Excel Solver’s constrained optimization of Eq. (9). The objective is to find the value xi
such that the nonnormal cumulative probability distribution FðxiÞ at xi is equal to the

standard normal cumulative distribution �ðniÞ. The requirement that xi be on the

failure surface (limit state surface), x2F, is imposed as a constraint gðxÞ ¼ 0 in

Excel Solver (Fig. 6). When this is satisfied and � by Eq. (9) is at its minimum, the

x values become the design point x� values.

The operational differences between the method of Fig. 3 and that of Fig. 6

are summarized in Fig. 7. The inverse distribution functions (Eq. (11b)) which

enable xi to be computed automatically as a function of ni have been coded in

Fig. 8. The closed form derivations are straightforward for normal, lognormal,

truncated exponential, Gumbel, exponential, uniform, triangular and Weibull dis-

tributions. For example, for the truncated exponential distribution of mean a1 and

Fig. 7. Two methods compared: Fig. 3’s method requires computation of equivalent normal means and
equivalent normal standard deviations; Fig. 6’s alternative method does not
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range (a2, a3), the cumulative distribution function FðxÞ – in which 	¼ 1=mean –

is set equal to the standard normal cumulative distribution �ðnÞ, followed by

rearrangement:

FðxÞ ¼ ðe�	a2 � e�	xÞ
e�	a2 � e�	a3

¼ �ðnÞ; ð12aÞ

from which one obtains:

x ¼ � 1

	
ln½e�	a2 � ðe�	a2 � e�	a3Þ�ðnÞ� ð12bÞ

Equation (12b) has been coded in the two lines under Case ‘‘TR_EXP’’ in Fig. 8.

Fig. 8. Excel VBA code for the inverse xi ¼ F�1½�ðniÞ�. Closed form solutions for the first eight distribution
types (Normal, Lognormal, . . . , Weibull), and refined Newton method for the other three distributions

(BetaDist, Gamma, and PertDist)
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For beta, gamma, and PERT distributions, the Newton-Raphson (or Newton) iter-

ation method is used to determine x such that FðxÞ¼�(n):

xkþ1 ¼ xk �
FðxkÞ � �ðnÞ

d
dx
½FðxkÞ � �ðnÞ�

¼ xk �
FðxkÞ � �ðnÞ

f ðxkÞ
ð13Þ

where FðxÞ is cumulative distribution and f ðxÞ is probability density function. The

initial value prior to iterative looping by the Newton method is the mean value of

the nonnormal distribution. This initial value is the ‘‘xprev’’ defined just prior to the

For-Next looping, under cases BETADIST, GAMMA and PERTDIST in Fig. 8. The

Newton method (Eq. (13)) code is indicated by the arrow under Cases BETADIST and

GAMMA. The following statements (two lines below the arrowed Newton-method

code) refine the Newton method by restricting the trial x values to within the lower and

upper bounds (min and max, respectively):

For Case BETADIST: If xnew <¼ min Then xnew¼ 0.5� (minþ xprev)

If xnew >¼ max Then xnew¼ 0.5� (maxþ xprev)

For Case GAMMA: If xnew <¼ 0 Then xnew¼ 0.5� xprev

The program Function x_i is called in cells G6:G10 of Fig. 6, by entering the

formula ‘‘¼ x_i(A6,C6:F6,M6)’’ in cell G6, and autofilling down to cell G10. The

arguments of Function x_i are DistributionName, para and ni. In the fourth line of

the program in Fig. 8, the Select Case control structure alters the flow of execution to

one of several code segments, depending on the input of DistributionName. The third

line ‘‘With Application.WorksheetFunction’’ enables liberal calls to Excel’s built-in

functions, using the syntax ‘‘.NormSDist(�)’’, ‘‘.GammaDist(. . .)’’, ‘‘.BetaDist(. . .)’’,
‘‘.GammaLn’’, where ‘‘Application’’ stands for Microsoft Excel. The use of these

Excel objects (each a container of program codes) results in much simplicity, clarity,

and brevity of the program codes and structure.

Low and Tang (2007) provides more details of the new method applied to the

performance function gðxÞ ¼ YZ � M, a beam on elastic foundation, and a strut with

complex supports.

In retrospect, the new approach of varying ni evolves quite naturally from Eq. (3b),

but would not have been suggested by the mathematically equivalent Eq. (3a). It is

also not efficient to try to vary ni and back-calculate xi from xi ¼ �Ni þ ni�
N
i , because

this leads to a recursive relationship since �Ni and �Ni are themselves intricate func-

tions (Eqs. (4) and (5)) of xi. The method illustrated in Fig. 6 succeeds by eliminating

this recursive relationship, as �Ni and �Ni no longer appear in Eq. (9).

5. Ease of Initializing and Randomizing Dimensionless ni
Values in the New Method

As illustrated in Fig. 6, the new method varies the dimensionless numbers ni, using

Excel’s built-in Solver for constrained optimization of Eq. (9); the basic random

variables xi are computed automatically from ni either from closed form equations

or via the refined Newton method iterations, as coded in Fig. 8, and constrained by the

Excel Solver to be on the limit state surface; the means and standard deviations of

equivalent normal distributions are not computed.
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One major advantage of the new approach is that the initial ni values in cells

M6:M10 of Fig. 6, prior to Solver’s constrained optimization, are zeros, which are

straightforward to input. In contrast, the initial values of xi in cells G6:G10 of Fig. 3

are the mean values ð35; 10; 15:3; 0:5; 0:08Þ of the basic nonnormal random variables.

These mean values sometimes require separate calculations, for example when trian-

gular, Weibull, gamma, beta or PERT distributions are involved, as explained in Fig. 3

of Low and Tang (2004).

Occasionally one may want to randomize the initial values of ni (Fig. 6) or xi
(Fig. 3) prior to implementing the Solver optimization, to test whether the same de-

sign point and reliability index are obtained despite the randomized initial values.

Randomizing ni is done easily by invoking ExcelnToolsnData AnalysisnRandom

Number Generationn to generate five random numbers of a standard normal random

variate Nð0; 1Þ, or Nð0; 2Þ, at one go in the ni cells in Fig. 6, regardless of the type of

nonnormal distributions of the original basic random variables. (Other distributions,

e.g. uniform, can also be used for randomizing the initial values of ni). In contrast,

randomizing the initial values of xi in Fig. 3 is less straightforward.

To illustrate, for the case in Fig. 6, ten sets of 5 numbers each were generated

randomly in cells M6:M10 based on a uniform distribution with range ð�3; 3Þ, each

followed by Excel Solver optimization. The 10 values of the reliability index (cell

H13) were identical as displayed, namely 1.557. Next, ten sets each were generated

based on normal distribution ð�; �Þ of Nð0; 2Þ and Nð0; 5Þ, respectively. The 20 values

of reliability index obtained by the Excel Solver were also identical as displayed

ð¼ 1:557Þ. This shows the robustness of the new approach based on the closed form

inverse distribution and refined Newton method, for the case at hand with truncated

exponential distributions of iw and �, and 4-parameter general beta distributions of �,

c and b.

6. Effects of Correlations on the Required Reinforcing

Force for a Target Reliability Index

If all random variables are uncorrelated (as implied in the correlation matrices of

Figs. 3 and 6 in which diagonal entries are 1.0 and non-diagonal entries are all 0.0),

the quadratic forms under the square root sign of Eqs. (3) and (9) reduce toP
ðxi � �Ni Þ

2=�N
2

i and
P

n2
i , respectively. The clarity and efficiency of the present

ellipsoid-constrained-optimization approach – relative to the classical approach that

requires orthogonalization of the correlation matrix – are more obvious when corre-

lation exists for at least some of the random variables. It is generally known that the

cohesion c and friction angle � are likely to be negatively correlated – i.e., cohesive

strength generally drops as the friction angle rises and vice versa. This section inves-

tigates the effect of negative correlation between c and � on the reinforcing force T

required to achieve a target reliability index of 2.5.

In addition, if the water which would fill the tension crack in a slope comes from

direct surface run-off during heavy rains, one may reason that shallower crack depths

tend to be water-filled more readily than deeper crack depths. This means that the

tension crack depth z and iw (¼zw=z) are likely to be negatively correlated, which in

turn implies b and iw are positively correlated because of the geometrical relationship
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between z and b given in Fig. 2. For simplicity and illustrative purposes, a negative

correlation coefficient �0.5 will be assumed between c and �, and a positive correla-

tion coefficient 0.5 between b and iw.

Figure 9a shows that the required horizontal (i.e. �¼ 55�) reinforcing force T for a

target reliability index of 2.5 is about 146 t=m, when c and � are negatively correlated,

with correlation coefficient �c,�¼�0.5, and b and iw positively correlated, with

�b;iw ¼ 0.5. Note that the design point values of the resistance parameters � and c,

at 30.83� and 8.56 t=m2, respectively (cells G6 and G7), are lower than their mean

Fig. 9. Relation between required horizontal reinforcing force T and correlation coefficients, for a target
reliability index of 2.5: (a) required T is 146 t=m when �c,�¼�0.5 and �b,iw¼ 0.5; (b) variation of required

horizontal T with correlation coefficients �c,� and �b,iw
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values of 35� and 10 t=m2 respectively. The design point values of the load parameters

iw and �, at 0.746 and 0.125, are above their respective mean values of 0.5 and 0.08.

The analysis in Figs. 3 and 6, for uncorrelated random variables, is instructive in

confirming that parameters with negative nx or ni values (cells O6:O8 in Fig. 3 and

cells M6:M8 in Fig. 6) are resistance parameters, and parameters with positive nx or ni
values (cells O9:O10 in Fig. 3 and cells M9:M10 in Fig. 6) are load parameters. In

Fig. 9a, the above-mean value of 15.815 for width b (which acts as if it is a resistance

parameter) is due to its positive correlation with iw (a load parameter). This can be

verified by performing a reliability analysis with 0 replacing the values 0.5 in cells K8

and J9. The reliability index � obtained is 2.29, and the design point values of �, c, b,

iw and � are 32.04, 8.83, 12.81, 0.80 and 0.12, respectively, in which the design point

value of b, at 12.81 m, is lower than its mean value of 15.3 m. (Taking partial deriva-

tives of gðxÞ or Fs with respect to b and z respectively will also verify that the role of

width b is similar to a resistance parameter and that of vertical crack depth z is similar

to a load parameter.)

Figure 9b shows that the horizontal reinforcing force T required to achieve a

reliability index of 2.5 depends on the values of the correlation coefficients. The seven

open-circle points defining the upper curve were obtained from reliability analyses

using �c,� values (in cells I6 and H7) of �0.2, �0.4, �0.5, �0.6, �0.7, �0.8 and

�0.85, respectively, while �b;iw values (in cells K8 and J9) were zeros. The seven

solid-circle points defining the lower curve were obtained from reliability analyses

using �c,� values (in cells I6 and H7) of �0.2, �0.4, �0.5, �0.6, �0.7, �0.8 and

�0.85, respectively, and using �b;iw values (in cells K8 and J9) of 0.2, 0.4, 0.5, 0.6, 0.7,

0.8 and 0.85, respectively, so that �b;iw ¼��c,� for each solid circle. The plots show

that a smaller reinforcing force T is required to achieve a reliability index � of 2.50

when strength parameters c and � are negatively correlated. As explained earlier, a

positive correlation between width b and water-depth indicator iw (¼ zw=z) means a

negative correlation between z and iw. Since z and iw are load parameters, one may

conclude from the lower curve of Fig. 9b that negatively correlated load parameters

will further reduce the reinforcing force T required for a target reliability index.

Negatively correlated load parameters represent a more favorable scenario than un-

correlated or positively correlated load parameters, for this implies that unfavorable

load combinations (i.e., both loads at high values) are less likely to occur. Similarly,

negatively correlated strength parameters (c and �) represent a more favorable sce-

nario than uncorrelated or positively correlated strength parameters, because this

implies that unfavorable strength combinations (both c and � at low values) are less

likely to occur than if the strength parameters are uncorrelated or positively correlated.

For each parameter, the ratio of the mean value to the x� value (e.g. 35=30.833 for

� and 10=8.561 for c, for the case in Fig. 9) is similar in nature to the partial factors in

limit state design (e.g., Eurocode 7). However, in a reliability-based design one does

not specify the partial factors. The design point values (x�) are determined automati-

cally and reflect sensitivities, standard deviations, correlation structure, and probabili-

ty distributions in a way that prescribed partial factors cannot reflect.

Figure 10 shows alternative perspectives of the effects of correlations on the

required reinforcing force for a target reliability index of 2.50. In both the plots of

Fig. 10, the first open-circle point closest to the y axis corresponds to �c,�¼ 0 and
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�b,iw¼ 0, with unreinforced �0¼ 1.557, as analyzed in Fig. 6. The right-most solid

circle has �c,�¼�0.85 and �b,iw¼ 0.85, with unreinforced �0¼ 2.451. These two

cases require an increase in reliability index ð�� ¼ �target � �0Þ of 0.943 and 0.049,

respectively. Hence the Trequired is much larger in the former than in the latter.

The reliability index of 2.50 in Fig. 9a corresponds to a probability of failure of

0.62% based on Pf � �ð��Þ. For comparison, three Monte Carlo simulation with

Latin Hypercube sampling (each of size 100,000) using @RISK software yielded Pf

values of 0.37, 0.33, 0.31%, or an average of about 0.34%. The difference between

0.62% and 0.34% is due to the more approximate nature of FORM when truncated

exponentials are involved.

Results from Monte Carlo simulations are more accurate when sufficient iterations

are used. However, for reliability-based design like the case at hand, the reinforcing

force T required to achieve a target reliability index of 2.5 is initially unknown. To get

the required T for a target probability of failure one would need to try different T

values – relatively fast when using the reliability index criterion of �¼ 2.5, but time-

Fig. 10. Different perspectives of the two curves of Fig. 9. The lower plot shows the required T force per
unit increase in reliability index; it is obtained from the upper plot by dividing the y values of the upper plot

by ð�target � �0Þ
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consuming if based on Monte Carlo simulations for a target probability of failure of

0.62% say, because each trial value of T requires renewed simulation (each of sample

size 100,000 or more). Since reliability-based design typically aims at a target reli-

ability index greater than 2.5 (or 3.0), the estimated probability of failure is smaller

than 0.6% (or 0.13%), from Pf � �ð��Þ. Engineers have to decide whether for

practical purposes it is adequate to go for reliability-based design in which the implied

small probability of failure (based on Pf � �ð��Þ) is approximate but similarly small

as the theoretical probability of failure, or engage in trial and error design via multi-

session Monte Carlo simulations. Prior comparative studies (as in this section) on a

problem-domain-specific basis would be useful. The combined use of both FORM

and Monte Carlo simulation methods is also a possibility. For instance, in the light

of the comparison (0.62% vs. 0.34%) in the previous paragraph, suppose a probability

of failure of 0.5% is the desired target for the case at hand, one may design the T

force for a reliability index corresponding to a probability of failure of (0.0062=
0.0034) � 0.005, i.e., �� ¼ ��1ðPf Þ ¼ normsinvð0:0091Þ, hence �¼ 2.36. For the

set-up in Fig. 9, a few trial values of T using Solver led (within a minute) to the value

T¼ 114 t=m for �¼ 2.36. To verify, three Monte Carlo simulations (with T¼ 114)

using @RISK each with Latin Hypercube sampling size of 100,000 yielded probabili-

ty of failure of 0.485, 0.481, and 0.512%, respectively; the average is practically the

desired 0.5%.

7. Summary and Conclusions

A two-dimensional jointed rock slope in Hong Kong was analyzed probabilistically

using a new Low and Tang (2007) algorithm that combines the inverse distribution

functions and refined Newton method with Microsoft Excel’s built-in constrained

optimization routine. The new procedure (Eqs. (9) and (11b), and Figs. 6 and 8)

obtains the same reliability index and design point as the classical first-order reliability

method (FORM) for correlated nonnormals, but is more direct and transparent. The

perspective of expanding dispersion ellipsoid in the original space of random variables

was offered as a conceptual aid to understand intuitively the meaning of the reliability

index and the design point. A major advantage of the new procedure is the ease with

which the changing cells (cells M6:M10, Fig. 6) can be initialized and randomized.

Five parameters were treated as random variables in the Hong Kong slope. Three

of them, namely cohesion c, friction angle �, and horizontal distance b between crest

and tension crack, were modeled using the versatile 4-parameter generalized beta

distributions. The other two parameters, the water-depth indicator (iw) of tension crack

and earthquake acceleration coefficient �, were modeled by a truncated exponential

distributions. The latter part of this paper further investigates the effects of negative

correlation between c and � and positive correlation between b and iw on the reinfor-

cing force required to achieve a target reliability index.

Reliability-based design can be done quickly and efficiently using the procedure

presented in the paper. However, the probabilities of failure inferred from reliability

indices were approximate for the Hong Kong slope, due to the use of two truncated

exponentials. Monte Carlo simulation is robust and in principle accurate when the

sample size is sufficiently large. It is suggested that reliability-based design can play a
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useful complementary role to Monte Carlo simulations, particularly in reliability-

based design where trial and error design via Monte Carlo simulation could be time-

consuming. A simple strategy was proposed to harness the strengths of both the

reliability-based design (with its efficiency) and the Monte Carlo simulation (with

its robustness) so that reliability-based design can be accomplished with efficiency and

accuracy.

The meaning of the computed reliability index and the inferred probability of

failure is only as good as the analytical model and the statistical inputs underlying

the performance function. The ‘‘probability of failure’’ – from reliability index or

from Monte Carlo simulations – should be regarded more restrictively as the proba-

bility that the performance function gðxÞ will yield unacceptable values for the ana-

lytical and statistical models adopted. Nevertheless, even this restrictive sense of

reliability index (and the corresponding probability of failure) is more useful than

the lumped factor of safety approach or the partial factors approach, both of which are

also only as good as their underlying analytical models.

The new method presented in this study operates in the ubiquitous spreadsheet

platform; it obtains the same reliability index and design point as the classical FORM,

but is operationally more intuitive and transparent than the latter. The new method

does not involve complicated transformation, and can therefore play a useful comple-

mentary role to the classical FORM approach. If information pertaining to the inde-

pendent set of transformed standard normal variates (of the classical FORM) is

desired, such transformation can be done after the design point has been obtained

efficiently by the method presented herein.
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