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Summary

An analytical method is presented for the calculation of the load carrying capacity of two-
dimensional asymmetric rock wedges when the loading on the joint faces is non symmetric, such
as the case of an asymmetric wedge formed in the roof of a circular tunnel in an inclined stress
field. The pull out force that causes yield at one of the joint faces is evaluated from formulae based
on the limiting equilibrium conditions assuming a purely frictional joint resistance. Next, the total
pull out force required for the secondary face to yield is calculated. During this step, the wedge is
further displaced and while the primary yielding face is plastically deformed, the other face is still
in the elastic range until failure. Validation of the analytical procedure is obtained with the UDEC
code, which provides an implementation of the Distinct Element Method in two dimensions.
When the assumptions made in the analytical procedure are valid, the analytically calculated
values for the pull out resistance of the wedge are computed to be close to the numerically
obtained ones.
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List of symbols

FS Factor of safety
h Height of the wedge
H0, V0 Horizontal and vertical force respectively, acting on the joint faces
kn1, kn2 Normal stiffness of joint 1 and 2 respectively
ks1, ks2 Shear stiffness of joint 1 and 2 respectively
N01, N02 Normal forces acting on the joint face 1 and 2 respectively
S01, S02 Shear forces acting on the joint face 1 and 2 respectively
P0 Load carrying capacity of the wedge
q Non-dimensional load carrying capacity of the wedge
R Support force



1. Background

The stability of a rock block formed in the roof or the walls of an underground

opening depends on the orientation and length of the joints delineating the block,

their strength and elastic properties, the deformability of the block and that of the

surrounding rock mass and the stress field within the rock mass. When analyzing the

stability of such a rock block it is necessary to take account of the stress field around

the block, which in many cases produces confining stresses around the block that

significantly increase its stability.

Bray (1977) provided an analytical solution for the stability analysis of rock

blocks in the roof of an excavation confined by the lateral stress field by assuming

a two-stage analytical procedure. In the first stage the rock mass around the excavation

is considered as linearly elastic, homogeneous and isotropic, while the joints forming

the wedge are assumed infinitely stiff. Thus, the forces acting on the joint surfaces of

the wedge can be calculated by elastic analysis, where the usual assumption of a

weightless medium is adopted. In the second stage the joints are deformable according

to their natural characteristics while the rock mass is assumed rigid. During this stage,

loading is due to the weight W of the wedge and any acting support force R. The pull

out resistance P0 of the wedge can be determined by using the limiting equilibrium

condition on the joints of the wedge. For any wedge in the roof of an opening the

safety factor of the wedge is then defined by

FS ¼ Rþ P0

W
¼ R

W
þ q; q ¼ P0

W
ð1Þ

where, q is the normalized pull out resistance of the wedge.

Sofianos (1986) used the relaxation procedure proposed by Bray to calculate the

pull out resistance of two-dimensional wedges in the roof of an excavation including

that of an asymmetric rigid wedge under symmetric external loading. Elsworth (1986)

provided a solution for the calculation of the forces acting on the joints of a symmetric

wedge formed in the roof of a circular opening for the case of a hydrostatic stress field.

For non-hydrostatic natural stress field, the calculation of the confining forces acting

on a symmetric roof wedge is given by Sofianos et al. (1999) by virtue of the sym-

metry of geometry and loading conditions. Nomikos et al. (2002) provided a solution

for the calculation of the confining forces as well as for the stability of a symmetric

wedge, when the loading is non-symmetric, such as in the case of an inclined non-

hydrostatic natural stress field.

In many cases, roof wedges formed in tunnel roofs in blocky rock masses, are

asymmetric, while external loading conditions on their edges are often non-symmetric

(Fig. 1a). Such is the case of the asymmetric rock wedge formed in the roof of a

circular tunnel in an inclined biaxial stress field (Fig. 1b). Confining forces acting on

the wedge may be calculated by analytical procedures proposed by Nomikos et al.

W Weight of the wedge
u Displacement of the wedge as a rigid body
ux, uy Components of u in x and y directions
�1, �2 Wedge semi-apical angles
�; � Normal and shear stress respectively
�1, �2 Friction angles of joints 1 and 2 respectively
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(2002). However, in this case existing analytic formulae provided by Sofianos (1986)

for the calculation of the pull out resistance of an asymmetric wedge need to be

modified to include the asymmetric loading conditions on its edges.

2. Pull-out Resistance of the Wedge

Let us consider the case of Fig. 2, where a two-dimensional asymmetric rigid wedge is

formed in the roof of an excavation. For the calculation of the wedge movement and of

the load carrying capacity, the two-stage relaxation procedure is applied.

In Fig. 2 the free body diagram of the wedge body is shown with the forces acting

on it. These are the normal and shear forces along the joint faces of the wedge, its own

weight (W) and any artificial support force (R). In Fig. 3 the body of the wedge is

shown with the forces W and R replaced by their resultant P. The force P0 that brings

Fig. 1. Asymmetric rigid roof wedge with non-symmetric external loading: a in horizontal roof, b in the
roof of a circular tunnel in an inclined stress field
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the body of the wedge to the limit equilibrium state is the load carrying capacity of the

wedge.

If the wedge is in the roof of a circular tunnel in an arbitrary inclined natural stress

field (Fig. 1), the forces acting on the joint faces of the wedge after excavation and

before the wedge begins to deform or be displaced can be obtained for any lateral

stress coefficient and angle � by using the procedure developed by Nomikos et al.

(2002). In the general case forces N01, N02, S01 and S02 are not equal and thus, as

proposed by Sofianos (1986), the two joint faces will not simultaneously reach a state

of limit equilibrium during the movement of the wedge.

For the calculation of the load carrying capacity of the wedge we consider an

arbitrary displacement u of the wedge as a rigid body, with components ux and uy
along the x and y directions respectively, as shown in Fig. 4. Let us suppose that during

the movement of the wedge joint face 2 yields first, while face 1 remains elastic.

Fig. 2. Free body diagram of an asymmetric roof wedge subject to surface forces exerted by the surrounding
rock, its weight (W) and support force (R)

Fig. 3. Replacement of wedge weight (W) and support force (R) with the force P
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Solving the equations of elasticity, equilibrium, kinematic compatibility and yield, the

values for ux, uy and P0 for first yield at face 2 are obtained by the following equations

ux
uy

P
y
0

2
4

3
5 ¼ ry

ay � dy � by � cy �
�by

ay

ay � f y � by � ey

2
4

3
5; ð2Þ

where

ay ¼ �ks1 � sin2�1 � kn1 � cos2�1 � ks2 � sin2�2 � kn2 � cos2�2 ð3aÞ

by ¼ �ðkn1 � ks1Þ � sin�1 � cos�1 þ ðkn2 � ks2Þ � sin�2 � cos�2 ð3bÞ

cy ¼ ks2 � sin�2 � kn2 � cos�2 � tan�2 ð3cÞ

dy ¼ ks2 � cos�2 þ kn2 � sin�2 � tan�2 ð3dÞ

ey ¼ ðkn1 � ks1Þ � sin�1 � cos�1 � ðkn2 � ks2Þ � sin�2 � cos�2 ð3eÞ

f y ¼ ks1 � cos2�1 þ kn1 � sin2�1 þ ks2 � cos2�2 þ kn2 � sin2�2 ð3fÞ

ry ¼ N02 � tan�2 � S02: ð3gÞ
Another value for P0 is obtained for first yield occurring at joint face 1, where now

the coefficients cy, dy and ry become:

cy ¼ �ks1 � sin�1 þ kn1 � cos�1 � tan�1 ð3hÞ

dy ¼ ks1 � cos�1 þ kn1 � sin�1 � tan�1 ð3iÞ

ry ¼ N01 � tan�1 � S01: ð3jÞ
Evaluation of which joint is to yield first (primary yielding face) is required, in

order to continue to the next step of calculating the pull out force. In the case of a

symmetric wedge with joint faces of similar mechanical and deformational properties,

Fig. 4. Free body movement of the wedge as a rigid body
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this evaluation involves only the magnitude and direction of the confining forces.

When the wedge is asymmetric though, and the mechanical and deformational proper-

ties of the faces differ, geometrical and geotechnical factors are introduced that need

also be taken into consideration. Therefore, since explicit definition of the primary

yielding face cannot be achieved, the lower value of P0 and the corresponding primary

yielding face must be chosen.

Without limiting the generality of the above, let us suppose that face 2 is the

primary yielding face. We now need to calculate the additional pull out force required

for the secondary face to yield. During this step, the wedge is further displaced and

while the primary face deforms by yielding, the other face is still in the elastic area

until failure.

Solving again the equations of elasticity, equilibrium, kinematic compatibility and

yield, the values for ux, uy and P0, for yield at both face 2 and face 1 and thus failure of

the wedge, are obtained by the following equations:

ux

uy

P
f
0

2
64

3
75 ¼ 1

a f � d f � bf � c f �
d f �b f 0

�c f a f 0

e f � d f � c f � f f a f � f f � e f � b f a f � d f � bf � c f

2
64

3
75

�
r
f

1

r
f

2

r
f

3

2
64

3
75; ð4Þ

where

a f ¼ �ks1 � sin2�1 � kn1 � cos2�1 � kn2 � cos�2 � ðcos�2 þ tan�2 � sin�2Þ ð5aÞ

b f ¼ �ðkn1 � ks1Þ � sin�1 � cos�1 þ kn2 � sin�2 � ðcos�2 þ tan�2 � sin�2Þ ð5bÞ

c f ¼ �ks1 � sin�1 þ kn1 � cos�1 � tan’1 ð5cÞ

d f ¼ ks1 � cos�1 þ kn1 � sin�1 � tan’1 ð5dÞ

e f ¼ ðkn1 � ks1Þ � sin�1 � cos�1 � kn2 � cos�2 � ðsin�2 � tan�2 � cos�2Þ ð5eÞ

f f ¼ ks1 � cos2�1 þ kn1 � sin2�1 þ kn2 � sin�2 � ðsin�2 � tan�2 � cos�2Þ ð5fÞ

r
f
1 ¼ �N01 � cos�1 � S01 � sin�1 þ N02 � ðcos�2 þ tan�2 � sin�2Þ ð5gÞ

r
f
2 ¼ N01 � tan’1 � S01 ð5hÞ

r
f
3 ¼ �N01 � sin�1 þ S01 � cos�1 þ N02 � ð� sin�2 þ tan�2 � cos�2Þ: ð5iÞ

3. Numerical Simulation

The two-stage procedure adopted in the analytical solution has been simulated by use

of the UDEC code (Itasca Co., 1998), which provides an implementation of the
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Distinct Element Method in two dimensions. The model used is depicted in Fig. 5. In

Fig. 5a, a roof wedge is formed by two joints with semi-apical angles a1 ¼ 15� and

a2 ¼ 25� respectively. The height of the wedge is h¼ 5.0 m. The in-situ state of stress

has a uniform horizontal stress of �xx ¼ 1:5 MPa and a shear stress of �xy ¼ 0:2 MPa.

Shear strength on the joint faces of the wedge is assumed to be purely frictional,

without dilatation and with friction angles �1 ¼ �2 ¼ 30�, 35� and 40�. The UDEC

model shown in Fig. 5b consists of three rigid blocks. The two side-blocks represent

the surrounding rock mass and they are fixed. The central block represents the isolated

asymmetric wedge and is allowed to move under gravity.

Fig. 5. a Geometry and loading conditions of the asymmetric wedge used in the numerical models, b UDEC
model
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Modelling the wedge stability problem with UDEC involves two stages in the

same manner as in the analytical procedure. In the first stage the joints are assumed

infinitely stiff and all the blocks surrounding the wedge are fixed. The only forces

acting on the wedge are the horizontal and vertical forces on the joint faces, which are

applied by assigning the in-situ stress state. At the end of this stage the forces

acting on the joint faces are calculated from the UDEC model as H0 ¼ 7:41 MN and

V0 ¼ 0:88 MN.

In the second stage the joints are assumed deformable with normal stiffness

kn¼ 10 GPa=m and ratio of shear to normal stiffness ks=kn¼ 0.01, 0.1 and 0.5. Load-

ing of the wedge during the second stage is achieved through body forces increasing

from a minimum value equal to the weight of the wedge W to the value P0 where the

wedge fails, at multiples of W increments.

The normalized pull out resistance of the wedge as calculated by the UDEC code

is given in Table 1 in comparison with that calculated by the analytical solution using

Eqs. (4) and (5a)–(5i). For each UDEC model two values of the pull out resistance are

given. The first corresponds to the maximum applied value of q where the wedge is

still stable and the second to the minimum applied value of q where the wedge is

unstable. As observed from Table 1, there is a close agreement between the analyti-

cally calculated values of q and those obtained by the numerical code.

4. Conclusions – Discussion

An analytical method is presented for the calculation of the load carrying capacity of

two-dimensional asymmetric rock wedges when the loading on joint faces is not

symmetric, such as the case of an asymmetric wedge formed in the roof of a circular

tunnel in an inclined stress field. Confining forces acting on the wedge joint faces may

be evaluated analytically from the elastic stress distribution around the opening.

These forces along with the geometrical, mechanical and deformational properties

of the joints determine the joint face that is to yield first. The pull out force, that causes

yield at one of the joint faces, as well as the displacement of the wedge are evaluated

from formulae based on the limiting equilibrium conditions and solving the equations

of elasticity, equilibrium, kinematic compatibility and yield, assuming a purely fric-

tional joint resistance.

Table 1. Load carrying capacity of the asymmetric wedge model in horizontal roof with straight free
wedge face

� (�) kn (GPa=m) ks=kn qanal qUDEC,stable qUDEC,unstable

30 10 0.01 3.3 3.2 3.3
30 10 0.10 5.5 5.3 5.4
30 10 0.50 8.6 8.4 8.5
35 10 0.01 4.3 4.2 4.3
35 10 0.10 7.6 7.3 7.4
35 10 0.50 12.8 12.3 12.4
40 10 0.01 5.1 4.9 5.0
40 10 0.10 9.3 9.0 9.1
40 10 0.50 16.9 16.1 16.2
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In order to derive the latter formulae, a uniform shear to normal stress ratio along

each joint face is assumed. By increasing the pull out force, the latter ratio reaches its

maximum value equal to the friction coefficient, tan�. Next the total pull out force

required for the secondary face to yield and the corresponding displacement of the

wedge are calculated. During this step, the wedge is further displaced and while the

primary yielding face is deformed at yield, the other face is still in the elastic range

until failure.

Validation of the analytical procedure is obtained by use of the UDEC code, which

provides an implementation of the Distinct Element Method in two dimensions. When

the assumptions made in the analytical procedure are valid, the analytically calculated

values for the pull out resistance of the wedge are close to the numerically obtained

ones.

The applicability of the analytical procedure is limited by the assumption of uni-

form ratio of shear to normal stress along the joint faces for each loading step. When

this ratio is not uniform, as in the case of a wedge formed in the roof of an excavation

with a curved boundary, progressive shear failure of joint faces is expected. This will

reduce the final joint shear forces and consequently the load carrying capacity of the

wedge. Thus, for many cases, the pull out resistance of the wedge will be overesti-

mated by the analytical solution presented here. Despite these shortcomings of the

model, which is a first-order approximation of the actual behaviour, the analysis is still

useful for parametric evaluation of wedge stability, as it contains the basic features

influencing the behaviour of the wedge.
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