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Summary

In a fractured rock mass, variations in stress and fluid pressure induced by engineering activities
can significantly affect the hydrogeological properties. A significant change in fracture transmis-
sivities can also be experienced in the far-field. The simulation of this kind of change requires a
Hydro-Mechanical (HM) coupled model. The purpose of this paper is to show how such a model
can be used to analyse the evolution of deformation and pressure in a fracture subjected to fluid
injection. A 2D BEM-FEM code is used to solve the non-linear system of equations that describe
the dependency of transmissivity on local fracture closure. The results of a sensitivity analysis of
the essential fracture parameters allow one to gain insight into the importance of the HM models
in the framework of the hydrogeology of fractured rock masses. Results obtained from a system of
two impervious blocks and a saturated fracture are reported, in order to show the possibilities
offered by this technique.

Keywords: BEM-FEM code; fractured rock hydrogeology, hydro-mechanical (HM) coupling.

1. Introduction

Theoretical and experimental studies on Hydro-Mechanical (HM) coupling in rock

masses have been performed over the last two decades. At present there is widespread

interest in the implications of HM coupling for several engineering applications in the

field of fractured rock hydrogeology. Furthermore, many geological processes can

only be reasonably predicted if a HM coupling is also considered.

Wang (2000) made a distinction between direct and indirect HM coupling. In the

first case, the coupling implies variations in the field variables (stress and pressure) of



the system, without any modification of its mechanical properties. In the second case,

a reduction in the pore or fracture volume results in a stiffer and less permeable

material. Indirect HM coupling is predominantly used in fractured rock; under the

variation of stress, fracture transmissivity can drastically change and significantly

affect the flow regime.

When indirect HM coupling takes place, the use of a numerical technique, which

accounts for these mechanical and hydrogeological changes, is therefore essential for

an appropriate prediction of the fluid flow, in particular when dealing with near-field

problems.

A computer code has been developed to simulate the transient fluid flow in a

discrete assembly of rock blocks and percolative fractures. This new development is

based on a procedure that has been set up and implemented at the Department of Earth

Sciences of the ETH (Fidelibus, 2003).

The local stress balance equations for the blocks are numerically solved using

a direct formulation of the Boundary Element Method (BEM), whereas the

diffusion equation in the fractures is dealt with using the Finite Element Method

(FEM) and a Galerkin weighted residual procedure. Finally, the equations that

describe the mechanical behaviour of the fracture are directly rendered in alge-

braic form.

This paper provides an overview of the influence of fracture deformability on the

transient flow response of a fracture. A system of two impervious blocks and a

saturated fracture is considered. The numerical results of a sensitivity analysis of

the fracture properties highlight the importance of HM coupling in the study of the

behaviour of fractured rocks.

2. Governing Equations

As previously mentioned, BEM integral equations are used to solve the local stress

balance equations of the blocks. Several advantages can be obtained when using BEM:

1. In the absence of body forces, the method provides a reduction in the dimen-

sionality of the problem, by transforming the governing equations into an integral

exact-form in terms of only the relevant quantities at the boundaries.

2. In a rather irregular system of fractures and porous blocks, only the discretiza-

tion of the lines that represent the fractures is needed.

3. The results do not improve consistently if the discretization is performed by

dividing the boundary segments into elements of different sizes; for this reason it is

reasonable to divide each boundary linear-segment into equal-sized elements. As a

consequence, the pre-processing is fast, and the results are more readable, as they only

refer to fractures or blocks boundary points and external boundaries.

If a discrete model is assumed under isothermal conditions, the simulation of

the fluid flow and deformation of a fractured medium only requires the specializ-

ing of the local stress balance equations for both blocks and fractures and fluid

continuity equations for fractures. A specific traction versus relative displacement

relation for the fractures is also needed. The governing equations are given in what

follows.

42 G. Cammarata et al.



2.1 Deformable Impervious Blocks

According to a reference system of global coordinates x, for a domain O composed of

a linear elastic and impervious material bounded by G, if the inertial effects are

neglected, the local stress balance equations can be written as follows:

�ij;i þ fj ¼ 0; ð1Þ
where �ij is the total stress tensor and fj are the body forces per unit volume.

The stress can be expressed as:

�ij ¼ �0
ij þ D�ij; ð2Þ

where �0
ij is the initial state of stress and D�ij the stress increment. Let us assume that

both body forces and initial stresses are zero. As a consequence �ij¼D�ij, which holds

for the following.

The Hooke stress-strain equation applies:

�ij ¼ 2G�ij þ ��vol�ij; ð3Þ
where G and � are the Lam�ee constants, �ij the strain tensor, �vol the volumetric strain and

�ij the Kroenecker delta. The �ii stresses are positive when they stretch the material.

Given the hypothesis of small displacements, the following equation applies:

�ij ¼
1

2
ðui; j þ uj;iÞ; ð4Þ

where ui are the displacements.

By inserting Eqs. (3) and (4) into Eq. (1) with fj¼ 0 and given �vol ¼ �kk, the

following Navier equation can be derived:

ð�þ GÞ @2uj

@xi@xj
þ G

@2ui

@xj2
¼ 0: ð5Þ

2.2 Deformable and Percolative Fractures

The percolation model for a planar, rough, deformable fracture requires significant

simplifications in order to be conveniently reduced to a 2D scheme. As a consequence

of the effective stress variation, the model has to account for the deformations of

fracture contacts, which implies a variation of the void volume and transmissivity of

the fracture. The model has to be geometrically and mechanically characterized.

With reference to a local coordinate system x0, with x 0
1, x 0

3 in the mean plane of the

fracture and x 0
1 parallel to the flow direction, the geometrical characterization of a

conductive section (x 0
2, x 0

3 plane) of width w requires a simplified representation of the

real roughness profile of the fracture walls where the morphology is sampled by nt
intervals, each Dw long, while in the flow direction x 0

1, the fracture is divided into

elements of length Li (Figs. 1 to 3).

This Li value should be less than the spatial correlation length lc for the apertures,

i.e. the distance within which the aperture values along the direction of the flow are

closely correlated to each other. The spatial correlation structure of apertures has been

evaluated in fractures that have to be submitted to fluid flow tests under normal
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(Hakami, 1995) and shear displacement (Yeo et al., 1998) conditions. The estimated lc
ranges from 10–20 mm for well matched fractures of up to 5–10 cm for the faults.

Provided the differences in the aperture values within lc are small, the assumption of

Fig. 1. Idealized model of the fracture

Fig. 2. Regular arrangement of the void volume and contacts

Fig. 3. Coordinate system for a fracture of an arbitrary orientation
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constant aperture within Li is an acceptable approximation. This model is similar to

the one that has recently been proposed by McDermott and Kolditz (2004).

For a given stress level, the void volume Vi
v of a fracture element of length Li and

width w is in general as follows:

Vi
v ¼

ðLi
0

ðw
0

eðx01; x03Þdx01dx03; ð6Þ

where a local aperture distribution eðx01; x03Þ is introduced. If the idealization of Fig. 1

is considered and provided that, for a specific interval j, the aperture assumes a con-

stant value ej along x 0
1, Eq. (6) can be modified as follows:

Vi
v ¼ Li

Xnv
j¼1

ðDwe jÞ ¼ LinvDw�ee ¼ Lið1 � dÞw�ee; ð7Þ

where nv is the number of intervals with not zero aperture, �ee is the average aperture

value within the element and d ¼ ðnt � nvÞ=nt is the ratio of the contact area of the

asperities to the total fracture area.

The introduction of the average aperture allows the fracture to be idealized as a

regular array of voids with length ð1 � dÞw=ðnt � nvÞ and height �ee (Fig. 2).

The average aperture �ee is therefore:

�ee ¼
Pnv

j¼1ðDwe jÞ
ð1 � dÞw ; ð8Þ

which is tendentially close to the estimate of the aperture E(e) which is equal to the

mean value of the distribution f (e):

EðeÞ ¼
ð1

0

ef ðeÞde: ð9Þ

Changes in the normal stress level determine a variation in the void volume DVi
v,

which can be written as follows:

DVi
v ¼ LiwD½ð1 � dÞ�ee� ffi Liwð1 � dÞD�ee; ð10Þ

provided (1� d) is constant in the idealized model.

A traction-relative displacement relationship of the fracture walls is necessary in

order to relate DVv to the fracture deformation:�
Tn þ p

Tt

�
¼

�
�knn knt
ktn �ktt

��
Un

Ut

�
; ð11Þ

where, with reference to Fig. 3, Tn and Tt are the normal and shear tractions (stress

vector components), p is the water pressure ðTn þ p ¼ T 0
n is the effective stress), Un

(fracture closure) and Ut are the normal and shear relative displacement components

equal to urn þ ubn, urt þ ubt , respectively, and knn, ktt, knt and ktn are the fracture stiffness

components that are closure-dependent. The fracture wall displacements are positive,

conforming to the positive signs of nr, nb, tr, tb. The minus sign of the diagonal

stiffness coefficients derives from the convention that was introduced, where Tn are

positive when they tend to open the fracture and Tt are positive when a couple tends to

spin the fracture in the anti-clockwise direction.
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Based on the model in Fig. 2, the variation in fracture closure is equal to minus the

variation of the average aperture ðDUn ¼ �D�eeÞ. This simple position synthesizes the

HM coupling for a percolative and deformable fracture. A reduction (or increase) in

void space, driven by an external load or pore pressure perturbation, in turn affects the

amount of water that is stored in the fracture (direct coupling) and, as later described

through the introduction of the cubic law, the transmissivity (indirect coupling).

Given this theoretical framework, there is no need to utilize the concept of mechan-

ical aperture em. However, one can take the mechanical aperture to be equal to the

average aperture and assume that:

em ¼ em0 � DUn ¼ em0 þ D�ee; ð12Þ
where em0 is an initial value that is related to the initial stress state.

Once the variation of the average aperture D�ee in Eq. (10) is replaced by the

variation in fracture closure DUn, one obtains:

DVi
v ¼ �Liwð1 � dÞDUn: ð13Þ

However, this model does not explicitly take into account the actual phenomena

(i.e.: local variations of fracture closure, lateral deformation or crushing of contacting

asperities and new contact formation) that occur in the fracture zone, during the load-

ing process. Some discrepancy occurs, due to these phenomena, between the comput-

ed DUn and the measured apparent closure DU�
n of the fracture zone during loading

tests on rock samples.

A more general expression should be given as follows:

DVi
v ¼ �LiwDð fcUnÞ; ð14Þ

where a stress-dependent coefficient fc is introduced which implicity accounts for the

relationship between the computed and measured apparent closure, and for the non-

linear variation of d.

An averaging operation is also necessary to describe the variation in the fluid dis-

charge along the flow direction x01 (Fig. 3). Namely, in a given time interval Dt, the water

mass balance of the element Li of the saturated fracture (Vv ¼ Vw) has to be written as:� ðFr;i

Fb;i

�wqx0
1

�
x01 þ

Li

2
; x02; t

�
dx02 �

ðFr;i

Fb;i

�wqx0
1

�
x01 þ

Li

2
; x02; t

�
dx02

�
wDt

¼ �DMi
w ¼ Mwðx01; tÞ �Mwðx01; t þ DtÞ; ð15Þ

where qx0
1

is the specific discharge (i.e. the average water velocity normal to a given

conductive section), �w is the water density, the functions Fr and Fb represent the

fracture walls (roof and base respectively) and DMi
w is the mass of water stored in or

released by the fracture.

The variation in the mass of water DMi
w is expressed as follows:

DMi
w ¼ Dð�wVwÞ ¼ VwD�w þ �wDVw; ð16Þ

where the indication of the element i is omitted; Equation (16), according to Eqs. (7)

and (14) and assuming w¼ 1, can be written as:

DMi
w ¼ Li½ð1 � dÞ�eeD�w � �wDð fcUnÞ�: ð17Þ
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It is worth noticing that the previously introduced coefficient fc acts as a coupling

factor, relating the volume of water released (or stored) in the fracture per unit length

of the fracture to the increase (or reduction) of the fracture closure.

By assuming that the density of water does not vary in the x 0
2 direction

ð�w ¼ �wðx01; tÞÞ, it is possible to write:ðFrðx0
1
Þ

Fbðx0
1
Þ
�wðx01; tÞqx01ðx

0
1; x

0
2; tÞdx02 ¼ �wQx0

1
ðx01; tÞ; ð18Þ

where Qx0
1

is the discharge per unit width.

By inserting Eqs. (17) and (18) into Eq. (15), the latter is modified as follows:�
�wQx0

1

�
x01 þ

Dx01
2

; t

�
� �wQx0

1

�
x01 �

Dx01
2

; t

��
Dt

¼ �Dx01½ð1 � dÞ�eeD�w � �wDð fcUnÞ�; ð19Þ
where Dx01 ¼ Li and all the quantities on the right hand side refer to the element

centered in x01. This equation still refers to an element of the idealized section of

Fig. 3, where teeth-like surfaces bound the void space; this would give rise to a

solution scheme where each element is equivalent to a resistor of given properties.

However, in order to give more generality to the code, a partial differential equation is

derived by letting Dt, Dx01 ! 0:

@ð�wQx0
1
Þ

@x01
þ ð1 � dÞ�ee @�w

@t
� �w

@ð fcUnÞ
@t

¼ 0: ð20Þ

By developing the partial derivatives of the excess of the mass discharge and of the

fracture closure with time one obtains:

�w
@Qx0

1

@x01
þ Qx0

1

@�w
@x01

þ ð1 � dÞ�ee @�w
@t

� �wfc
@Un

@t
� �wUn

@fc
@t

¼ 0: ð21Þ

Let us assume that the spatial variations in �w are much smaller than the local,

temporal ones (grad� � @�=@t) (Bear, 1979), and that the temporal variations of fc are

much smaller than those of Un, in such a way the second and the last terms of Eq. (21)

are negligible:

�w
@Qx0

1

@x01
þ ð1 � dÞ�ee @�w

@t
� �wfc

@Un

@t
¼ 0: ð22Þ

The state of the fluid equation (the relationship between the density and the

pressure) is as follows:

�w ¼ �w;0e
�wðp�p0Þ; ð23Þ

where �w is the fluid (water) compressibility and �w,0 the reference value for the water

density at the reference pressure p0. By differentiating, with respect to p, the temporal

derivative of p can be replaced. It follows that:

@Qx0
1

@x01
þ �wð1 � dÞ�ee @p

@t
� fc

@Un

@t
¼ 0; ð24Þ

where �w has been removed.
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In analogy with the generalized Darcy law (Bear and Bachmat, 1990), a general

expression for the fluid discharge can be introduced:

Qx0
1
¼ � Tf

�wjgj

�
@p

@x01
� �wgx0

1

�
¼ � Tf

�wjgj
@P

@x01
; ð25Þ

where the reduced pressure P ¼ pþ �wjgjz is included and Tf is the fracture trans-

missivity which in this work is evaluated by means of the cubic law:

Tf ¼
ge3

h

12�w
; ð26Þ

where the hydraulic aperture eh is introduced and �w is the kinematic viscosity. Since

this law defines a representative distance between two smooth, parallel fracture walls,

the following relation holds for the idealized adopted model (Fig. 2):

eh ¼ �eeð1 � dÞ: ð27Þ

Taking this relation and Eq. (12) into consideration, the following can be written:

Deh ¼ ð1 � dÞDem ð28Þ
or, in more general form:

Deh ¼ fcDem; ð29Þ
with fc again being stress-dependent.

Cornet et al. (2003) investigated this relation through a field experiment on a

single fracture subject to flow injection but with a couple of flat jacks controlling

the normal stress. They noticed that a non-linear relation holds for a sequence of

increasing injection pressures, with two distinct phases. In the first phase, the opening

of the fracture does not affect the transmissivity and low flow rates occur. Then, when

a certain critical value is reached, an equal increase in the mechanical aperture occurs

for an increase in the hydraulic aperture. This is consistent with a lack of contact and

d¼ 0 in Eq. (28).

Substituting Eqs. (25) and (27) in Eq. (24) yields the final expression of the

continuity equation which is given by:

1

�wjgj
@

@x01

�
Tf

@P

@x01

�
¼ �w

@P

@t
eh � fc

@Un

@t
: ð30Þ

One can observe that the flow regime through a fracture is essentially complex: for

instance, as observed by Yeo et al. (1998), shear deformation introduces flow hetero-

geneities and the 1D scheme here adopted could be too simplifying.

If the right-hand side of Eq. (30) is set to zero (steady-state flow), it can be written

as follows:

d

dx01

�
e3
h

dP

dx01

�
¼ 0; ð31Þ

which is the Reynolds lubrication-type flow equation. This equation is an approxima-

tion of the Navier-Stokes equations for an incompressible viscous fluid flowing in a

void space limited by rough surfaces and non-slip conditions between the fluid and
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solid. This equation has also been derived by assuming the cubic law to be valid

locally.

The validity of Eq. (31) is ensured if the aperture is much less than a characteristic

length �w along x01, defined as a distance within which the apertures do not vary

consistently and can be assimilated to the spatial correlation length lc. If this condition

does not hold, the discrepancy between the (true) solution of the Navier-Stokes equa-

tions and the solution provided by Eq. (31) can be consistent. Furthermore, if the

flowrate is not sufficiently small, the relation between the discharge and the pressure

gradient can be non-linear, even before the threshold that marks the transition from

laminar to turbulent flow is reached.

Zimmerman and Bodvarsson (1996) defined the transition limit between the linear

and non-linear phases as follows:

dP

dx01
¼ 12��2

w

e4
: ð32Þ

The reduced pressure gradient value is probably almost always exceeded in the

near-field of well injections.

3. The Numerical Scheme

A computer code (POSEIDON1) has been developed based on the previous equations.

It utilizes the direct Boundary Element Method (BEM) for the discretization, in space,

of Eq. (5) for the blocks of the system, while a Finite Element Method (FEM)

representation with a Galerkin weighted residual procedure is used for the fracture

Eq. (30), with temporal derivatives rendered in finite differences. Finally, Eq. (11) is

explicitly written and included in the equation system. The time interval is divided

into time steps of constant duration and all the variables are constant within a single

step. The spatial discretization is limited to only the fractures. The variables are

constant along a single element, except for the pressure, whose representation is

quadratic (three nodes per element).

3.1 BEM Integral Equations

The Boundary Element Method equation for elastostatics (Brebbia et al., 1984;

Becker, 1992) derives from the application of the Somigliana identity and the use

of the fundamental solutions of Eq. (5). It follows that:

cijujðxcÞ ¼
ð
G
u�ij ðxc; xÞTjðxÞdGðxÞ �

ð
G
T�ij ðxc; xÞujðxÞdGðxÞ; ð33Þ

where cij – called the free term – is a geometrical factor; u and T are the unknown

displacements and tractions in a domain O with boundary G; u� and T� are the Kelvin

fundamental solutions of Eq. (5), given for an infinite domain O�, made up of the

same material as the body under consideration, when a concentrated unit load applies

in a collocation node xc.

1POSEIDON (POro-SEctIoned medium DeformatiON analysis)
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In 2D plane-strain problems, the fundamental solutions are as follows:

u�ij ðxc; xÞ ¼
�

2G
½ð3 � 4�rÞ ln ðrÞ�ij � r;ir;j� ð34Þ

T�ij ðxc; xÞ ¼
�

r

�
½ð1 � 2�rÞ�ij þ 2r;ir;j�

@r

@n
� ð1 � 2�rÞðr;inj � r;jniÞ

�
; ð35Þ

where �r is the Poisson ratio of the rock blocks, r¼ r (xc, x) represents the distance

between the collocation point xc and the field point x, � ¼ �½4	ð1 � �rÞ��1
and n is

the normal at the boundary in x.

Each segment of the periphery of a block O bounded by G is discretized in equal-

length elements. The centroid of a generic element hosts the displacements u and

tractions T as primary unknowns; these unknowns are constant within each element.

If a collocation point is located in each node i of the discretization, a set of integral

equations is derived by re-arranging Eq. (33) as follows:

cðxiÞ þ
Xne
j¼1

ð
Gi

T�ðxi; xjÞuðxjÞdGj �
Xne
j¼1

ð
Gj

u�ðxi; xjÞTðxjÞdGj ¼ 0; ð36Þ

where u (xj) and T (xj) are the nodal displacements and tractions in the element j

whose centroid has coordinates xj. If ne(ib) is the number of elements of a block ib,

2ne(ib) new equations can be introduced.

Given nb blocks, 2ne(ib)� nb BEM equations are available, while 4ne(ib)� nb are

the introduced unknowns. For all the blocks, it follows that:

AuL þ BTL ¼ 0; ð37Þ
where A and B are matrices of coefficients, produced through the numerical solution

of the integrals in Eq. (36). The apex L refers to the solution at time step LDt. It

should be noted that A and B are calculated and stored at the beginning of the process

and retrieved at each time step.

3.2 FEM Equations of the Diffusion in the Fracture Network

The discretization of the fractures using 1D elements is consistent with that performed

along the block boundaries. This 1D scheme makes a fracture geometrically coinci-

dent with the faces of the opposing blocks that contain the fracture. The centroids of

the elements that make up the fractures coincide with the centroids of the discretiza-

tion elements of the opposing rock blocks. The tractions and displacements are con-

stant in each element, while pressure has a quadratic distribution. Aperture eh is also

constant within each element, consistent with the hypothesis in Section 2.2. Uniform

tractions and displacements do not require the treatment of discontinuities at the

corners of the blocks. A similar scheme with shape functions that were differentiated

for the unknowns were used in a previous paper (Fidelibus et al., 1997).

The application of a Galerkin weighted residual procedure leads to the following

integral FEM expression of Eq. (30) written for each node i of a fracture of lenght L:

�
ð
L

Tf

�wjgj
dNi

dx01

dNj

dx01
pjdx

0
1 ¼

ð
L

�wehNiNj

dpj

dt
dx01 �

ð
L

fcNi

dUn

dt
dx01; ð38Þ

where p¼Njpj, with Nj the shape functions.
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The integrals in Eq. (38) are equal to the summation of the integrals computed for

each element k that makes up the fracture. For a network of nf fractures, the spatial

discretization leads to the following system of first-order differential equations:

� 1

�wjgj
Xne
k¼1

Tk
f C

kp ¼ �w

Xne
k¼1

ekhE
k _pp�

Xne
k¼1

f kcD
k _UUn; ð39Þ

where ne is the total number of elements in the network and Ck, Dk and Ek are element

matrices, that are expressed as follows:

Ck
ij ¼

ð
Lk

dNidNj

dx01dx
0
1

dx01 ¼ 1

jJj

ðþ1

�1

dNidNj

d
d

d
 ð40Þ

Dk
i ¼

ð
Lk
Nidx

0
1 ¼ jJj

ðþ1

�1

Nid
 ð41Þ

Ek
ij ¼

ð
Lk
NiNjdx

0
1 ¼ jJj

ðþ1

�1

NiNjd
; ð42Þ

where i and j range from 1 to nn, that is, the number of fracture nodes in the network.

In the above expressions, the adimensionalized coordinate 
 and the Jacobian

jJj ¼ Lk=2 are introduced, with Lk being the length of the element k.

Given the subdivision into a number of equal time increments, with reference to a

time station LDt, the time derivatives in Eq. (39) are discretized by the finite differ-

ence approximation using a fully implicit scheme:�
dpj

dt

�L

¼
pLj � pL�1

j

Dt
ð43Þ

�
dUn

dt

�L

¼ UL
n � UL�1

n

Dt
: ð44Þ

Substituting Eqs. (43) and (44) in Eq. (39), after rearranging the terms so that the

unknowns appear on the left-hand side and the known quantities on the right-hand

side, the following algebraic expression is derived:

� 1

�wjgj
Xne
k¼1

Tk
f C

kpL � �w

Dt

Xne
k¼1

ekhE
kpL þ 1

Dt

Xne
k¼1

f kcD
kUL

n

¼ �w

Dt

Xne
k¼1

ekhE
kpL�1 þ 1

Dt

Xne
k¼1

f kcD
kUL�1

n :

ð45Þ

3.3 Traction-relative Displacement Equations

Equation (11) can be written for the centroid of a generic element i in compact form as

follows: �
TiL
n þ pi

L

TiL
i

�
¼ kisec

�
UiL

n

UiL
i

�
; ð46Þ
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where a secant stiffness matrix kisec is introduced (see Section 4.2) and pi is the

average water pressure evaluated by interpolating the nodal pressures p1, p2, p3 along

the element i through the shape functions N1, N2, N3:

pi ¼
Ð
Li
Njðx01Þpjdx01

Li
¼ 1

6
p1 þ

2

3
p2 þ

1

6
p3: ð47Þ

Equations (37), (45) and (46) form a non-linear system where kisec is stress-depen-

dent, while Tf, eh and fc depend on the displacements of the fracture walls. This system

can be solved by the iterative Picard method (Huyakorn and Pinder, 1983).

4. HM Response of a Single Fracture

As already discussed, several engineering activities can modify the flow regime in a

fractured rock mass. In particular conditions, the fracture deformation affects the

hydrogeological properties of the rock-fracture system. As a consequence, a hydro-

mechanically coupled model is needed to better capture the transient evolution of the

pressure and discharges. Uncoupled models are not in fact appropriate for the simula-

tion of the transient phenomenon. The use of these models is only justified when the

local variations of transmissivity are negligible and, in addition, the total isotropic

stress can be reckoned to be constant in time.

In the following, the results of a simulation of a plane fluid flow in a deformable

fracture subjected to fluid injection under constant head are given. The purpose of this

simulation is to underline the importance of coupled processes in the flow through

fractured rock masses and to show the suitability of the implemented numerical

algorithms to cope with such a problem.

The authors are aware that the assumption of plane flow (and plane strain) is not

realistic when dealing with borehole injection tests in single fractures. For several

reasons the use of an axis-symmetric model is also not fully appropriate and only a

three-dimensional model can depict the flow regime and the strain=stress field in the

rock mass. A two-dimensional scheme is justified here as it is only used to illustrate

the effects of the HM coupling. However, the extension of this study to three-dimen-

sional conditions is necessary.

The case that has been considered is depicted in Fig. 4. A 100 m deep and 100 m

long horizontal fracture is bounded by two impervious blocks. A 500 kPa injection

pressure Dpinj is applied to one extremity, and the fracture is bounded by a high

permeability region, where the initial pressure pini is kept constant, at the other

extremity. The model assumes plane flow and plane strain conditions. The parameters

of the model are listed in Table 1. Moreover, a unit coupling factor fc is assumed,

which implies e ¼ eh ¼ �ee, and, as previously mentioned, Tf is evaluated by means of

the cubic law. A sensitivity analysis is performed with the normal stiffness knn having

the following values: 0.1, 1, 10, 100 GPa=m. All the segments that define the boundary

are divided into 5 elements, including the fracture.

The length of each element of the fracture is 20 m; this value obviously

exceeds any plausible value of the spatial correlation length lc. When dealing with

large-scale problems, the use of elements, whose length is several orders of mag-
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nitude smaller than a characteristic length of the problem, is not practicable. If the

single fracture element is viewed as a series of resistors of length lc, an equivalent

transmissivity can be calculated, provided the portion along which this calculation

is performed is subject to a uniform pressure gradient. As a consequence, in a

problem where high gradients are expected, the length of these equivalent ele-

ments should be tailored to the distribution of the gradients (i.e. to follow a rapid

variation, a fine discretization should be considered). A coarse discretization was

selected for the subsequent numerical experiments to reduce the computation time,

irrespective of the previously mentioned considerations. The definition of a crite-

rion for the length of the equivalent element is not the purpose of this work.

It is worthwhile mentioning that the knn values selected for the sensitivity anal-

ysis refer to different tendencies of the fracture to modify its transmissivity when it

undergoes deformation, which also depends on the stiffness of the rock blocks,

geometry and boundary conditions. All these factors together control the fracture

deformability which, in a loose sense, is herein used as a substitute for the overall

system deformability.

Fig. 4. Scheme of the model used in injection test simulation

Table 1. Material properties introduced into the model

Rock

Density �r 2500 kg=m3

Young modulus Er 10� 100 GPa
Poisson ratio �r 0.25

Fracture

Normal stiffness knn 0.1� 100 GPa
Tangential stiffness ktt 0.5 GPa=m
Initial aperture e 10�4 m

Fluid

Density �w 1000 kg=m3

Compressibility �w 5 � 10�1 GPa�1

The Hydro-Mechanically Coupled Response of Rock Fractures 53



The results of the numerical experiments clearly show the importance of the

indirect coupling; a great increase in transmissivity can occur during an injection

which in turn affects the fluid flow regime and the evolution of fluid pressure. This

modification can in part be permanent if hysteretical behaviour of the fracture subsists.

4.1 Results for Constant Stiffness

The results are illustrated in terms of flow rate at the injection point and pressure and

transmissivity variations along the fracture. The flow rates Qinj at the injection point

and for Er ¼ 10 GPa are shown in Fig. 5 in detail. For knn equal to 10 and 100 GPa=m,

the Qinj values plot as a typical decreasing curve of the diffusion equation. For the

lower knn values, the solution shows a peak followed by the post-peak phase whose

temporal extension increases with the stiffness. This response is induced by the dra-

matic increase in transmissivity near the injection point. At the beginning, the fracture

is propped open by the pressure and the flow rate rapidly increases as a consequence

of the quick increase in transmissivity. The subsequent reduction in the pressure

gradients reverses this tendency. Nevertheless, the steady-state flow rate is consistently

higher than for the higher knn values.

The Qinj values are plotted versus time in Fig. 6 for knn equal to 1 GPa=m in

conjunction with Er equal to 1, 10 and 100 GPa. It is apparent from this figure that,

even for a very low fracture stiffness, the bell-shaped curve is not reproduced when the

stiffness of the rock increases.

The values of transmissivity Tf and pressure p along the fracture are plotted in

Figs. 7 and 8 for a rather deformable fracture (knn¼ 0.1 GPa=m). With the progressive

Fig. 5. Flow rate Qinj at the injection point versus time t (knn¼ 0.1� 100 GPa=m, Er¼ 10 GPa)
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opening of the fracture, the transmissivity in the far-field increases up to the final value

which is reached after about 500 seconds. Near the injection point, the final value is

reached after 100 seconds (Fig. 7). Afterwards, the increase in transmissivity also

propagates to the far-field. In the last phase (200 seconds), the flow rate Qinj decreases

Fig. 6. Flow rate Qinj at the injection point versus time t (knn¼ 0.1 GPa=m, Er¼ 1, 10, 100 GPa)

Fig. 7. Values of transmissivity along the fracture for different t values (knn¼ 0.1 GPa=m, Er¼ 10 GPa)
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because the maximum deformation of the fracture is reached and the pressure gradi-

ents are reduced, as previously mentioned. This behaviour has also been experimen-

tally obtained by Alm (1999) (Fig. 9). Finally, the long-term pressure distribution does

not conform to the classical linear steady-state hydrogeological solution, which con-

siders constant Tf throughout the process, as shown by the dashed line in Fig. 8 and

this fact constitutes one of the main reasons for the use of a HM coupling model.

4.2 Results for Stress-dependent Stiffness

The HM coupled response for the problem of Fig. 4 was tested under injection by

setting a stress-dependent stiffness to the fracture. The Saeb and Amadei (1992)

model – modified by Souley et al. (1995) – was considered for the simulation

Fig. 9. Flow rate response during a constant pressure injection into a subhorizontal fracture (after Alm, 1999)

Fig. 8. Values of pressure along the fracture for different t values (knn¼ 0.1 GPa=m, Er¼ 10 GPa). The
dashed line represents the steady-state values for a pure hydrogeological solution
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(Fig. 10). This model can be envisaged as a generalization of the models introduced

earlier by Goodman (1976) and Bandis et al. (1983).

The injection test curve is hyperbolic with asymptot for Un¼Un,max. The irrecov-

erable normal displacement Un,irr is also required when unloading is completed. This

parameter depends on the maximum level of normal stress �0
n;ini prior to unloading for

the given loading (L)-unloading (U) cycle. As assumed in the model, the initial normal

stiffness for unloading knn,tan,0(U) (defined at (Un,irr, 0)) is equal to the secant to the

loading curve at the point (Un,ini, �
0
n;ini):

knn;tan;0ðUÞ ¼
�0
n;ini

Un;ini

: ð48Þ

The normal stiffness knn of the fracture has the following expression:

knn ¼ knn;tan;0ðUÞ

�
1 � �0

n

knn;tan;0ðUÞðUn;max � Un;irrÞ þ �0
n

��2

: ð49Þ

An initial effective stress �0
n;ini of 700 kPa was considered in the example. Three

different injection pressure Dpinj levels were applied, corresponding to the 85%, 70%

and 60% of �0
n;ini, while the final effective stress at the injection point �0

n;end had values

of 100, 200 and 300 kPa respectively. The iterative procedure for the computation of

the stiffness begins by assuming, as a first trial, knn equal to the value that corresponds to

the tangent stiffness at point (Un;ini, �
0
n;ini) of the injection test curve, when unloading

begins, then the value is adjusted using the slope of the secant. The parameters used for

this test are knn,tan,0(L)¼ 0.1 GPa=m, knn,tan,0(U)¼ 7.1 GPa=m, Un;irr ¼ 8.7 � 10�5 m,

Un;max ¼ 1 � 10�4 m.

The flow rate is shown in Figs. 11, 12 and 13, where the comparisons are given

with the results of the simulation for a normal constant stiffness knn equal to knn,sec1;

this latter value (sec1 in Fig. 10) is equal to the slope of the secant drawn between

�0
n;ini and �0

n;end. In all cases, the flow rate Qinj predicted by the constant knn model is

slightly different from the Qinj given by the stress-dependent knn model. The difference

Fig. 10. Extended version of the Saeb and Amadei model
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reduces for smaller values of the injection pressure. However, the steady-state values

are the same.

Further simulations where therefore performed for the case with Dpinj ¼ 70%� 0
n;ini,

with higher values of knn,sec, with the aim of finding a better match with the results of

the non-linear model. In this specific case, a perfect match is given for knn equal to

knn,sec2, corresponding to the secant (sec2 in Fig. 10) drawn between � 0
n;ini and

�0
n;50% ¼ 450 kPa (Fig. 14). It is clear that the use of a stress-dependent stiffness is

Fig. 11. Flow rate Qinj versus time t: comparison between the model with stress-dependent (SDNS) and
constant (CNS) knn for Dpinj ¼ 85%�0n;ini

Fig. 12. Flow rate Qinj versus time t: comparison between the model with stress-dependent (SDNS) and
constant (CNS) knn for Dpinj ¼ 70%�0n;ini
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not advantageous when dealing with injection problems, given the particular shape of

the unloading curve of the non-linear model adopted.

5. Conclusions

The hydro-mechanically coupled response of a rock fracture in an injection test has

been assessed through a BEM-FEM code which analyses an assembly made of imper-

vious elastic blocks intersected by percolative deformable fractures. Emphasis was

Fig. 13. Flow rate Qinj versus time t: comparison between the model with stress-dependent (SDNS) and
constant (CNS) knn for Dpinj ¼ 60%� 0

n;ini

Fig. 14. Flow rate Qinj versus time t: comparison between the model with stress-dependent knn (SDNS) and
with two constant values for knn (CNS, CNS 50%)

The Hydro-Mechanically Coupled Response of Rock Fractures 59



placed on the implications in the fluid flow regime and system deformation when HM

coupling is dominant. Several analyses were carried out from which the following

statements can be drawn:

– The most relevant implication of HM coupling, during an injection test, is the

great variation in transmissivity that can occur in the near-field of a deformable

fracture (close to the injection point) as a consequence of the induced opening. This

variation is locally distributed and the discretization of the fracture is consequently

required to follow this variation.

– Systematic modelling, using a non-linear stress-closure relation and stress-

dependent stiffness, does not appear to be justified with respect to the HM response

of a fracture during an injection test. Because of the particular conditions of the

example, the flow rate computed with the non-linear model can also be obtained using

an appropriate constant value of knn. In principle, this would suggest removing an

unnecessary source of complexity from the computational scheme through the use of a

suitable constant fracture stiffness model.
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