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Summary

The three dimensional elasto-viscoplastic composite element method is formulated in this paper
for rock masses reinforced by a fully-grouted bolt. If a bolt segment penetrates a finite element
representing the rock mass, then a composite element is formed including five sub-elements
corresponding to the rock material, the grout material, the bolt material, the rock-grout interface
and the bolt-grout interface. The displacements in each sub-element are interpolated from the
corresponding nodal displacements of the composite element. By the virtual work principle the
governing equation for the solution of the nodal displacements can be formulated. The elasto-
viscoplastic characteristics of the materials are considered in the formulation. The new model can
be incorporated into the conventional finite element analysis grid, in which several composite
elements have fully grouted bolts embedded. In this way the mesh generation of large
scale bolted rock structures becomes convenient and feasible. The model has been implemented
in a FEM program, and a comparative study between the numerical analysis and a pull out
field test has been carried out, from which the validity and the robustness of the new model are
justified.

Keywords: Composite element, bolt, rock mass.

Notation=List of Symbols

f��gr , f��gb, f��gg nodal displacement increments assigned to the composite ele-
ment corresponding to rock sub-element, bolt sub-element, grout
sub-element, respectively

f�ugg, f�ugcg, f�ugpg displacement increments of the grout segment g in the global
coordinate system, local Cartesian coordinate system, local cy-
lindrical coordinate system, respectively

f�ugb, f�ugcb, f�ugpb displacement increments of the bolt segment b in the global
coordinate system, local Cartesian coordinate system, local cy-
lindrical coordinate system, respectively



1. Introduction

Fully grouted rock bolts are widely used as a reinforcement in rock engineering.

Laboratory and field tests have been conducted and a detailed understanding of the

interaction between the rock bolts and the rock masses has been obtained (Hyett et al.,

1992; Yazici and Kaiser, 1992; Kaiser et al., 1992; Bawden et al., 1992; Egger and

f�ugprg, f�ugpbg relative displacement increments of rock-grout and bolt-grout
interfaces in the local cylindrical coordinate system

f�"gr , f�"gcg, f�"gcb strain increments of the intact rock, grout, and bolt sub-elements,
respectively

f��gr ,f��gcg, f��gcb stress increments of the intact rock, grout, and bolt sub-elements,
respectively

[N] shape function defined in composite element
½B�r strain matrix of rock sub-element
½B�cg, ½B�cb strain matrices of grout sub-element and bolt sub-element
½l�c displacement transformation matrix between the global and the

local Cartesian coordinate systems
½l�p displacement transformation matrix between the Cartesian and

cylindrical coordinate systems
�, � dip direction and dip angle of the bolt segment
½D�, [S] elastic matrix and elastic compliance matrix respec-

tively
�t time stepping length
� fluidity parameter
F yield function
Q potential function
cr, ’r cohesion and friction angle of intact rock
E, G, � Young’s modulus, shear modulus, and Lam�ee coefficient, respec-

tively
Eb, Gb Young’s modulus and shear modulus of bolt
�y, �u, �vp

u , �vp yield strength, ultimate strength, ultimate plastic general shear
strain, present plastic general shear strain of bolt, respectively

cg, ’g cohesion and friction angle of grout
Eg, Gg Young’s modulus and shear modulus of grout
kn, ks normal stiffness and tangential stiffness of interface
�T tensile strength of interface
f�_""vpgr viscoplastic flow rate of rock sub-element
f�_""vpgcb, f�_""vpgcg viscoplastic flow rates of bolt sub-element and grout sub-element

in the local Cartesian coordinate system
f�_""vpgpbg, f�_""vpgprg viscoplastic flow rates of bolt-grout interface sub-element and

rock-grout interface sub-element in the local cylindrical coordi-
nate system

f�fgr , f�fgg, f�fgb nodal load increments in composite element transferred from
rock sub-element, grout sub-element, bolt sub-element, respec-
tively

f�f vpgr , f�f vpgg, f�f vpgb,
f�f vpgrg, f�f vpgbg

nodal load increments in composite element transferred from the
viscoplastic strain increments of rock sub-element, grout sub-
element, bolt sub-element, rock-grout interface sub-element,
bolt-grout interface sub-element, respectively

½k�r , ½k�g, ½k�b, ½k�rg, ½k�bg stiffness matrices of rock sub-element, grout sub-element, bolt
sub-element, rock-grout interface sub-element, bolt-grout inter-
face sub-element, respectively
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Pellet, 1991; Egger and Zabuski, 1991). Based on these semi-empirical formulae have

been written on the one hand which are very useful in conventional design (St. John

and Van Dillen, 1983; Spang and Egger, 1990). On the other hand, advanced numer-

ical models have been developed, which can be classified into two categories: one is

the explicit or distinct modeling of the bolts and the joints (Aydan, 1989; Swoboda and

Marence, 1991; Swoboda and Marence, 1992; Chen and Egger, 1997), the other one is

the equivalent modeling (Larsson and Olofsson, 1983; Larsson et al., 1985; Pande and

Gerrard, 1983; Chen and Pande, 1994; Chen and Egger, 1999). Either of them has

special advantages: the former has the potentiality to describe the bolt behaviour in

every detail, and the latter can be applied to complicated engineering problems with a

large number of joints and bolts.

Many researchers including the authors of this paper have been working in the area

of equivalent modeling of fully bolted jointed rock masses, and some improvements

have been made to describe the bolt behaviour more reasonably (e.g. the localized

shear phenomenon at the joints). Laboratory tests and engineering applications have

proved the value of such improvements (Chen and Egger, 1999). However, it should be

recognized that so far some very complicated but important detailed phenomena (e.g.

the pull out failure of the bolts) cannot be simulated satisfactorily by the equivalent

approach. It is true that for very complicated engineering problems, a combination

of both equivalent and explicit modeling is more feasible than only to make use of

either one.

Aydan (1989) developed a three-dimensional bolt element with 8 nodal points. Two

of these are connected to the bolt, whereas six others are connected to the rock mass. The

number of nodes in the two-dimensional case is reduced to six. Swoboda and Marence

(1991, 1992) modified Aydan’s formulation, assigning different coordinates for the bolt

nodes and the nodes of the rock-grout interfaces. Thus, the bolt and rock displacements

are different at the bolt-joint intersection. In this way, the parameters in the stiffness

matrix are not constant. They depend on the joint displacement and are independently

calculated by an iterative procedure. Chen and Egger (1997) also developed a two

dimensional explicit model of a bolt element with 6 nodes, of which two are connected

to the bolt, whereas four others are connected to the rock mass, and a simplified analyt-

ical solution of the bolt deformation at the bolt-joint intersection is used.

All of the above explicit fully grouted bolt element models have the same char-

acteristics: they are conventional elements which have definite nodes, and some of

these nodes should be the common nodes of the nearby rock material elements.

Consequently, the existence of a large quantity of bolts will impose very strong

restraints on the finite element mesh generation, especially in three dimensional com-

plicated structure problems. Naturally the question is put forward whether we can let

the bolt elements be located inside conventional rock material elements.

The answer is positive by the composite element concept (Chen et al., 2003) which

has been implemented in the case of hollow (or Swellex) rock bolts (Chen et al.,

2002). What will be described in the following is the three dimensional formulation

for the rock mass reinforced by fully grouted bolts. The bolt and grout are embedded

within the element and treated separately, the interfaces between the bolt-grout mate-

rial and the rock-grout material are taken into account, and the elasto-viscoplastic

deformations are considered. The comparison study between the numerical analysis
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and a pull out field test has been carried out, from which the validity and the robust-

ness of the new model are justified.

2. Principle of the Composite Element Concept

2.1 The Concept of Composite Element and Sub-Element

Suppose a domain shown in Fig. 1 containing two sub-domains which have different

mechanical characteristics. A composite element is defined to cover the whole domain.

The sub-domains are defined as sub-elements which are not necessarily standard finite

elements. The displacements f�ug1, f�ug2 in each sub-element are interpolated from

the nodal displacements f��g1, f��g2 assigned to the composite element as (Fig. 1):

f�ug1 ¼ ½N�f��g1 within the sub-element 1, ð1Þ

f�ug2 ¼ ½N�f��g2 within the sub-element 2. ð2Þ
in which [N] is the shape function of the conventional FEM defined in the whole

composite element. However, it should be pointed out that the interpolation expressed

in Eqs. (1) and (2) is valid only in each of the sub-element respectively. The loads acting

at each sub-element are transferred to the respective nodal values of the composite

element as f�fg1, f�fg2, and the equilibrium equation can be established according to

the virtual work principle as:�
½k�11 ½k�12

½k�21 ½k�22

��
f��g1

f��g2

�
¼

�
f�fg1

f�fg2

�
: ð3Þ

With the solved nodal displacements f��g1 and f��g2, the displacements, the strains

as well as the stresses in each sub-element can be calculated.

2.2 Special Consideration for the Rock Bolt

When the outline of the sub-element 1 is a conventional finite element, it can be used

as a composite element, i.e. the composite element is the same as defined by the

Fig. 1. The displacements interpolation in the composite element. a Displacement interpolation of sub-
element 1, b displacement interpolation of sub-element 2
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outline of the sub-element 1. In this way the composite element concept can be

incorporated easily into the conventional finite element analysis procedure. This is

just the case happening in the analysis of fully grouted rock bolts.

In the analysis of bolted rock structures with the composite model, the FE meshes

can be generated without taking account of the existence of rock bolts. Then the dip

directions and dip angles as well as the collar coordinates of the bolts will be put in.

By simple calculations based on the geometry, the intersection conditions of each bolt

with the FE grid can be obtained. Figure 2 shows a finite element which contains one

bolt segment. As we have indicated above, this element can be defined as a composite

element, within which there are five sub-elements representing: the rock material, the

grout material, the bolt material, the rock-grout interface, and the bolt-grout interface

respectively.

A global coordinate system is defined to formulate the overall governing equa-

tions, with the X-axis pointing Northward, the Y-axis pointing Westward, and the Z-

axis being vertical. For each bolt a Cartesian local system is also needed to simplify

the computation which is defined as follows (Fig. 3): the zb-axis is along the bolt and

upright, the yb-axis is perpendicular to the bolt and points in the direction of dip and

the xb-axis is formed by the right hand rule. On the basis of the local Cartesian

coordinate system the local cylindrical coordinate system is defined (Fig. 4). Let

the subscripts r, g, b, rg, bg denote the quantities of the rock material, the grout

material, the bolt, the interface between rock and grout, the interface between bolt

Fig. 2. Composite element containing five sub-elements

Fig. 3. Local coordinate system of the bolt (Cartesian)
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and grout, respectively; the superscripts c and p are used to denote the quantities in the

Cartesian and cylindrical local coordinate system.

The basic assumptions to be introduced for writing the governing equations are as

follows:

a) At the cross section of the bolt or the grout, there are three stress increments:

one normal stress (zb direction) and two shear stresses (xb and yb directions);

b) At the interfaces between rock-grout and bolt-grout, there are three stress

increments: one normal stress perpendicular to the interfaces (r direction) and two

shear stresses along the interfaces (� and z directions).

2.3 Transformation Between the Different Coordinate Systems

For the bolt segment b, the displacement transformation between the global and the

local coordinate systems is defined as follows:

f�ugcb ¼ ½l�cf�ugb: ð4Þ
The transforming matrix in Eq. (4) is:

½l�c ¼
� sin� sin � cos� cos � cos�
� cos� � sin � sin� � cos � sin�

0 � cos � sin �

2
4

3
5; ð5Þ

in which �, � are the dip direction and dip angle of the bolt segment respectively.

The displacement transformation between the Cartesian and cylindrical coordinate

systems is defined as follows:

f�ugpb ¼ ½l�pf�ugcb: ð6Þ
The transforming matrix in Eq. (6) is:

½l�p ¼
cos� � sin� 0

sin� cos� 0

0 0 1

2
4

3
5; ð7Þ

in which the angle � is shown in Fig. 4.

Fig. 4. Local coordinate system of the bolt (cylindrical)
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For the grout material around the bolt the transformations are defined similarly:

f�ugcg ¼ ½l�cf�ugg ð8Þ

f�ugpg ¼ ½l�pf�ugcg: ð9Þ

3. The Constitutive Equations of the Composite

Element Containing Bolts

According to the elasto-viscoplastic potential theory (Owen and Hinton, 1980), at time

t, the explicit constitutive equation will take the following forms:

f��g ¼ ½D�ðf�"g � f _""vpg�tÞ
or

f�"g ¼ ½S�f��g þ f _""vpg�t;

8<
: ð10Þ

in which �t is the time stepping length, [D] and [S] are the elastic matrix and

compliance matrix respectively. The viscoplastic flow rate is:

f _""vpg ¼ � � F �
�

@Q

@f�g

�
; ð11Þ

in which � is the fluidity parameter, F and Q are the yield and potential functions

respectively, and the function hFi is defined as:

hFi ¼ F if F> 0

0 if F< 0:

�
ð12Þ

If the fluidity parameter � could be obtained then the histories as well as the

steady-state results of the deformation and failure of a structure could be calculated.

However, in some cases it is not easy to get the appropriate fluidity parameter or it is

thought that only the elasto-plastic solution is of importance. Under such circum-

stances we can simply assume that the fluidity parameter �¼ 1, in this way the

histories are not applicable, but the steady-state results of deformation and failure

are identical to the corresponding conventional static elasto-plastic solution.

3.1 The Constitutive Equation of Intact Rock

The rock material is taken as an isotropic material whose elastic matrix is:

½D�r ¼

�þ 2G � � 0 0 0

�þ 2G � 0 0 0

�þ 2G 0 0 0

G 0 0

SYM G 0

G

2
6666664

3
7777775
: ð13Þ
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For the yield of the intact rock, both the Mohr-Coulomb and the Drucker-Prager

criteria are widely used. In the present study the latter is implemented in a FEM program:

Fr ¼ aI1 þ
ffiffiffiffiffi
J2

p
� k ¼ 0

a ¼ sin’r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3 þ sin 2’rÞ

p
k ¼

ffiffiffi
3

p
cr cos’r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ sin 2’r

p
:

8<
: ð14Þ

The associated flow rule is adopted:

Qr ¼ Fr: ð15Þ
In Eqs. (14) cr and ’r are the cohesion and friction angle of the intact rock

respectively.

3.2 The Constitutive Equation of the Bolt

The constitutive equation of the bolt is expressed in the local Cartesian coordinate

system. According to the basic assumption (a), we have:

½D�cb ¼
Gb 0 0

0 Gb 0

0 0 Eb

2
4

3
5: ð16Þ

The von Mises criterion with linear work hardening is used for the bolt:

Fb ¼ ½3ð�2
bzx þ �2

bzyÞ þ �2
b�

1=2 � �
� ¼ �y þ ð�u � �yÞ�vp=�vpu ;

�
ð17Þ

in which �y, �u, �vp
u , �vp are the yield strength, ultimate strength, ultimate plastic

general shear strain, and present plastic general shear strain respectively.

The associated flow rule is adopted.

3.3 The Constitutive Equation of Grout

Also the constitutive equation of the grout is expressed in the Cartesian local coordi-

nate system. According to the basic assumption (a), we have:

½D�cg ¼
Gg 0 0

0 Gg 0

0 0 Eg

2
4

3
5; ð18Þ

the Drucker-Prager criterion is used for the yield of grout material:

Fg ¼ a�g þ
ffiffiffi
1

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
g þ 3ð�2

gzx þ �2
gzyÞ

q
� k ¼ 0

a ¼ sin’g

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3 þ sin 2’gÞ

q

k ¼
ffiffiffi
3

p
cg cos’g

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ sin 2’g

q
; ð19Þ

in which cg and ’g are cohesion and friction angle of grout material.
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The associated flow rule is adopted:

Qg ¼ Fg: ð20Þ

3.4 The Constitutive Equation of Interfaces

The same relation is used for both the rock-grout interface and the bolt-grout interface.

For simplicity the subscripts rg or bg are neglected in the following equations. Accord-

ing to the basic assumption (b), the elastic matrix of the interface in its local cylin-

drical coordinate system can be expressed by the normal stiffness kn and the tangential

stiffness ks as:

½D�p ¼
ks 0 0

0 kn 0

0 0 ks

2
4

3
5 ð21Þ

If a non-associated flow rule is considered for the interface, the yield function F and

potential function Q are expressed by the cohesion c, friction angle ’, dilatancy angle

� and tensile strength �T:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r� þ �2

rz

p
þ �rtg’� c; if �r � �T

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r� þ �2

rz

p
þ �rtg�þ const:

�
ð22Þ

F ¼ �r � �T ; if �r 5�T

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r� þ �2

rz þ �2
r

p
þ const:

�
ð23Þ

It should be pointed out that in the case of the interfaces, the strain increment will be

replaced by the relative displacement in the general form of the constitutive relation

Eq. (10) which is denoted as:

f�ugp ¼
�u�
�ur
�uz

8<
:

9=
;; ð24Þ

the corresponding stress increment at the interfaces is:

f��gp ¼
��r�
��r

��rz

8<
:

9=
;: ð25Þ

4. The Equilibrium Equations of the Composite Element
Containing Bolts

4.1 The Relationship Between the Strain Increment

and the Nodal Displacement Increment

There are three sets of independent nodal displacement increments at the composite

element e if there is one bolt segment. Each of them will be used to interpolate the

displacement increments of the rock material, the grout material, and the bolt material
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respectively:

f�ugr ¼ ½N�f��gr; ð26Þ

f�ugcg ¼ ½N�½L�cf��gg
f�ugpg ¼ ½N�½L�p½L�cf��gg;

�
ð27Þ

f�ugcb ¼ ½N�½L�cf��gb
f�ugpb ¼ ½N�½L�p½L�cf��gb:

�
ð28Þ

The nodal displacement transformation matrices [L]c and [L]p are defined by using the

matrices [l]c and [l]p in the Eqs. (4) to (7):

½L�c ¼
½l�c

�
�

½l�c

2
664

3
775

3n� 3n

ð29Þ

½L�p ¼
½l�p

�
�

½l�p

2
664

3
775

3n� 3n

ð30Þ

and the shape function matrix is given by the conventional finite element algorithm:

½N� ¼
N1 0 0 N2 0 0 � � � Nn 0 0

0 N1 0 0 N2 0 � � � 0 Nn 0

0 0 N1 0 0 N2 � � � 0 0 Nn

2
4

3
5: ð31Þ

The strain increments of the intact rock, grout, and bolt materials are then calculated by:

f�"gr ¼ ½B�rf��gr; ð32Þ

f�"gcg ¼ ½B�cg½L�
cf��gg; ð33Þ

f�"gcb ¼ ½B�cb½L�
cf��gb; ð34Þ

where
½B�r ¼ ½½B�r1 ½B�r2 . . . ½B�rn�; ð35Þ

½B�cg ¼ b½B�cg1 ½B�cg2 . . . ½B�cgnc; ð36Þ

½B�cb ¼ b½B�cb1 ½B�cb2 . . . ½B�cbnc; ð37Þ

½B�ri ¼

@Ni

@X 0 0

0 @Ni

@Y 0

0 0 @Ni

@Z

0 @Ni

@Z
@Ni

@Y
@Ni

@Z 0 @Ni

@X
@Ni

@Y
@Ni

@X 0

2
66666664

3
77777775
; ð38Þ
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½B�cgi ¼

@Ni

@zcg
0 @Ni

@xcg

0 @Ni

@zcg

@Ni

@ycg

0 0 @Ni

@zcg

2
664

3
775; ð39Þ

½B�cbi ¼

@Ni

@zc
b

0 @Ni

@xc
b

0 @Ni

@zc
b

@Ni

@yc
b

0 0 @Ni

@zc
b

2
664

3
775: ð40Þ

The displacement increments in the rock, grout, and bolt materials will cause relative

displacement increments at the rock-grout and the bolt-grout interfaces. These incre-

ments will be expressed in the local cylindrical coordinate system:

f�ugprg ¼ f�ugpr � f�ugpg ¼ ½N�½L�p½L�cðf��gr � f��ggÞ; ð41Þ

f�ugpbg ¼ f�ugpg � f�ugpb ¼ ½N�½L�p½L�cðf��gg � f��gbÞ: ð42Þ

4.2 The Equilibrium Equation Expressed by the Nodal

Displacement and Load Increments

Suppose virtual displacements occur for intact rock material, grout material, and bolt

material as:

ðf�ugrÞ
� ¼ ½N�ðf��grÞ

�; ð43Þ

ðf�ugcgÞ
� ¼ ½N�½L�cðf��ggÞ

�; ð44Þ

ðf�ugcbÞ
� ¼ ½N�½L�cðf��gbÞ

�: ð45Þ
The corresponding virtual strains and relative displacements will be:

ðf�"grÞ
� ¼ ½B�rðf��grÞ

�; ð46Þ

ðf�"gcgÞ
� ¼ ½B�cg½L�

cðf��ggÞ
�; ð47Þ

ðf�"gcbÞ
� ¼ ½B�cb½L�

cðf��gbÞ
�; ð48Þ

ðf�ugprgÞ
� ¼ ½N�½L�p½L�cððf��grÞ

� � ðf��ggÞ
�Þ; ð49Þ

ðf�ugpbgÞ
� ¼ ½N�½L�p½L�cððf��ggÞ

� � ðf��gbÞ
�Þ: ð50Þ

The virtual work principle for the composite element will be written in the following

form:

Wr þWg þWb þWrg þWbg ¼ ðf��grÞ
�Tf�fgr þ ðf��ggÞ

�Tf�f gg
þ ðf��gbÞ

�Tf�fgb; ð51Þ

where f�fgr, f�fgg, f�fgb are the nodal load increments at the composite element,

which can be transferred from the load increments acting at the rock, grout, and bolt
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materials according to the same algorithm as in the conventional finite element

method.

4.2.1 The Virtual Work Contributed from the Rock Material

Wr ¼
ð
�r

ðf�"grÞ
�Tf��grd�

By taking the constitutive relation Eq. (10) and the strain-displacement relation

Eq. (32) into account, the virtual work in the rock material becomes:

Wr ¼
ð
�r

ðf��grÞ
�T ½B�Tr ½D�rð½B�rf��gr � f _""vpgr�tÞd�: ð52Þ

4.2.2 The Virtual Work Contributed from the Grout Material

Wg ¼
ð
�g

ðf�"gcgÞ
�Tf��gcgd�

By inserting the constitutive relation Eq. (10) and the strain-displacement relation

Eq. (33) into the above expression, the virtual work in the grout material will be:

Wg ¼
ð
�g

ðf��ggÞ
�T ½L�cT ½B�cTg ½D�cgð½B�

c
g½L�

cf��gg � f _""vpgcg�tÞd�: ð53Þ

4.2.3 The Virtual Work Contributed from the Bolt Material

In a similar way as for the grout material, the virtual work in the bolt material is:

Wb ¼
ð
�b

ðf��gbÞ
�T ½L�cT ½B�cTb ½D�cbð½B�

c
b½L�

cf��gb � f _""vpgcb�tÞd�: ð54Þ

4.2.4 The Virtual Work Contributed from the Rock-Grout Interface

Wrg ¼
ð
Srg

ðf�ugprgÞ
�Tf��gprgdS

By introducing the constitutive relation Eq. (10) and the strain-displacement relation

Eq. (41) into Wrg, the following can be derived:

Wrg ¼
ð
Srg

ððf��grÞ
�T

� ðf��ggÞ
�TÞ½L�cT ½L�pT ½N�T ½D�prgð½N�½L�

p½L�cðf��gr � f��ggÞ
� f _""vpgprg�tÞdS: ð55Þ

204 S.-H. Chen et al.



4.2.5 The Virtual Work Contributed from the Bolt-Grout Interface

As for the rock-grout interface, the virtual work in the bolt-grout interface can be

written directly:

Wbg ¼
ð
Sbg

ððf��ggÞ
�T

� ðf��gbÞ
�TÞ½L�cT ½L�p½N�T ½D�pbgð½N�½L�

p½L�cðf��gg � f��gbÞ
� f _""vpgpbg�tÞdS: ð56Þ

Now introduce Eqs. (52) to (56) into Eq. (51) and arrange the equation according to

the different virtual displacements of the rock material, the grout material, and the bolt

material. Noting that the virtual displacements ðf��grÞ
�

, ðf��ggÞ
�

, ðf��gbÞ
�

are

arbitrary vectors, the validity of the virtual work principle will lead to the following

equations:

ð½k�r þ ½k�rgÞf��gr � ½k�rgf��gg ¼ f�fgr þ f�f vpgr þ f�f vpgrg
�½k�rgf��gr þ ð½k�g þ ½k�rg þ ½k�bgÞf��gg � ½k�bgf��gb ¼ f�fgg þ f�f vpgg � f�f vpgrg þ f�f vpgbg
�½k�bgf��gg þ ð½k�b þ ½k�bgÞf��gb ¼ f�fgb þ f�f vpgb � f�f vpgbg;

8<
:

ð57Þ

in which:

½k�r ¼
Ð
�r
½B�Tr ½D�r½B�rd�

½k�g ¼
Ð
�g
½L�cT ½B�Tg ½D�

c
g½B�g½L�

c
d�

½k�b ¼
Ð
�b
½L�cT ½B�Tb ½D�

c
b½B�b½L�

c
d�

½k�rg ¼
Ð
Srg
½L�cT ½L�pT ½N�T ½D�prg½N�½L�

p½L�cdS
½k�bg ¼

Ð
Sbg
½L�cT ½L�pT ½N�T ½D�pbg½N�½L�

p½L�cdS;

8>>>>>>><
>>>>>>>:

ð58Þ

f�f vpgr ¼
Ð
�r
½B�Tr ½D�rf _""vpgr�td�

f�f vpgg ¼
Ð
�g
½L�cT ½B�cTg ½D�cgf _""vpg

c
g�td�

f�f vpgb ¼
Ð
�b
½L�cT ½B�cTb ½D�cbf _""vpg

c
b�td�

f�f vpgrg ¼
Ð
Srg
½L�cT ½L�pT ½N�T ½D�prgf _""vpg

p
rg�tdS

f�f vpgbg ¼
Ð
Sbg
½L�cT ½L�pT ½N�T ½D�pbgf _""vpg

p
bg�tdS:

8>>>>>>><
>>>>>>>:

ð59Þ

5. Numerical Example

The model described in this paper has been implemented in the finite element code

CORE3 which already allows for the equivalent modeling of reinforced jointed rock

masses (Chen and Egger, 1999).

5.1 Calculation Conditions

A series of rock block samples of 5 m� 5 m� 6 m (length�width� height) has been

studied. In the centre of the rock block a fully-grouted bolt (Fig. 5) is subjected to a
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pull out force acting at the top face. The bottom of the block is fixed and the four

vertical edge planes are free in the calculation. The length of the bolt is 3 m, the radii

of bolt and grout are 20 mm and 38 mm respectively. The pull out loads are increased

by 3 steps in the test: 300 kN, 600 kN, 720 kN. The experimental data used as refer-

ence data were obtained in the field test conducted at the excavated rock slope of the

ship lock in the Three Gorges Project, China (Rong et al., 2001). The rock block

samples are classified into several groups according to the characteristics of the rock

masses. In this paper the comparative study between numerical analysis and field test

will be conducted with a test group including two samples. During the experiment the

axial stresses along the bolts and the displacements of the borehole collar are mea-

sured. Unfortunately, there are no data about the shear stresses and the displacements

along the whole bolts.

Fig. 5. Three dimensional FE mesh of the test sample

Table 1. Material parameters

Material E 	 c � �T �y �u �vpu
[GPa] [MPa] [�] [MPa] [MPa] [MPa]

Steel 200 0.25 310 500 0.18
Grout 26 0.17 2.5 58 1.1
Rock 32 0.2 1.7 59 1.1

Table 2. Interface parameters

Material Kn Ks c ’ � �T
[MN=m3] [MN=m3] [MPa] [�] [�] [MPa]

Rock-grout 10 000 2000 1 50 50 1
Bolt-grout 10 000 3000 2 58 58 1
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5.2 Results

Figures 6 to 8 present a comparison between the experimental results and the com-

putational results using the composite element model implemented in this paper. The

experimental results show, as common in field tests in rock engineering, a large

scatter. However, if the parameters can be selected properly, the computation shows

to yield reasonable results. It is found that the computed axial displacements of the

borehole collar are larger than the values measured in the tests (Fig. 8). A possible

reason for this is that the Young’s modulus of the rock and the stiffness values of the

interfaces between the rock and the grout or between the grout and the bolt are

underestimated.

Figures 9 to 15 show a set of computational results (no test results are available)

which give a general view of the displacements of the bolt, grout and rock block as

well as the shear stresses at the interfaces. It is interesting to point out that near the

Fig. 6. Axial stress distribution along the bolt under 600 kN pull out force

Fig. 7. Axial stress distribution along the bolt under 720 kN pull out force
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Fig. 8. Axial displacements of the borehole collar

Fig. 9. Axial displacement distribution along the bolt

Fig. 10. Axial displacement distribution along the grout

208 S.-H. Chen et al.



Fig. 12. Shear stress distribution along the interface between rock and grout

Fig. 11. Shear stress distribution along the interface between bolt and grout

Fig. 13. Displacement vector of rock on the horizontal section (X–Y) of the test block at the elevation of
Z¼ 4.2 m under 600 kN pull out force
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borehole collar the displacements of the rock block have a tendency away from the

bolt, while at a certain depth under the collar the displacements of the rock block are

concentrated towards the bolt (Figs. 13 to 15).

Fig. 14. Displacement vector of rock on the horizontal section (X–Y) of the test block at the elevation of
Z¼ 5.2 m under 600 kN pull out force

Fig. 15. Displacement vector of rock on the horizontal section (X–Y) of the test block at the elevation of
Z¼ 6.0 m under 600 kN pull out force
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It is worthwhile to point out that the above results are generally in accordance with

the theoretical studies of bolt pull out tests (Farmer, 1975): the axial stress and the

displacement of the bolt decrease exponentially from the point of loading to the far

end of the bolt before a decoupling of the interfaces occurs.

6. Conclusions

The research presented in this paper is based on a new concept of ‘‘composite element’’.

In such an element some sub-domains of any shape called sub-elements are contained.

For each sub-element there are mapped displacements at the composite element nodes.

The displacements, strains, and stresses within the sub-elements are calculated by the

corresponding mapped nodal displacements of the composite element. The mapped sub-

element displacements in the composite element can be solved by procedures similar to

those used in the conventional finite element method. In the case when the outline of a

sub-domain which contains all of the other sub-domains is the same as a conventional

finite element, then it can be used as a composite element directly. In this way the

composite elements can be easily integrated into the conventional finite elements sys-

tem. The explicit fully grouted rock bolt element model presented in this paper has been

described as a special example of the implementation of the method.

It is clear that in presence of a rock bolt, the degrees of freedom of displacement of

the composite element will be tripled compared to those in the conventional finite

element. These degrees of freedom come from the rock material, the grout material

and the bolt material respectively. The rock-grout and bolt-grout interfaces have no

independent degrees of freedom of displacement, the relative displacements and the

stresses at the interfaces depend on the displacements of the rock, grout and bolt

materials. In this way these materials are correlated, and the slip deformation and

failure phenomena can be simulated.

Field tests carried out on fully grouted rock bolt confirm the correctness of the new

model proposed. However, the new model should be further improved in order to

describe the local behaviour of the bolt along the joints.
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