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Summary

A simple analytical method for the analysis of point anchored rockbolts is presented in this paper.
The solution has been derived for elastic ground and rockbolts, for plane strain conditions, and for
tunnels with circular cross section. The method provides accurate results for the rockbolts’ loads
and displacements and explicitly includes the connection of the rockbolts to the surrounding
ground. The addition of such details to a Finite Element numerical model is critical; otherwise
the solution obtained may be dependent on the discretization used and on the stiffness of rockbolts
and ground. As an alternative to including details of the rockbolt head and anchor point in the
numerical model, which could be computationally very expensive, an equivalent spring constant is
proposed. The spring constant is obtained by matching numerical with analytical results for a
simple case, but keeping the geometry, material properties, and discretization unchanged.

Keywords: Tunnel, point anchored rockbolts, elastic, analytical solution.

1. Introduction

A tunnel support must sustain the load induced by the ground as it is excavated. Different

types of support can be used such as concrete or shotcrete liners, steel sets, ungrouted or

grouted rockbolts, etc. The design of the support often requires the use of complex

numerical methods that can take into account the inherently three dimensional nature

of the problem, the non-linear response of the ground and the support, and the construc-

tion process (Hoek and Brown, 1982; Aristorenas, 1992; Einstein and Bobet, 1997;

Bobet et al., 1998; Gioda and Swoboda, 1999; Kawamoto and Aydan, 1999; Carranza

and Fairhurst, 2000; Augarde and Burd, 2001; Eberhardt, 2001; Alonso et al., 2003; Zhu

et al., 2003; Kasper and Meschke, 2004; Lee and Nam, 2004; Muniz de Farias et al.,

2004; Potyondy and Cundall, 2004; Shalabi, 2005). Such numerical analyses may

demand a substantial effort during modeling, problem solution, and interpretation of

results, and they often require multiple iterations to find the optimum design.



Simple analytical solutions have the advantage of providing with very little effort

an initial estimate of the support loads. In some cases this approximation may be

sufficient for design. In other cases a numerical solution will be required; however the

initial estimate provided by the analytical solution can be used as a first iteration. In

addition, analytical solutions include all the fundamental variables and thus they are

useful to identify those factors that are the most critical, and to verify numerical

methods. Such simple solutions are available in only very few cases. For example

the relative stiffness method for dry ground (Einstein and Schwartz, 1979) or for

saturated ground (Bobet, 2001, 2003) is applicable to tunnels with a circular liner.

Empirical or semi-empirical methods (Hoek and Brown, 1982; Sinha, 1989) often rely

on the subjective judgment and experience of the designer.

Rockbolts are often used as a tunnel support. Two types can be distinguished (Hoek

and Brown, 1982): (1) point anchored rockbolts; and (2) full or partial length grouted

rockbolts. Point anchored rockbolts are connected to the surrounding ground either

mechanically or chemically (grout or resin) through a small length compared to the

length of the rockbolt shaft; the rest of their length is left ungrouted. The connection to

the tunnel wall is usually accomplished with a bolted head and a steel plate. Point

anchored rockbolts are loaded due to the relative movements of the ground between

the anchor head and the anchor point, and thus their behavior can be separated from that

of the surrounding ground. Full or partial length grouted rockbolts do not behave

independently of the ground and work as a ground reinforcement (Stille et al., 1989).

Full or partial length grouted rockbolts are routinely used as tunnel support and

have received significant attention in the technical literature (Sharma and Pande, 1988;

Stille et al., 1989; Tannant et al., 1995; Oreste and Peila, 1996; Li and Stillborg, 1999;

Serrano and Olalla, 1999; Chen et al., 2004; Cai et al., 2004a, b; Grasselli, 2005). Point

anchored rockbolts are not as common, but they have the advantage of providing, if

needed, an initial pre-stressing to the surrounding rock. Comparatively much less

effort has been dedicated to their behavior (Farmer, 1975; Hoek and Brown, 1982;

Labiouse, 1996; Windsor, 1997; Bobet, 2002; Liu et al., 2005)

There are no closed-form solutions to estimate the loads in point anchored rock-

bolts or, for that matter, for the design of tunnels with these rockbolts. Since point

anchored rockbolts work because of the extension between the anchor head and the

anchor point, they are often introduced into a numerical scheme (e.g. a Finite Element

Model) as springs. The springs elongate because of the relative movement of the

ground between the points of connection (head and anchor), which creates a reaction

from the rockbolts in the form of two identical concentrated forces of opposite direc-

tion applied at the head and at the anchor points. This is a scheme that has been used

in tunnels, anchored walls, etc. The scheme is not always correct and may introduce

errors, which are dependent on the mesh used and on the stiffness of the rockbolt

(spring) and ground. This is illustrated with the numerical computation of the dis-

placements between two points, where two collinear and opposite forces are applied.

The two points are spaced two units and are placed in an infinite elastic medium

(Fig. 1). The results have been obtained with the code ABAQUS (Hibbit et al., 2002),

a Finite Element Method (FEM) program, with the assumption of plane strain and

Poisson’s ratio �¼ 0.2. Figure 1 plots the displacements as a function of the number of

elements used between the two points. The figure shows that the displacements
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increase with the number of elements. The analytical solution of this problem can be

found in Timoshenko and Goodier (1970) for plane stress. With the transformation of

the elastic constants E (plane strain)¼E=(1� �2), and � (plane strain)¼ �=ð1 � �Þ, one

gets for plane strain:

uE

P
¼ �ð1 þ �Þð3 � 4�Þ

8�ð1 � �Þ ln
1 � x

1 þ x

� �2

; ð1Þ

where u is the horizontal displacement of a point located at a distance x from the

center between the two loads (Fig. 1); E and � are the Young’s modulus and the

Poisson’s ratio of the medium, respectively; and P is the magnitude of the load.

The displacement at the points of application of the load (x¼�1 or x¼ 1) is infinite.

The results of Fig. 1 can be viewed as the rate of convergence of the FE analysis

towards the exact solution. This rate is very slow, as denoted by the small increase of

displacement with the number of elements, which is shown in a logarithmic scale.

Figure 2 shows the results obtained with ABAQUS of the load, P, of a rockbolt of

unit length, placed on a tunnel of unit radius, in an infinite medium subjected to a

uniform far field stress of unit magnitude. This is a 2D analysis where point anchored

rockbolts are modeled as springs. The results are obtained for different ratios of

stiffness of the medium and the rockbolt, defined by the Young’s modulus of the

medium, E, and the rockbolt spring constant, k (the force required to produce a unit

elongation of the spring); the Poisson’s ratio is always �¼ 0.2. The figure shows that

the load is highly dependent on the discretization used, defined as the number of

elements between the tunnel perimeter and the end of the rockbolt (all the elements

Fig. 1. Effect of discretization on displacements produced by a pair of concentrated forces in infinite
medium. uE=P¼ normalized displacement between load application points
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are approximately square). As the number of elements increases, the load of the

rockbolt decreases; this is so because the displacements induced by the load increase

with the number of elements (see Fig. 1). What is interesting is that the load strongly

depends on the relative stiffness between the anchor and the medium. For a soft

anchor (stiff medium), the solution is quite insensitive to the discretization. This is

not the case for a medium relatively soft compared with the anchor; in this case the

solution is very sensitive to the discretization used. Since tunnel support with rock-

bolts is a displacement-driven problem (the rockbolts take load because of the ground

deformations) it is expected that modeling of rockbolts as springs, without considera-

tion of how the load is transferred between the rockbolt and the ground (i.e. as a

concentrated load), may result in inaccurate rockbolts’ loads while the displacements

obtained may be reasonable.

The paper presents a simple method for the analysis of anchored rockbolts in deep

tunnels and provides recommendations, in the form of an equivalent stiffness, which

can be incorporated in a numerical method. The following assumptions are made:

(i) Elastic behavior of the ground and the rockbolts.

(ii) Circular cross section of the tunnel.

(iii) Plane strain conditions on any cross section perpendicular to the tunnel axis.

(iv) Deep tunnel: the ground can be considered weightless. The errors introduced

with this assumption are small for tunnels located at a depth of at least five times the

tunnel radius (Bobet, 2003).

Fig. 2. Effect of discretization and stiffness on point anchored rockbolt loads. P=k¼Normalized load with
respect to rockbolt spring constant
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In the following discussion the geomechanics sign convention is used, with com-

pression positive and tension negative.

2. Analytical Solution

The problem that will be solved is shown in Fig. 3. It consists of a tunnel with a

circular cross section supported by rockbolts with far field stresses �v and �h (no pore

pressures are considered, thus total stresses and effective stresses coincide). The

following is a list of the variables used:

Fig. 3. Tunnel with point anchored rockbolts (the point anchor is represented by the bond length L)

c anchor head dimension
ds rockbolt diameter
E, � Young’s modulus and Poisson’s ratio of the ground
Es Young’s modulus of rockbolts
k spring constant
ko coefficient of earth pressure at rest; ko¼�h=�v
L anchored length of rockbolt
P rockbolt load
r, � polar coordinates
ro tunnel radius
� rockbolt length measured from the center of the tunnel
S spacing of rockbolts along tunnel axis
�v, �h far field vertical and horizontal stresses
�r, ��, � r� stresses in polar coordinates
Ur, U� displacements in polar coordinates
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The rockbolts are considered as springs with load proportional to elongation.

Thus a rockbolt can be replaced by a pair of concentrated loads of equal magnitude

and opposite direction, one acting at the anchor head and the other one at the anchor

point of the rockbolt. Since this is a 2D analysis, it is assumed that the rockbolt loads

are distributed per unit length of tunnel. The singularity created by the concentrated

loads at the ends of the rockbolts is removed by taking into account the actual

geometry of the connection between the rockbolt and the ground; details are pro-

vided in the following sections. Because of elasticity, the problem can be decom-

posed into four different problems: Problem I: A concentrated load of magnitude

P applied at the tunnel perimeter (Fig. 4a); Problem II: A concentrated load in an

infinite medium (i.e. there is no tunnel) of magnitude P applied at a distance �
(Fig. 4b); Problem III: A stress field applied at the tunnel perimeter of equal and

opposite magnitude to the field produced by Problem II at the same location (Fig. 4c),

such that superposition of Problems II and III would result in the solution of the

problem of a concentrated load in the medium with a circular opening (i.e. the

normal and shear stresses at the tunnel perimeter are zero); and Problem IV: a tunnel

subjected to a far field stress �v and �h (Fig. 4d). Note that P in Fig. 4(a) and 4(b) is

the load applied to the ground by the rockbolt; the load on the rockbolt is the same

but with opposite magnitude. Thus for the ground the load P induces shortening

while for the rockbolt induces elongation.

Fig. 4. Problem decomposition. (a) Problem I: concentrated load at tunnel perimeter; (b) Problem II:
concentrated load in infinite medium; (c) Problem III: stress superposition at tunnel perimeter; (d) Problem

IV: far field stresses
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The complete solution can be obtained by the addition of the solutions of Pro-

blems I through IV. To obtain the loads on the rockbolts compatibility of deforma-

tions between the ground and each rockbolt must be imposed. Thus for rockbolt i

(Fig. 3):

I�Ui þ II�Ui þ III�Ui þ IV�Ui ¼ 4Sð�� roÞ
�EsðdsÞ2

P

 !i

¼ P

k

� �i

; ð2Þ

where �Ui ¼ Ui
rjr¼� � Ui

rjr¼ro
. The left hand side of Eq. (2) corresponds to the

elongation of rockbolt i due to the far field stresses and all the rockbolts, includ-

ing rockbolt i itself. The right hand side of the equation is the elongation of the

rockbolt shaft due to the load P (note that, as mentioned, the analysis assumes

that the rockbolts loads are distributed per unit length of tunnel, thus the product

of the load and the longitudinal rockbolt spacing is the actual load that the

rockbolt carries), which can be expressed as the ratio between the load and

the spring constant k ¼ �EsðdsÞ2

4Sð��roÞ. For a tunnel with N rockbolts, a linear system

of N equations can be established with N unknowns which are the loads of the

rockbolts. Note that the distribution of the rockbolts in the tunnel does not have

to be symmetric. The following sections present the analytical solution for each

problem.

2.1 Problem I: Concentrated Load at the Tunnel Perimeter

The geometry of the problem is illustrated in Fig. 4a. A solution for a similar case but

in plane stress already exists (Timoshenko and Goodier, 1970). Unfortunately the

solution does not satisfy strain compatibility in plane strain; for this reason a com-

pletely new solution has been developed. The Airy stress function, �, in plane strain is

(see Appendix II):

� ¼ P

�
 r sin �þ 1

2
ro ln r � 1

2
r� sin �� 1 � 2�

4ð1 � �Þ r ln r cos �� 3 � 4�

8ð1 � �Þ
r2
o

r
cos �

� �
ð3Þ

This function satisfies equilibrium, strain compatibility, and boundary conditions.

Stresses and displacements are given by:

�r ¼
P

�

2r cos �� roð1 þ cos2�Þ
ðr � ro cos �Þ2 þ r2

o sin2�
þ ðr2

o � r2Þro sin2��
ðr� ro cos �Þ2 þ r2

o sin2�
�2

(

þ 1

2

ro

r2
� 5 � 6�

4ð1 � �Þ
1

r
cos �þ 3 � 4�

4ð1 � �Þ
r2
o

r3
cos �

)

�� ¼ �P

�

2ðro � r cos �Þr2
o sin2��

ðr� ro cos �Þ2 þ r2
o sin2�

�2 þ 1

2

ro

r2
þ 1 � 2�

4ð1 � �Þ
1

r
cos �þ 3 � 4�

4ð1 � �Þ
r2
o

r3
cos �

( )
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�r� ¼
P

�

2ro sin � cos �

ðr � ro cos �Þ2 þ r2
o sin2�

� 2 r r2
o sin3��

ðr � ro cos �Þ2 þ r2
o sin2�

�2
(

� 1 � 2�

4ð1 � �Þ
1

r
sin �þ 3 � 4�

4ð1 � �Þ
r2
o

r3
sin �

� ð4Þ

Ur ¼�ð1þ �ÞP
�E

ð1� �Þ cos� ln
�
ðr� ro cos�Þ2 þ r2

o sin2�
�
� 5� 12�þ 8�2

4ð1� �Þ cos� ln r

�

� ð1� 2�Þ sin� tan�1 r� ro cos�

ro sin�

� �
� �

2
signð�Þ

� �

þ r ro sin2�

ðr� ro cos�Þ2 þ r2
o sin2�

� 1

2

ro

r
� 3� 4�

8ð1� �Þ
r2
o

r2
cos�

)

U� ¼
ð1þ �ÞP
�E

ð1� �Þ sin� ln
�
ðr� ro cos �Þ2 þ r2

o sin2�
�
� 5� 12�þ 8�2

4ð1� �Þ sin� ln r

�

þ ð1� 2�Þcos� tan�1 r� ro cos�

ro sin�

� �
� �

2
signð�Þ

� �

þ1

2

ðr2 � r2
oÞ sin�

ðr� ro cos �Þ2 þ r2
o sin2�

� 1� 2�

4ð1� �Þ sin�þ 3� 4�

8ð1� �Þ
r2
o

r2
sin�

)

ð5Þ

The displacements, as expected, have a singularity at the point of application of

the load (r¼ ro, �¼ 0). This indicates that the local distribution of the load has a large

Fig. 5. Schematic of rockbolt head
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influence on the displacement at this particular location. In practice the rockbolts’ load

is applied to the tunnel wall through a small but finite area (rockbolt head) that

distributes the load; see Fig. 5. The size of the area along the perimeter of the tunnel

is taken as c (side of the square, or diameter or the circular plate). Because of the plane

strain assumption it is assumed that the load is distributed uniformly along the axis of

the tunnel; this is a limitation of the model but it is necessary because of the 2D

analysis. Integration of the displacements due to a distributed load of magnitude

�¼P=c over the area of the rockbolt head gives:

Ur

				
r¼ro
�¼0

¼ � 1 þ �

1 � �

P

8�E
�ð3 � 4�Þð5 � 4�Þ þ 16ð1 � �Þ2

ln
c

2ro

� �
þ 2ð3 � 4�Þ ln ro

� �

U�

				
r¼ro
�¼0

¼ 0: ð6Þ

Stresses and displacements at locations other than the anchor head are not much

affected by the local distribution of the load provided that c=ro is small, which is generally

the case. The errors introduced to other rockbolt elongations are smaller than about 1%.

2.2 Problem II: Concentrated Load in an Infinite Medium

The problem is shown in Fig. 4b. This is Kelvin’s problem (Soutas-Little, 1999). For

completeness the stresses and displacements are included. They are in polar coordinates:

�r ¼ � P

8�ð1 � �Þ
�2�þ ð7 � 4�Þr cos �� 4ð1 � �Þ� cos 2�� r cos 3�

ðr � � cos �Þ2 þ �2 sin2�

(

�r2 �þ r cos �� 2� cos 2�� r cos 3�þ � cos 4��
ðr � � cos �Þ2 þ �2 sin2�

�2
)

�� ¼ � P

8�ð1 � �Þ
�2�� ð3 � 4�Þr cos �þ 4ð1 � �Þ� cos 2�þ r cos 3�

ðr � � cos �Þ2 þ �2 sin2�

(

þr2 �þ r cos �� 2� cos 2�� r cos 3�þ � cos 4��
ðr � � cos �Þ2 þ �2 sin2�

�2
)

�r� ¼ � P

8�ð1 � �Þ
�ð5 � 4�Þr sin �þ 4ð1 � �Þ� sin 2�þ r sin 3�

ðr � � cos �Þ2 þ �2 sin2�

(

þr2 3r sin �� 2� sin 2�� r sin 3�þ � sin 4��
ðr � � cos �Þ2 þ �2 sin2�

�2
)

ð7Þ

Ur ¼
1þ�
1��

P

8�E
ð3�4�Þcos� ln

�
ðrcos���Þ2 þ r2 sin2�

�n
þ 2r�sin2�

ðrcos���Þ2 þ r2 sin2�

)

U�¼�1þ�
1��

P

8�E
ð3�4�Þsin� ln

�
ðrcos���Þ2 þ r2 sin2�

�n
þ 2ðr��cos�Þr sin�

ðrcos���Þ2 þ r2 sin2�

)

ð8Þ
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Because of the concentrated load, the displacements are singular at the point of

application of the load (r¼ �, �¼ 0). Similar to Problem I the displacements at the

anchor point of a rockbolt depend on the actual distribution of the load. Anchoring of

rockbolts may be accomplished by mechanical means or by cementing a suitable length

of the rockbolt (bond length in Fig. 3) to the surrounding ground. Figure 6 is an

idealization of the bond zone between the rockbolt and the ground. The assumption is

that the bond length L is much smaller than the anchor shaft length. The transfer of the

rockbolt load, P, to the surrounding ground is a difficult problem and no exact solution

exists. An approximate solution can be found using shear-lag analysis where the shape of

the shear stress distribution between the rockbolt and the ground is assumed (Nairn,

1997; Nairn and Mendels, 2001). This approach has been often followed to solve

problems concerning materials with inclusions (Abramento and Whittle, 1993, 1995a, b;

Hsueh, 1988, 1990a; Ochiai et al., 1999), of which a rockbolt inside a rock mass is an

example. Application of the shear-lag analysis to the grouted length of the rockbolt can

be found elsewhere (Farmer, 1975; Hsueh, 1990b; Li and Stillborg, 1999; Li, 2000);

details of the derivations are beyond the scope of this paper. The following is the solution

proposed by Li and Stillborg (1999) which is somewhat more general than the solution

proposed by Farmer (1975) and has shown good agreement with experiments:

�s ¼
2P�

�d2
s

e�2� x
ds ;

�2 ¼ 2GGg

Es G ln
dg
ds
þ Gg ln do

dg

h i ;
dF ¼ �ds�s dx; ð9Þ

where � s is the shear stress along the bonded length of the rockbolt; P is the force at the

free end (x¼ 0 in Fig. 6); ds is the diameter of the rockbolt; dg is the diameter of the grout

(bonding material); do is the size of the area of influence of the rockbolt, which can be

estimated as do¼ 10 dg (Li, 2000); G is the ground shear modulus; Gg is the grout

(bonding material) shear modulus; Es is the Young’s modulus of the rockbolt; and dF

is the force in the rockbolt inside the bonded zone due to the shear stress. The shape of

the shear stress � s distribution is shown in Fig. 6. The shear stress is maximum at the free

end and quickly decreases along the bond length, due to the negative exponent in Eq. (9).

Fig. 6. Schematic of rockbolt bonded end (point anchor is represented by finite bonded length L; see text)
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A solution that represents the actual connection details between the rockbolt and

the ground can then be obtained by integration of Eqs. (7) and (8) where P is replaced

by dF from Eq. (9), with integration limits between x¼ 0 and x¼ L. Integration can be

done either analytically, which is a very tedious process, or numerically. Within the

range of typical ground and rockbolt properties and geometries (i.e. for 0.14
2�=ds4 50), and assuming that the bond length is small (L� �� ro), stresses and

displacements can be approximated using a constant average shear stress distribution

(�average) along a bonded length, Leq. Two conditions are imposed to obtain �average and

Leq: (1) The resultant force of the constant shear stress distribution must be equal to

the force P applied; and (2) the point of application of the resultant force of the

constant distribution (i.e. at 1=2 Leq) must coincide with the point of application of

the resultant of the distribution given by (9). Thus,

�ds �average Leq
1

S
¼ P

Leq ¼ 2

ÐL
0

�sx dx

ÐL
0

�s dx

: ð10Þ

The equivalent length is:

Leq ¼
2

	

ð	Lþ 1Þe�	L � 1

e�	L � 1

	 ¼ 2�

ds
: ð11Þ

The errors introduced using �average and Leq have been found well below 5% (after

comparing results from numerical integration and from the approximation suggested).

Integration of the radial displacements given in Eq. (8) for a constant distribution of

shear stress along a grouted length Leq gives:

Ur ¼
1 þ �

1 � �

P

8�E Leq
ð3 � 4�Þ cos �Leq ln

�
r cos �� �� Leq

 �2þr2 sin2�

�
� 2

n on

þ 4ð1 � �Þr sin2�� ð3 � 4�Þðr � � cos �Þ
� �

ln



r cos �� �� Leq

�2 þ r2 sin2�

ðr cos �� �Þ2 þ r2 sin2�

" #

þ8ð1 � �Þr sin � cos � tan�1 Leqr sin �

ðr cos �� �Þ


r cos �� �� Leq

�2 þ r2 sin2�

" #)

U� ¼ � 1 þ �

1 � �

P

8�ELeq
ð3 � 4�Þ sin � Leq ln

�

r cos �� �� Leq

�2 þ r2 sin 2�
�
� 2

n on

� ½ð3 � 4�Þðr cos �� �Þ þ r cos �� sin � ln



r cos �� �� Leq

�2 þ r2 sin2�

ðr cos �� �Þ2 þ r2 sin2�

" #

þ8ð1 � � Þr sin2� tan�1 Leq r sin �

ðr cos �� �Þ


r cos �� �� Leq

�2 þ r2 sin2�

" #)
ð12Þ
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For r¼ � and �¼ 0, the displacements are:

Ur

			
r¼�
�¼0

¼ ð1 þ �Þð3 � 4�Þ
8�Eð1 � �Þ 2P



ln Leq � 1

�
U�

			
r¼�
�¼0

¼ 0: ð13Þ

The stresses at r¼ ro are of particular interest, as will be shown in the next section.

These stresses can be obtained with a small error using in Eqs. (7) �eq¼ �þ Leq=2,

provided that the length of the rockbolt is much larger than the bond length, which is

generally the case for this type of rockbolts.

2.3 Problem III: Stress Superposition at Tunnel Perimeter

Problem II is concerned with a concentrated load in an infinite medium. This is not the

case since there is an opening with radius ro. The stress field found in Section 2.2

(Problem II) produces non-zero radial and shear stresses at the perimeter of the tunnel.

The correct solution can be found by applying at the perimeter of the opening radial

and shear stresses of the same magnitude and opposite sign (i.e. Eqs. (7) with opposite

sign). There is no closed-form solution for such stress field applied at the perimeter of

a circular opening inside an infinite medium. An approximate solution can be found by

expressing the radial and shear stresses at the perimeter of the tunnel in a Fourier

series form and then using Michell’s solution (Soutas-Little, 1999). Michell’s solution

is expressed as follows:

�r ¼
ao

r2
� 2

a1

r3
cos ��

X1
n¼2

nðnþ 1Þ an

rnþ2
þ ðnþ 2Þðn� 1Þ bn

rn

� �
cos n�

�� ¼ � ao

r2
þ 2

a1

r3
cos �þ

X1
n¼2

nðnþ 1Þ an

rnþ2
þ ðn� 2Þðn� 1Þ bn

rn

� �
cos n�

�r� ¼ �2
a1

r3
sin ��

X1
n¼2

nðnþ 1Þ an

rnþ2
þ nðn� 1Þ bn

rn
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n¼2

n
an

rnþ1
þ ðnþ 2 � 4�Þ bn

rn�1

� �
cos n�

( )

U� ¼ � 1 þ �
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n
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� �
sin n�

( )
ð14Þ

The coefficients of Eq. (14) can be found from the Fourier series terms. The

algebra is quite tedious, but finally the coefficients are given by Eqs. (15). Note that

stresses and displacements in Eqs. (14) are given by an infinite series of terms. As

expected the results improve with the number of terms used; for practical purposes a

good approximation can be found using only several terms.

ao ¼
2Pr2

o

8�ð1 � �Þ
1

r2
o � �2

eq

� 3

1

�eq
�6
eq � r6

o

� 
� 3�eqr

2
o �2

eq � r2
o

� � �
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n� 1
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ð15Þ

2.4 Problem IV: Far Field Stresses

The stress and displacement fields produced around a circular opening are (Hoek and

Brown, 1982):

�r ¼
1

2
ð�v þ �hÞ 1 � ro

r

� 2
� �

� 1

2
ð�v � �hÞ 1 � 4

ro

r

� 2

þ3
ro

r

� 4
� �

cos 2�

�� ¼
1

2
ð�v þ �hÞ 1 þ ro

r

� 2
� �

þ 1

2
ð�v � �hÞ 1 þ 3

ro

r

� 4
� �

cos 2�

�r� ¼
1

2
ð�v � �hÞ 1 þ 2

ro

r

� 2

�3
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r

� 4
� �

sin 2�

Ur ¼ � 1 þ �

E

1

2
�v þ �hð Þ r

2
o

r
� 1

2
ð�v � �hÞ 4ð1 � �Þ ro

r
� ro

r

� 3
� �

ro cos 2�

� �

U� ¼ � 1 þ �

E

1

2
ð�v � �hÞ 2ð1 � 2�Þ ro

r
þ ro

r

� 3
� �

ro sin 2� ð16Þ

Note that Eqs. (16) reflect only the ‘‘net’’ displacements, which are produced by the

far field stresses after excavation (Einstein and Schwartz, 1979). Only ‘‘net’’ displace-

ments must be included in the formulation since these are the displacements that will

affect the rockbolts since they are placed after excavation. The initial displacements

originated by the constant far field stress, �v and �h, do not affect the solution.

2.5 Implementation of the Analytical Solution

The total displacements at a particular point are obtained by the addition of the

displacements found from the solution of Problems I through IV. Note that the origin
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of angles used in Problems I through III corresponds to the direction of the rockbolt,

and thus the angular coordinates are expressed on a local coordinate system; in other

words, if a point has as a global angular coordinate � (the global angular coordinate is

measured from the horizontal and is positive counterclockwise; see Fig. 7), the angle

that must be used in Eqs. (3) to (12) is �� �i where �i is the global angular coordinate

of the direction of rockbolt i (Fig. 7).

Compatibility of displacements between rockbolt and ground is satisfied using

Eq. (2). The first term on the left hand side of the equation (I�Ui) is found from

Eqs. (5) if r 6¼ ro and � 6¼ 0; otherwise Eqs. (6) should be used. The second term

(II�Ui) is found from (11) if r 6¼ � and � 6¼ 0; otherwise Eqs. (12) apply. The other

two terms (III�Ui, IV�Ui) are obtained from (13) and (15), respectively. Pre-stressed

rockbolts, with initial load Po, can be considered by replacing P with Po�P on the

right hand side of Eq. (2). The final load on the rockbolt is P if P>Po; otherwise it is

the initial load Po.

Equation (2) is repeated for each rockbolt, from i¼ 1 to N. As a result a linear

system of equations is obtained with a solution that is the load carried by each rock-

bolt. Stresses and displacements can then be obtained by using the actual loads in the

equations previously derived. The process described can be automated with a com-

puter program.

Inspection of all the terms in Eq. (2) shows that the solution depends only on the

following non-dimensional parameters: ko, �, ro=�, c=ro, �eq=�, E=Es, and Sro=(ds)
2;

the last two parameters can be grouped into k=E, the ratio between the rockbolt

spring constant and the Young’s modulus of the ground; note that from Eq. (2),

k=E ¼ Es

E

�ðdsÞ2

4Sroð�=ro�1Þ. The following example illustrates the results obtained from the

analytical solution. The parameters used are: ko¼ 0.5; �¼ 0.2; ro=�¼ 0.33;

c=ro¼ 0.075; �eq=�¼ 1.025; and Sro=(ds)
2¼ 4.44 � 103. Seven rockbolts are placed

at 45�, 60�, 75�, 90�, 105�, 120�, and 135� (i.e. a symmetric distribution around the

crown of the tunnel with the rockbolts spaced 15�) and are spaced every two meters

Fig. 7. Global and local polar coordinate system
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along the axis of the tunnel. Figure 8 shows the load on the rockbolts as a function of

the relative stiffness between the rockbolts and the ground defined in this case by the

ratio of the Young’s modulus of the two materials. As expected the loads decrease with

increasing the stiffness of the ground relative to the rockbolts. The rockbolt placed at

the crown (�¼ 90�) carries the largest load and the rockbolt at mid height (�¼ 45�) the

smallest. This is reasonable because the far-field horizontal stress is smaller than the

vertical stress, and thus a larger unloading (and as a consequence large deformation)

occurs at the crown. The differences of rockbolts’ loads decrease as the stiffness of the

ground and rockbolts becomes similar.

The same example is solved with the FEM ABAQUS where the rockbolts are

modeled as springs with the end-points one at the perimeter of the tunnel and the other

one at the anchor point. About 5,400 8-node isoparametric elements have been used

for the discretization. The numerical method should consider the geometry of the

anchor head and the grouted end of the rockbolts to avoid the problems derived by

the concentrated loads (see Fig. 2). Otherwise the results obtained would not be

realistic and the solution would depend on the discretization used. Addition of the

connection details into the discretization would introduce such a high level of com-

plexity for the modeling and ensuing numerical solution that it is unrealistic to expect

that such refinement would be included in routine calculations. As a practical alter-

native it is proposed to use in the numerical model an ‘‘equivalent’’ spring constant,

keq, for each rockbolt that includes the contributions of the end effects. The equivalent

spring constant depends on the discretization used (see Fig. 2), properties of the

Fig. 8. Point anchored rockbolt loads P=�v versus relative stiffness E=Es. Input parameters: ko¼ 0.5;
�¼ 0.2; ro=�¼ 0.33; c=ro¼ 0.075; �eq=�¼ 1.025; Sro=(ds)

2¼ 4.44 � 103
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materials, and geometry of the problem, but not on the loading imposed due to the

assumption of elasticity. Thus the equivalent spring constant for each rockbolt should

be computed using the same discretization, properties, and geometry, as the problem

to be solved, but not necessarily using the same loading. The equivalent spring con-

stant has then been obtained by matching the results of a new FE analysis with the

analytical solution for a simpler loading, using in both cases the same geometry, mesh,

and properties, but with ko¼ 1 (�v¼ �h). Since all rockbolts in the example are

identical, the new analysis has been carried out with only one rockbolt. The spring

constant k input into the model is modified until the load obtained with the FEM is

identical to the load obtained with the analytical solution (the iterations were finished

when the differences were smaller than 10%). Equivalent spring constants are

obtained following the procedure described for each of the relative stiffnesses in Fig. 8.

Figure 9 shows the rockbolts’ loads obtained with the FEM using the equivalent

spring constant and how the loads compare with the analytical solution. It can be

observed that the comparison is very good, with errors less than 10%. The figure also

shows the ratio between the equivalent spring constant, keq, and the actual spring

constant, k. The ratio is about one for large relative stiffness (E=Es ratio), which

indicates stiff ground, and increases quickly as the ground becomes softer. Note that

this observation compares well with the results shown in Fig. 2, which indicate that the

rockbolt load is relatively insensitive to the discretization for relatively stiff ground.

Figure 10 is a comparison of the radial displacements obtained with the FEM and with

Fig. 9. Point anchored rockbolt loads P=�v and equivalent and actual rockbolt spring constant ratio keq=k
versus relative stiffness E=Es. Comparison between finite element method and analytical solution. Input

parameters: ko¼ 0.5; �¼ 0.2; ro=�¼ 0.33; c=ro¼ 0.075; �eq=�¼ 1.025; Sro=(ds)
2¼ 4.44 � 103
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the analytical solution using the equivalent spring constant. The results compare very

well (results from the analytical and FEM solutions fall on top of each other in the

Figure).

The importance of the different factors on the rockbolts’ loads has been investi-

gated through a parametric study. Figure 11 is a plot of the normalized load on a single

rockbolt for different relative stiffness (E=Es) and different relative rockbolt length

(ro=�). The other parameters have been kept constant and equal to: ko¼ 1; �¼ 0.2;

c=ro¼ 0.1; �eq=�¼ 1.1; and Sro=(ds)
2¼ 2 � 104. The figure shows that the load has an

almost linear dependency on relative stiffness, with the load getting smaller as the

ground gets comparatively stiffer. The figure also shows that as the length of the

rockbolt increases, the load decreases. This is due to two factors that have opposite

effects: on the one hand as the distance between the anchor head and anchor point

increases, the displacements between the two points induced by the opening increase;

on the other hand, as the rockbolt gets longer, it has smaller strains for the same

elongation. In the case shown in Fig. 11, the second factor takes precedence and thus

the load on the rockbolt decreases as it becomes longer.

The importance of the other parameters has been investigated by comparing the

loads obtained when changing one of the parameters with the load from a reference

case (base case). The base case has the following characteristics: ko¼ 1; �¼ 0.2;

E=Es¼ 0.025; ro=�¼ 0.5; c=ro¼ 0.1; �eq=�¼ 1.1, and Sro=(ds)
2¼ 2 � 104. Figure 12

is a plot of the ratio between the load obtained for different values of �, c=ro, and

Fig. 10. Point anchored rockbolt head displacements Ur=�v versus relative stiffness E=Es. Comparison
between finite element method and analytical solution. Input parameters: ko¼ 0.5; �¼ 0.2; ro=�¼ 0.33;

c=ro¼ 0.075; �eq=�¼ 1.025; Sro=(ds)
2¼ 4.44 � 103
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Fig. 11. Point anchored rockbolt load P=�v versus relative stiffness E=Es and length ro=�. Input parameters:

ko¼ 1.0; �¼ 0.2; c=ro¼ 0.1; �eq=�¼ 1.1; Sro=(ds)
2¼ 2.0 � 104

Fig. 12. Point anchored rockbolt load P=Pbase case versus Poisson’s ratio �, anchor head size c=ro, and bond
length �eq=�. Input parameters:. ko¼ 1.0; E=Es¼ 0.025; ro=�¼ 0.5; Sro=(ds)

2¼ 2.0 � 104. Base case with:
�¼ 0.2; c=ro¼ 0.1; �eq=�¼ 1.1
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�eq=� and the base case. The figure shows the small effect of all three parameters. A

modest increase of load occurs with the Poisson’s ratio: about 10% with a twofold

increase of �; the effect of the other two parameters is negligible.

The effect of ko can be observed in Fig. 13, which is a plot of the normalized load

with the orientation of the rockbolt and with the magnitude of ko. As expected the load

is independent of the location of the rockbolt for ko¼ 1 due to the symmetry of the

problem. The largest loads are at the crown (�¼ 90�) for ko¼ 0.5 and at the springline

(�¼ 0�) for ko¼ 2, which coincide with the directions of the largest unloading after

excavation.

3. Conclusions

A new analytical solution for the analysis of point anchored rockbolts as tunnel

support has been developed and presented in the paper. The following assumptions

are made: elastic response of ground and rockbolts; deep tunnel with circular cross

section; plane strain conditions. The solution includes details of the geometry of the

head and bonded length of the rockbolt. It has been shown that these details are critical

to obtain an accurate solution. In fact, results obtained with numerical analyses where

rockbolts are modeled as concentrated loads may be inaccurate and may strongly

depend on the discretization employed. The error increases with decreasing stiffness

of the ground relative to the stiffness of the rockbolt. Since this is a displacement-

Fig. 13. Point anchored rockbolt load P=�v versus coefficient of earth pressure at rest ko, and orientation �.
Input parameters: ko¼ 1.0; �¼ 0.2; E=Es¼ 0.025; ro=�¼ 0.5; c=ro¼ 0.1; �eq=�¼ 1.1; Sro=(ds)

2¼ 2.0 � 104
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driven problem the magnitude of the rockbolts’ load is particularly sensitive to dis-

cretization and connection details. As a consequence modeling of rockbolts as con-

centrated loads or springs should be done only for tunnels in stiff ground; otherwise

the connections should be explicitly included in the model.

An alternative that is cost-effective is to include the rockbolts in the numerical

model as springs with an ‘‘equivalent’’ spring constant that includes end effects. The

equivalent spring constant can be obtained by matching the numerical results with the

analytical solution for a simple problem. The spring constant can then be used with

more complex models.

The analytical solution obtained shows that the load on a single rockbolt depends

on a number of non-dimensional variables, namely ko, �, E=Es, ro=�, c=ro, �eq=�, and

Sro=(ds)
2, of which the most important one is E=Es, the relative stiffness between the

ground and the rockbolt. The analytical solution is easy to use, incorporates the

fundamental variables, and provides an accurate magnitude of the rockbolts’ loads

for the conditions assumed in the formulation (i.e. linear elasticity, deep tunnel, plane

strain). It cannot substitute detailed numerical models due to the limitations of some of

the assumptions made.
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Appendix I: Notation

ci anchor head dimension of rockbolt i
ds

i diameter of rockbolt i
E, � Young’s modulus and Poisson’s ratio of the ground
Es

i Young’s modulus of rockbolt i
i rockbolt number, from 1 to N
ko coefficient of earth pressure at rest; ko¼�h=�v
ki spring constant of rockbolt i
keq

i equivalent spring constant of rockbolt i
Li anchored length of rockbolt i
Leq equivalent bonded length of rockbolt i
N total number of rockbolts in the tunnel
Pi axial load of rockbolt i
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Appendix II: Concentrated Load in a Plane

Strain Elastic Infinite Medium

An Airy stress function with a structure similar to that for plane stress is chosen

(Timoshenko and Goodier, 1970):

� ¼ A r sin �þ B ln r þ C r� sin �þ D r ln r cos �þ F r�1 cos � ðAII:1Þ
where � is the Airy stress function, A, B, C, D, and F are constants that will be

obtained from boundary conditions, r and � are polar coordinates (Fig. 4(a)), and  is

an auxiliary angle, which is defined in Fig. 4(a). From the Airy stress function, stresses

can be obtained with:

�r ¼
1

r

@�

@r
þ 1

r2

@2�

@�2

�� ¼
@2�

@r2

� ¼ � @

@r

1

r

@�

@�

� �
: ðAII:2Þ

Strain compatibility is given by:


r� ¼
@U�

@r
� 1

r
U� þ

1

r

@Ur

@�
: ðAII:3Þ

Equation (AII.3) requires:

ð1 � 2�ÞðAþ C þ DÞ ¼ �D: ðAII:4Þ
The boundary conditions are:

�r ¼ �� ¼ � ¼ 0; for r ! 1
�r ¼ � ¼ 0; for r ¼ ro: ðAII:5Þ

The first condition in Eq. (AII.5) is satisfied, given the Airy stress function chosen.

The second condition is satisfied if:

B ¼ 1

2
roA

C ¼ � 1

2
A

D� 2
F

r2
o

¼ 1

2
A: ðAII:6Þ

r, � polar coordinates
�i angular coordinate of rockbolt i, measured from horizontal
ro tunnel radius
�i length of rockbolt i, measured from the center of the tunnel
�eq

i equivalent length of rockbolt i
Si spacing of rockbolt i along tunnel axis
�v, �h far field vertical and horizontal stresses
�r, ��, � r� stresses in polar coordinates
� s shear stress along the bonded length of the rockbolt
Ur, U� displacements in polar coordinates
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Combining Eqs. (AII.4) and (AII.6), one gets:

B ¼ 1

2
roA

C ¼ � 1

2
A

D ¼ � 1 � 2�

4ð1 � �ÞA

F ¼ � 3 � 4�

8ð1 � �Þ r
2
oA: ðAII:7Þ

The final condition is obtained by imposing equilibrium of any disk of radius r. In

other words, at a radial distance r, the resultant of the normal and shear stresses acting

along the perimeter of the circle of radius r must be in equilibrium with the force

P applied to the perimeter of the tunnel. Along the direction of the force P (horizontal

direction, as shown in Fig. 4a), the resultant from the normal and shear stresses, dF,

per unit length of perimeter is:

dF ¼ ð�r cos �� � sin �Þr d�: ðAII:8Þ
Equilibrium requires:

F ¼
ð�
��

ð�r cos �� � sin �Þr d� ¼ P: ðAII:9Þ

This results, considering Eq. (AII.7), in:

A ¼ P

�
ðAII:10Þ

Thus, the Airy stress function for a concentrated load in plane strain in an elastic

infinite medium is:

� ¼ P

�
 r sin �þ 1

2
ro ln r � 1

2
r� sin �� 1 � 2�

4ð1 � �Þ r ln r cos �� 3 � 4�

8ð1 � �Þ
r2
o

r
cos �

� �
:

ðAII:11Þ
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