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Summary

Modelling the behaviour of rock masses consisting of a large number of layers is often nec-
essary in mining applications (e.g. coal mining). Such a modelling can be carried out in a
discontinuum manner by explicit introduction of joints. When the number of rock layers
is large, it is advantageous to devise a continuum-based model in which case the joints are
considered to be virtually smeared across the mass. In this study, a fully elasto-plastic equiv-
alent continuum model suitable for describing the behaviour of such layered rock masses
is considered. The model is based on the Cosserat continuum theory and incorporates the
moment stresses in its formulation. In contrast to the earlier Cosserat models, the possibility
of rock layer plasticity is considered. The accuracy of the developed Cosserat model is veri-
fied against analytical and experimental results.

1. Introduction

Rock masses are often intersected by discontinuities, such as regular bedding
planes, foliation or joints, producing a layered (foliated) structure. Layered rock
masses are common in the mining environment. Simulation of excavations in lay-
ered rock masses can be carried out with a discontinuum model by explicit intro-
duction of joints (rock layer interfaces) into a numerical formulation using either
the finite element or distinct element approach (Goodman et al., 1968; Cundall,
1987).

When the number of layers to be modelled is excessively large (i.e. when the
layers are thin compared to the dimensions of the engineering structures) it is ad-
vantageous to devise a continuum-based method. For the case of rock layers with
bending sti¤ness, such a model can be formulated successfully on the basis of Cos-
serat theory (Cosserat and Cosserat, 1909).

The Cosserat model provides a large-scale (average) description of a layered



medium. In this model, inter-layer interfaces ( joints) are considered to be smeared
across the mass, i.e. the e¤ects of joints are implicit in the choice of stress-strain
model formulation. An important feature of the Cosserat model is that it incor-
porates bending rigidity of individual layers in its formulation and this makes it
di¤erent from other conventional implicit models. A distinctive advantage of the
Cosserat model is that in the process of numerical modelling the problem region
can be discretised with a coarser mesh (i.e. subdivided into fewer finite elements)
than in explicit schemes where the size of the finite elements cannot exceed the layer
thickness. Thus, in this scheme, the size of the finite elements is solely dictated by
computational needs.

Such equivalent continuum models were formulated in Mühlhaus (1993) and
Adhikary and Dyskin (1998) where the rock layers were assumed to be elastic. In
Adhikary and Dyskin (1998), provision was made for plastic deformation along
the joints only.

In this study, a fully elasto-plastic two-dimensional plane strain Cosserat
model is developed, such that both joints and intact rock (rock layers) are allowed
to undergo plastic deformation. The yield of both the rock matrix and the joints is
defined by Mohr-Coulomb criteria with tension cut-o¤. In the model formulation,
the deformation is assumed to be time independent and infinitesimal.

2. Theoretical Formulation

A full description of two dimensional plane strain Cosserat model with elastic
rock layers was previously presented in (Adhikary and Dyskin, 1998; see also ref-
erences cited there). Hence, only the plasticity formulation part will be discussed
here. Using the Cartesian coordinates ðx1; x2Þ, the material point displacement can
be defined by a translational vector ðu1; u2Þ and by a rotation W3. Here, axis 3 is
aligned to the out of plane direction and axis 2 is perpendicular to the layers.

The two-dimensional Cosserat model has 4 non-symmetric stress components
s11; s22; s21; s12 and two couple stresses m31;m32. When the rock layers are aligned
in the 1-coordinate direction, the moment stress term m32 vanishes. The four stresses
are conjugate to four deformation g11; g22; g21; g12 measures defined by:

gij ¼
quj

qxi
� e3ijW3 ð1Þ

and the couple stress m31 is conjugate to the respective curvature k1 defined by:

k1 ¼ qW3

qx1
: ð2Þ

The elastic stress strain relationships are described by:

s ¼ ½De�ee; ð3Þ

where

s ¼ fs11; s22; s21; s12;m31g; e ¼ fg11; g22; g21; g12; k1g ð4Þ
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and

D ¼

A11 A12 0 0 0

A22 0 0 0

G11 G12 0

symm G22 0

B1

2
666664

3
777775
; ð5Þ

here,

A11 ¼
E

1� n2 � n2ð1þ nÞ2

1� n2 þ E

hkn

; A22 ¼
1

1� n� 2n2

Eð1� nÞ þ 1

hkn

; A12 ¼
n

1� n
A22; ð6Þ

1

G11
¼ 1

G
þ 1

hks
; G11 ¼ G12 ¼ G21; G22 ¼ G11 þ G; ð7Þ

and

B1 ¼ Eh2

12ð1 � n2Þ
G � G11

G þ G11

� �
; ð8Þ

where E is the Young’s modulus of the intact layer, n is the Poisson’s ratio, h is the
layer thickness, G is the shear modulus of the intact layer, kn and ks are the joint
normal and shear sti¤nesses.

The layer interfaces can exhibit three di¤erent modes of behaviour: (a) elas-
tically connected with the interface normal and shear sti¤ness, (b) plastic with
frictional sliding and (c) disconnected with tensile opening. Similarly the rock layer
may either deform elastically or may sustain some plastic deformation as well.
With this in mind, the rate of the deformation tensor is decomposed into elastic
and plastic parts:

_ee ¼ _eee þ _eep: ð9Þ

In a manner similar to the conventional plasticity theory the rate of plastic defor-
mation is assumed to be equal to:

_eep ¼ _ll
qg

q _ss
; ð10Þ

where _ll is the so-called plastic multiplier and g is the plastic potential func-
tion. Then the incremental elasto-plastic relationships in the general form can be
expressed as usual:

_ss ¼ bDepc _ee ð11Þ

where, _ss and _ee are the incremental stress and strain, and

Dep ¼ De � a

De

qg

qs

	 

qf

qs

	 
T

De

qf

qs

	 
T

De

qg

qs

	 
 : ð12Þ
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Here f a 0 is the yield function, g is the plastic potential and a is defined as:

a ¼ 1 if f ¼ 0 and _ll ðplastic multiplierÞ > 0; 0 if f < 0 and=or _lla 0:

ð13Þ

The course of derivation leading to Eq. (12) is exactly the same as in standard con-
tinua so it will not be discussed in detail here. Simply the yield and plastic potential
functions adopted in this study will be introduced.

The yield criterions for interface sliding, f joint
s , and the corresponding plastic

potential function, g joint
s , for a joint parallel to the 1-axis are defined as (here tension

is assumed to be positive):

f joint
s ¼ js21j þ s22 tan f joint � c joint ¼ 0; g joint

s ¼ js21j þ s22 tanc joint ð14Þ

where f joint, c joint and c joint designate the angle of friction, dilation angle and
the cohesion of the joints respectively. Similarly, the yield criterion for the tensile
opening and the corresponding plastic potential function are written as:

f
joint
t ¼ s22 � s

joint
ten ¼ 0; g

joint
t ¼ s22; ð15Þ

where s
joint
ten is the joint tensile strength.

Here we are dealing with asymmetric stresses and couple stresses in the rock
layer. For simplicity, the rock yield function is formulated on the basis of sym-
metric part of the stress tensor with the incorporation of the moment stresses. In
this study, the couple stress is assumed to introduce additional axial stress in the
rock layer. In a beam (rock layer) subjected to a bending moment, axial stress and
strain vary linearly across the depth of the section. As the bending moment is in-
creased the yield stress is attained first at the outer fibres. Once such yield stress is
attained, the rock layer could be considered broken and subsequently a zero ten-
sile strength could be assigned. The magnitude of this bending moment in a beam
can be calculated in terms of ultimate yield stress s rock

ten in the following manner:

M yield ¼ s rock
ten bh2=6: ð16Þ

Here, b is the breadth of the beam in the out of plane direction x3 and h is the beam
thickness.

The plastic couple stress can be expressed as the plastic moment per unit area as:

m
yield
31 ¼ M yield=bh: ð17Þ

Equations (16) and (17) yields:

s rock
ten ¼ 6myield

31 =h: ð18Þ

Similar to the joint failure modes, rock matrix is assumed to fail either in tension or
shear. Tensile strength of rocks is often observed to be 10 to 40 times less than the
uniaxial compressive strength. Thus, when there is relatively large moment stress in
the rock layer due to bending, it is most likely that the rock layers will fail in tension.
When the moment stress in the rock layer is small (in the absence of layer bending)
both shear and tensile failure remain a possibility and will largely be determined by
the conventional stresses. In this case asymmetry in stresses will be small. Thus, in
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order to capture the tensile failure of the rock layer subjected to bending, the e¤ec-
tive normal stress in the rock layer is defined by:

sN
11 ¼ 6jm31j

h
þ s11; ð19Þ

where, s11 is the conventional normal stress acting along the direction of layering.
Then the rock layer yield criterion can be defined in terms of the symmetric part

of the stress tensors as:

f rock
s ¼ ðsN

11 � s22Þ2 þ ðs12 þ s21Þ2 � ððsN
11 þ s22Þ sin fr � 2Cr cos frÞ

2 ¼ 0 ð20Þ

and

f rock
t ¼ smax � s rock

ten ¼ 0; ðhere tension is þveÞ: ð21Þ

Similar to the joint plastic potential functions, the rock plastic potential functions
are obtained simply by replacing rock friction angle by rock dilation angle. While
formulating Dep, B1 is either made equal to zero if rock layer is yielding or made
equal to Eh2=12ð1 � n2Þ if joint alone is yielding. The finite element formulation of
2D Cosserat model is fully described in Mühlhaus (1993) and Adhikary and Dys-
kin (1998). Of course, when the bending moment vanishes (i.e. h ¼ 0) the Classical
continuum model is recovered.

3. Numerical Verification

Two examples will be considered here in order to verify the capability of the fully
elasto-plastic Cosserat model. First of all, a simple case as shown in Fig. 1, is con-
sidered. Here 10 layers are perfectly clamped on the left-hand side and a traction ts
is applied on the right hand side. The rock layers are assumed to have Young’s
modulus ðEÞ of 10 GPa, Poisson’s ratio of 0.20, thickness of 1 m, length ðlÞ of 10 m
and tensile strength ðs rock

ten Þ of 0.5 MPa. The joint shear sti¤ness is taken to be
zero. Thus the Cosserat solution should remain independent of the x2 direction,
which allows analytical verification of the Cosserat result on the basis of beam
theory.

Fig. 1. A schematic of the example used in the analytical verification of the Cosserat model

A Fully Elasto-Plastic Model for Layered Rock 165



From the beam theory (Timoshenko and Goodier, 1970), the elastic deflection
of the beam is obtained as:

u2ðlÞ ¼
4tsl

3

Eh2
ð1 � n2Þ: ð22Þ

The yield stress is obtained as (Eq. 16):

iyield
s ¼ s rock

ten h

6l
; ð23Þ

which gives iyield
s ¼ 8:33 kPa.

This problem is analysed with a plane strain Cosserat finite element code.
The problem domain is discretized into 200 eight noded isoparametric quadrilat-
eral elements. Figure 2 shows the comparison of the analytical and the Cosserat
calculations. The elastic deflection obtained from the Cosserat model agrees quite
well with the analytical deflection. The Cosserat model predicts a value of 8.73 kPa
for iyield

s . The di¤erence between the analytical and the numerical predictions are
less than 5%.

In Fig. 3, the tensile yield locations in the rock layers are shown, which are
located on the clamped end as predicted by the beam theory. Thus it can be seen

Fig. 2. Comparison of Cosserat and the analytical results. Solid line: Analytical; dotted line: Cosserat

Fig. 3. Cosserat analysis result. Yielding elements are coloured black. Finite element mesh is super-
imposed
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that the Cosserat model accurately predicts both the deformation and the collapse
mechanism as well as collapse load of a layered medium.

A tensile stress of 72 kPa is applied on the right hand side and the above ex-
ample problem is reanalysed. In this case, superposition will yield the following ex-
pression for the normal stress at the outer-fibre of the rock layer:

sN
11 ¼ s rock

ten ¼ 6liyield
s

h
þ s11; here s11 ¼ 72 kPa: ð24Þ

Equation (24) yields a value of iyield
s ¼ 7:13 kPa and the Cosserat model predicts a

value of iyield
s ¼ 6:6 kPa.

The Cosserat finite element model is then used to back analyse a centri-
fuge result published previously in Adhikary et al. (1997). In that study a foliated
slope model (manufactured in the laboratory from sand and gypsum) with 330 mm
slope height, average layer thickness of 10 mm, layer inclination angle of 80
 and
slope angle of 61
 was spun in a centrifuge until it failed at a g-level of about 83.

In that study, additional laboratory experiments were conducted to obtain
the basic geomechanical properties of the rock layer and the joints. Table 1 sum-
marises the laboratory results. The values shown in the parenthesis are the values
adopted in the numerical calculations. The joint shear and normal sti¤nesses were
not measured experimentally and were assumed to be 100 GPa per meter length in
the numerical calculations. This implies that the joints are practically rigid up to
yielding. An average joint friction angle of 25 degree is used in the analysis. Joint
dilation angle is assumed to be zero. The experimentally measured joint cohe-
sion was found to vary from 5 kPa to 30 kPa, and this parameter is used as a fitting
parameter. A number of computer simulations with di¤erent joint cohesions were
carried out so that a best fit to experimental data could be obtained. The laboratory
determination of tensile strength of a single 10 mm thick rock layer was found to be
impractical. Hence, the tensile strength of the rock matrix in (Adhikary et al., 1997)
was determined by five point bending tests on a much larger rectangular 50 mm by
50 mm beam of 300 mm length. In Adhikary et al. (1997), no attempt was made to
study the sample size e¤ect on measured tensile strength. Hence, the numerical
calculations are conducted here for two di¤erent values (i.e. 1.5 MPa and 1.7 MPa)
of the rock layer tensile strength.

Table 1. Rock and joint properties obtained in the laboratory and used in the numerical analysis

Intact rock layer properties

Young’s modulus
(GPa)

Poisson’s ratio cohesion
(MPa)

friction angle
(degree)

tensile strength
(MPa)

2.2–2.6 (2.4) 0.20–0.21 (0.2) 1.4–2.6 (2.0) 34–38 (36) 1.1–1.4 (1.5 and 1.7)

Joint properties

Cohesion
(kPa)

friction angle
(degree)

shear sti¤ness
(GPa/m)

normal sti¤ness
(GPa/m)

tensile strength

5–30 (15) 22–26 (25) (100) (100) (0)
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Figure 4 presents the Cosserat finite element mesh and the boundary con-
ditions used in this example. The problem was discretised using 1202 eight noded
isoparametric quadrilaterals. Figure 5 presents the experimental and the numerical
results obtained with a joint cohesion value of 15 kPa. It can be seen that the Cos-
serat model shows a very good agreement with the experimental results in terms of
the failure mechanism, collapse load, and measured displacement. The model with
rock layer tensile strength of 1.5 MPa predicted the slope failure at about 66 g
where as the one with 1.7 MPa gave a failure g-level of about 76 compared to the
experimental g-level of about 83. Figure 6 presents a plasticity plot, which shows
location of rock layer tensile failure. A similar pattern of tensile cracking of rock
layers was seen in the centrifuge (Adhikary et al., 1997).

4. Conclusions

A fully elasto-plastic Cosserat model, which in contrast to the earlier Cosserat
models considered the possibility of rock layer plasticity in addition to joint plas-

Fig. 4. The finite element mesh and the boundary conditions used in the Cosserat analysis of the cen-
trifuge model

  

Fig. 5. Comparison of Cosserat and the centrifuge test results. Numerical calculations were conducted
with rock tensile strength of 1.3 MPa and 1.5 MPa. Solid lines: experimental, data points: numerical, ��

st ¼ 1:5 MPa, AA st ¼ 1:7 MPa
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ticity, is developed. The rock layer plasticity is formulated on the basis of the sym-
metric part of the stress tensor with the incorporation of moment stresses. The
Cosserat model is verified against an analytical solution. It is found that both the
deformation and the rock failure load predicted by the Cosserat model is in very
good agreement with the analytical solutions with di¤erences of around 5%. The
Cosserat model is further used to back analyse a centrifuge experiment conducted
on a small scale foliated rock slope model manufactured in a laboratory. It can be
seen that the predictions obtained from the Cosserat model for the slope displace-
ment, the failure mechanism and failure load are in very good agreement with those
observed in the centrifuge experiment.
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