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Abstract. We include two speci®c three-nucleon-force terms of pion-range±
short-range form in our momentum-space calculations for the three-nucleon
continuum. These two terms are expected by chiral perturbation theory to be
non-negligible. We study the effects of these terms in elastic neutron-deuteron
scattering and pay special attention to the neutron vector-analyzing power Ay.

1 Introduction

Recently it became possible to explain differences between data and predictions of
modern nucleon-nucleon (NN) potentials for the total neutron-deuteron (nd) cross
section and the minimum of the differential nd cross section at higher energies by
incorporating the 2�-exchange Tucson-Melbourne (TM) three-nucleon force (3NF)
[1, 2]. However, the puzzling discrepancy between theory and data for the low-
energy analyzing power [3] cannot be explained by that 3NF. Since it was shown in
ref. [4] that this low-energy analyzing-power puzzle cannot be solved by reason-
able changes in the NN potentials, one obviously needs new 3NF mechanisms in
order to resolve this long-standing mystery.

The number of possible operators that can be used in constructing a 3NF is
much larger than in the NN-force case, and it is not practicable to examine them all
in order to see which are important for the low-energy analyzing powers and which
are not. Rather, we need a systematic scheme that tells us which terms are likely
candidates to be of importance and which are not. One such approach is chiral
perturbation theory (�PT), which provides a power-counting scheme for the
strength of the various 3NF terms.
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As we will explain below, �PT predicts in lowest non-vanishing order (beside
the usual 2�-exchange terms) two terms of pion-range±short-range nature and
three terms of short-range±short-range nature. Short range means, for example,
that a meson heavier than a pion is exchanged between two of the three nucleons.
Since the naive expectation is that pion-range±short-range 3NF terms are more
important than the ones of short-range±short-range nature, in this paper we will
deal only with the two pion-range±short-range 3NF terms, which we will include in
our momentum-space calculations for the 3N continuum. Our interest will be
concentrated on the low-energy vector-analyzing powers.

In Sect. 2 we review the history of the 2�-exchange 3NF and its effect in the 3N
continuum. In Sect. 3 we discuss those 3NF terms that include the exchange of
mesons heavier than pions and that have been tested in the 3N continuum thus far.

The two 3NF terms of pion-range±zero-range nature that are predicted in
lowest non-vanishing order of �PT are introduced in Sect. 4. In this section we also
explain how we adapt these terms, making them of ®nite range in order to be
consistent with the traditional potentials that we use as our NN force, and also with
the TM force that we use as our 2�-exchange 3NF in this paper. At the end of this
section we discuss what conventional nuclear ®eld-theory models say about these
two 3NF terms.

Our approach to solving the Faddeev equations for the 3N continuum is
reviewed brie¯y in Sect. 5.

The results for the nd elastic-scattering observables that incorporate the new
3NF terms are presented and discussed in Sect. 6.

Finally we sum up and conclude in Sect. 7.
In Appendix A, we present the partial-wave decomposition (PWD) for the two

new 3NF terms.

2 Short Review of 2p-Exchange Three-Nucleon Forces

Three-nucleon forces have been part of nuclear physics for more than 40 years.
Realistic models began with the Fujita-Miyazawa (FM) force [5], which describes
the exchange of two pions with an intermediate �-isobar as depicted in Fig. 1.
Fig. 1 shows only that part of the 3NF for which nucleon 1 is the middle nucleon
(i.e., the nucleon at which the virtual pion scattering takes place). We will call this
con®guration V

�1�
4

1. The full 3NF is then given by

V4 � V
�1�
4 � V

�2�
4 � V

�3�
4 : �1�

Scattering the pion in Fig. 1 from nucleon 1 via a virtual �-isobar is not the
most general process that leads to a 2�-exchange 3NF. The many ways to
accomplish this are indicated by the blob in Fig. 2. Several ansaÈtze have been used
to derive the 2�-exchange 3NF up to now. A short overview is given in Table 1. We
will not comment here on the different techniques and the underlying physical
ideas that lead to these 3NF models. For that we refer the interested reader to our
recent paper [11]. Rather, we will concentrate here on the differences between

1 The use of the index `̀ 4'' for a 3NF is common usage for three-nucleon calculations, where the

indices `̀ 1''±`̀ 3'' denote the three NN-pair forces
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these models in terms of operator form and the effects of these different models in
3N calculations.

Let us begin with the types of operators contained in various 3NF models in use
today. We will use the familiar language of the Tucson-Melbourne force [6], which
labels four 2�-exchange operators by its parameters a, b, c, and d. The operator
form of these terms (neglecting all overall factors and form factors) is given by

V
�1�
4 ja �

1

Q2 � m2
�

1

Q0 2 � m2
�

s2 � s3; �2�

Fig. 1. The Fujita-Miyazawa 3NF

Fig. 2. The 2�-exchange 3NF

Table 1. Various 2�-exchange 3NF models in use today

Year 3NF Characteristic a0 b c d

1957 Fujita-Miyazawa [5] Isobars 0 ÿ 1.15 0 ÿ 0.29

1979 Tucson-Melbourne [6] Current algebra ÿ 1.03 ÿ 2.62 1.03 ÿ 0.60

1983 Brazil [7] Chiral Lagrangean ÿ 1.05 ÿ 2.29 (1.05) ÿ 0.77

� (current algebra)

1983 Urbana [8] Isobars with additional 0 ÿ 1.20 0 ÿ 0.30

phenomenological

medium-range term

1993 Texas [9] Chiral perturbation theory ÿ 1.87 ÿ 3.82 0 ÿ 1.12

1996 RuhrPot [10] Non-chiral Lagrangean ÿ 0.51 ÿ 1.82 0 ÿ 0.48
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V
�1�
4 jb �

1

Q2 � m2
�

1

Q0 2 � m2
�

Q � Q0 s2 � s3; �3�

V
�1�
4 jc �

1

Q2 � m2
�

1

Q0 2 � m2
�

�Q2 � Q0 2� s2 � s3; �4�

V
�1�
4 jd �

1

Q2 � m2
�

1

Q0 2 � m2
�

r1 � Q� Q0 s1 � s2 � s3; �5�

where we have used the notation implicit in Figs. 1 and 2.
The main difference between all these models (in terms of operator structure) is

the c-term in the TM force. Let us have a closer look at the c-term and rewrite it
(neglecting the isospin dependence in Eq. (4)) as

V
�1�
4 jc /

Q2

Q2 � m2
�

1

Q0 2 � m2
�

� �Q$ Q0�

� Q2 � m2
� ÿ m2

�

Q2 � m2
�

1

Q0 2 � m2
�

� �Q$ Q0�

�
�

1|{z}
SR

ÿ m2
�

Q2 � m2
�|�����{z�����}

�-range

�
1

Q0 2 � m2
�

� �Q$ Q0�: �6�

Thus the c-term can be decomposed into a 2�-exchange term with the same
operator structure as the a-term plus a short-range±�-range term (marked `̀ SR'' in
Eq. (6)). The inclusion of the 2�-exchange part of the c-term leads to a rede®nition
of a as

a0 � aÿ 2 m2
� c; �7�

which essentially means a change of sign for a: a0 � ÿa. Therefore the difference
between the TM model and the other 2�-exchange 3NFs is the former's short-
range±�-range part of the c-term. Arguments developed in ref. [11] using chiral
symmetry show that this short-range±�-range part of the c-term should be dropped.
Doing this (and accordingly replacing a by a0), one gets a `̀ corrected'' TM force
that we will call TM0 in what follows.

Since the FM force has included only the 2�-� mechanism, it has only the b-
and d-terms. Also, for the same reason, the values of b and d are roughly half the
size of the corresponding TM-model values.

The Brazil force [7] is very closely related to the TM model; however, it does
not have the c-term. (That is, in its original form, although a c-term was later
included in order to agree with the TM model; this is indicated by the brackets in
Table 1.) The values for the parameters a0, b, and d are very close to the TM values.

The Urbana model [8] has only the b- and d-terms with values for b and d like
those of the FM model, since it also incorporates only the �-mechanism. In
addition it has a phenomenological medium-range term, whose inclusion was
motivated by nuclear-matter calculations. It turns out that this term plays no
important role in the 3N system.
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Like the Brazil force the Texas force [9] has the a-, b-, and d-terms, but with
values for a0, b, and d obtained from a ®t to �-N scattering and substantially larger
than those used in the Brazil or TM models.

Finally, the RuhrPot model [10] also employs the a0-, b-, and d-terms, but with
signi®cantly smaller values for the parameters than those used in the TM force.

Consequently one does not expect major differences in the effects of these 2�-
exchange 3NFs in the 3N system and, indeed, no major differences have been
found; (except for the Texas force) all of the above-mentioned 2�-exchange 3NF
models have been tested in 3N bound-state and continuum calculations, either by
the Bochum-Cracow group or the Pisa group or by both. Even the original TM
force with the c-term gives results similar to all the other models at low energies,
for reasons explained below. The only differences to be found are related to the
different strengths of these models due to different values for the parameters, as
well as due to different choices for the �NN form factors.

Let us now study the effects of the different terms individually. For the triton
this has already been done in ref. [12]. There it was found that the largest
contribution to the binding energy (60%±70%) comes from the b-term, whereas the
a0-term can be neglected. The rest comes from the c- and d-terms, where the
relative importance of these two terms depends strongly on the chosen NN
interaction (ref. [12] used the RSC and AV14 potentials).

In order to get the experimental value of the triton binding energy in
conjunction with various NN-force models, one can adjust the cut-off parameter �
in the �NN form factors of the TM and Brazil forces [13]. The �NN form factors of
these models have the form

F�Q2� � �2 ÿ m2
�

�2 � Q2
: �8�

Not only does the denominator in Eq. (8) suppress momenta large compared to the
cut-off parameter �, but because F is normalized to one at Q2 � ÿm2

�, the
numerator (and thus F at low momenta) also varies with �. This form factor
therefore acts to a certain degree like a strength factor of the 3NF, which allows
one to adjust the value of the triton binding energy.

The different versions of the Urbana 3NF are ®tted to give the correct value for
the triton binding energy when used with one of the Argonne NN potentials.

Most remarkable is the RuhrPot model, because the RuhrPot 2�-exchange 3NF
(together with the RuhrPot NN force) gives essentially the experimental value for
the triton binding energy without having any adjustable parameters [14].

For the 3N continuum we have studied the effects of the individual 3NF terms
(a0; b; d), in conjunction with the AV18 np potential [15], on elastic-scattering
observables at Elab � 3 MeV. The result is that the most important role in the 2�-
exchange 3NF is played by the b-term. The other terms may have signi®cant
contributions to some (small) observables, but they are always smaller than the b-
term contribution. As typical examples we depict the vector spin-correlation
coef®cient Cxx and the nucleon-to-deuteron tensor spin-transfer coef®cient Kx0z0

y in
Fig. 3.

This dominance of the b-term explains why all 2�-exchange 3NFs, including
the TM force with the c-term, give essentially the same results for the 3N
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continuum after being ®tted to the triton binding energy, even for those observables
that do not scale with the triton binding energy. Of course, this picture might
change if we go to higher energies.

Interesting within this context is that many low-energy observables, especially
in elastic scattering, show the just-mentioned scaling behaviour with the triton
binding energy [3] (i.e., all predictions for these observables using Hamiltonians
with different NN potentials and a 3NF ®tted to the triton binding energy agree
with each other). We had a closer look at this scaling phenomenon and found (not

Fig. 3. Effects of the various terms of the TM 2�-exchange 3NF on the vector spin-correlation

coef®cient Cxx and the nucleon-to-deuteron tensor spin-transfer coef®cient Kx0z0
y at Elab � 3 MeV.

Predictions are: AV18 (solid line), AV18� b (short-dashed line), AV18� d (long-dashed line),

AV18� abd (dotted line) and AV18� abcd (long-short dashed line). The 3NFs are switched on only

in the J� � 1
2

�
channels with jmax � 2

Fig. 4. Contributions of the TM 3NF in various channels for the scaling observable Cxx and the non-

scaling observable Ay. The prediction without 3NF is the solid line (AV18 only). The TM 3NF is

switched on for J� � 1
2

�
(short-dashed line), J� � 1

2

�
(long-dashed line), and J� � 5

2

�
(dotted line),

respectively
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unexpectedly) that the scaling observables are those that show a nonnegligible 3NF
effect only in J� � 1

2

�
(J being the total three-body angular momentum and � the

parity), whereas non-scaling observables show 3NF effects also (or only) for other
values of J�. As typical examples we show Cxx and Ay in Fig. 4.

3 Three-Nucleon Forces Including Heavier Mesons

The TM model was extended to incorporate the exchange of �-mesons in ref. [16],
which leads to a �-� and a �-� 3NF [17]. These forces were studied together with
the TM �-� 3NF in the 3N elastic scattering and breakup process [18].

The result of this study was that the �-� 3NF has no visible effects, whereas the
�-� 3NF always has an effect opposite in sign to the effect of the �-� 3NF, but
smaller. Moreover, it appears that the effect of the �-� 3NF is more or less
proportional to the effect of the �-� 3NF.

That result is somewhat surprising. It means that replacing a � with a � in the
3NF produces the same effects, though smaller and in the opposite direction. In
other words, the effective physics in the �-� 3NF is roughly the same as in the �-�
3NF. Given that the � and the � interact very differently, this is a surprising
conclusion.

In order to understand this let us recall that the most important term in a �-�
3NF is the b-term. If we examine the operator structure of the �-� 3NF (see, for
example, the last paper of ref. [17]), we ®nd that this force also contains a term
with the same operator structure as the b-term of the �-�-exchange TM 3NF, but
with different parameters and form factors and with the �-mass in one of the meson
propagators replaced by the �-mass. Moreover, we ®nd that the �-� b-term has the
opposite sign to the �-� b-term. So it seems plausible that the TM �-� 3NF could
be dominated by its b-term, also; at least, that would explain the pattern found in
the 3N scattering observables. (As a side remark, we note that the �-� 3NF also has
a d-term, which has the same sign as the �-� d-term.)

Whether our supposition about the �-� b-term is true or not, the ®nding in
ref. [18] about the effect of the �-� TM 3NF on 3N scattering observables shows
that the �-� 3NF of ref. [17] cannot be expected to contribute to the explanation
of any discrepancies between experiment and theory like the Ay-puzzle. This
�-� 3NF just weakens the �-� 3NF, but does not lead to any new effects. In order
to explain current puzzles we need new 3NF terms coming from other
physics.

4 The Texas Force and the Texas-Los Alamos Three-Nucleon Force

In addition to the conventional 2�-exchange 3NF terms (the a0-, b-, and d-terms in
the TM language), �PT in ®rst non-vanishing order predicts two terms of �-range±
zero-range nature (called d1- and d2-terms in the language of the Texas force) and
three terms of zero-range±zero-range nature (called e1-, e2-, and e3-terms) [9].
Since the zero-range±zero-range terms may be less important than the �-range±
zero-range terms (as the �-� terms in the TM force are much less important than
the �-� terms), we discuss here only the �-range±zero-range terms, and defer until
later the purely short-range terms. The form of the former terms in momentum
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space is given by

V
�1�
4 � d1

�2��6
gA

2f 2
�

r1 � Q0 r2 � Q0 1

Q02 � m2
�

s1 � s2

� d1

�2��6
gA

2f 2
�

r1 � Q r3 � Q 1

Q2 � m2
�

s1 � s3 �9�

and

V
�1�
4 � ÿ d2

�2��6
gA

4f 2
�

r1 � r3 � Q0 r2 � Q0 1

Q02 � m2
�

s1 � s2 � s3

ÿ d2

�2��6
gA

4f 2
�

r1 � r2 � Q r3 � Q 1

Q2 � m2
�

s1 � s3 � s2 : �10�

In a traditional Hamiltonian, of course, there are no zero-range forces. These
are an artifact of �PT. A realistic force would contain short-range components
from the exchange of heavy mesons. Indeed, one can construct a d1-term from the
exchange of ! or � mesons, whereas the d2-term gets contributions from � and A1

exchanges. We can envision a zero-range d1-term as caused by the exchange of a
very heavy isoscalar meson, and the corresponding d2-term by a very heavy
isovector meson. Consequently we extend the zero-range forces to ®nite range by
®lling in meson propagators and adding form factors. Eq. (9) is then modi®ed to

V
�1�
4 � d1

�2��6
gA

2f 2
�

r1 � Q0 r2 � Q0 F�Q02�
Q02 � m2

�

OSR�Q2� s1 � s2

� d1

�2��6
gA

2f 2
�

OSR�Q02� r1 � Q r3 � Q F�Q2�
Q2 � m2

�

s1 � s3; �11�

while Eq. (10) becomes

V
�1�
4 � ÿ d2

�2��6
gA

4f 2
�

r1 � r3 � Q0 r2 � Q0 F�Q02�
Q02 � m2

�

OSR �Q2� s1 � s2 � s3

ÿ d2

�2��6
gA

4f 2
�

OSR �Q02� r1 � r2 � Q r3 � Q F�Q2�
Q2 � m2

�

s1 � s3 � s2; �12�

where for our purposes OSR�Q2� can be taken to be one of the following choices:

OSR�Q2� � m2
sr

m2
sr � Q2

; �13�

OSR�Q2� � m2
sr

m2
sr � Q2

�2
sr

�2
sr � Q2

� �2

; �14�

OSR�Q2� � m2
sr

m2
sr � Q2

�2
sr

�2
sr � Q2

� �4

: �15�
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Eq. (13) is simply a heavy-meson propagator that is normalized to 1 at Q2 � 0; in
Eq. (14) that propagator is multiplied by the product of two monopole form factors;
and in Eq. (15) it is multiplied by the product of two dipole form factors. These
terms are depicted in Fig. 5.

The form factors in Eqs. (14) and (15) are chosen in such a way that the
resulting 3NF matrix elements at low momenta will not depend strongly on the
value of the cut-off parameter �sr. In order to stay consistent with the TM0 2�-
exchange 3NF, which we will use, we keep the same form for the �NN form factors
used in the TM 3NF,

F�Q2� � �2 ÿ m2
�

�2 � Q2

� �
; �16�

which is normalized to 1 at the pion pole (Q2 � ÿm2
�). Due to the ÿm2

� factor in
the numerator of Eq. (16), the size of a 3NF matrix element containing this form
factor depends even for low momenta on the value of the cut-off parameter �, just
as the TM 3NF does.

Since the d1- and d2-terms can be associated with the exchange of many
different heavy mesons, we interpret them as effective forces subsuming the effects
of all such mesons contributing to the respective term. Thus the exact value for the
mass msr in the propagator is not important; it just has to be roughly the right size.
We choose msr to be the !-meson mass.

Another quantity that is unknown for the d1- and d2-terms is their strength,
since �PT cannot predict it. The only thing �PT can say about the strength of these
terms is that they should be `̀ natural''.

In order to see what naturalness means we rewrite the dimensionful coupling
constants d1 and d2 in terms of dimensionless ones [9]

d1 � c1

f 3
� �

; �17�

d2 � c2

f 3
� �

; �18�

where � � 1 GeV, f� � 92:4 MeV, and c1 and c2 are dimensionless. For c1 and c2

to be natural means that their value should be on the order of 1. In practical terms

Fig. 5. �-range±short-range 3NF terms
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the absolute values of c1 or c2 should typically (and roughly) be numbers
comparable to 1, 2, . . . (or the inverse); their signs, however, are not known.

So in order to use the d1- and d2-terms predicted by a �PT-based (i.e., the
Texas) force, we have to make adaptations such as those described above. In order
to differentiate between that zero-range force and the ®nite-range terms written
down in Eqs. (11) and (12), we refer to the latter as the Texas-Los Alamos force.

At this point we should mention that the d1- and d2-terms are predicted not
only by �PT, but by conventional nuclear ®eld-theory models as well. For example,
the d1-term is contained in ref. [19] as � and � exchanges or � and ! exchanges
with an intermediate N(1440) resonance (Eqs. (3.2a) and (3.2b) in ref. [19]), while
the d2-term is included in ref. [16] as a �-� Kroll-Ruderman term (Eq. (2.13f)
together with the last term, the `̀ 4'', of Eq. (2.15a) in ref. [16]).

The d2-term is also included in the meson-theoretical RuhrPot �-� 3NF [10] as
Eq. (A7), among many other terms. Here the mechanism for the d2-term is a NN��
vertex at one of the three nucleons.

However, these papers include many other 3NF terms, as well, that are of
higher order in power counting (i.e., they are smaller) than the d1 and d2 terms.
Ref. [16] includes 126 terms, for example, and the d2-term is part of one of them.
After having written down these terms the authors conclude that the d2-part is the
dominant one. This exhibits the advantage of a power-counting scheme like the one
that is part of �PT: One knows from the very beginning which terms should be
important and which should not. With conventional nuclear ®eld-theory models
there is no easy way to know this beforehand.

The d1- and d2-terms are therefore not new in the sense that they have never
been written down before. But they are new in the sense that for the ®rst time they
have been identi®ed as the leading-order terms of the pion-range±short-range 3NF
and can be used (see below) in a realistic calculation of the 3N continuum.

5 Calculating the Three-Nucleon Continuum

It became possible for the ®rst time in ref. [20] to include a realistic 3NF in a
rigorous calculation of the 3N continuum for energies above the deuteron breakup
threshold. The algorithm used in ref. [20] was later replaced by the more effective
one developed in ref. [21].

The Faddeev equation with a 3NF included reads

T � tP�� �1� tG0�V �1�4 �1� P��
� tPG0T � �1� tG0�V �1�4 �1� P�G0T ; �19�

where T is the Faddeev amplitude for which Eq. (19) has to be solved, t is the two-
body t-matrix, G0 is the free three-nucleon propagator, P is the sum of a cyclic and
an anti-cyclic permutation (operator) for the three nucleons [22], V

�1�
4 has already

been de®ned in Sect. 2, and � is the incoming state composed of a free nucleon and
a free deuteron. Once Eq. (19) is solved one gets the elastic transition amplitude
via

U � PGÿ1
0 � PT � V

�1�
4 �1� P��� V

�1�
4 �1� P�G0T �20�
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and the transition amplitude for the breakup process via

U0 � �1� P�T : �21�
The 3NF is built into Eq. (19) in a perturbative way. Solving Eq. (19) by iteration

not only gives the different orders in T , but the different orders in V
�1�
4 as well. This

will become important later on. Of course we always iterate Eq. (19) until we reach
full convergence.

In addition to using the new algorithm for the Faddeev equations, we have also
replaced the PWD for the 3NF used in ref. [20] by one developed later in ref. [23].
The reason is that the original PWD is numerically unstable for higher partial
waves than those required in the early work. The PWD for the d1- and d2-terms is
performed in Appendix A. For details on the numerics see ref. [3].

6 Results

The ®rst thing one realizes when dealing with the d1- and d2-terms is that these
terms appear to be big. By big we mean that one cannot get convergence for the
iteration of Eq. (19) when c1 and c2 are signi®cantly larger than 1 and 0.5,
respectively. Indeed, the convergence criterion (Eq. (5.15) of ref. [24] ± the
difference between the last and before-last result of the iteration of Eq. (19),
averaged in a speci®c way, has to become less than an �) cannot usually be ful®lled
for � � 10ÿ4 (our usual value for �), but only for � � 10ÿ3 or larger.

This slower (or lack of) convergence can easily be related to the size of these
3NF terms. For example, if one slowly increases the value of c1 from below 1 or c2

from below 0.5, one can examine how the convergence becomes worse around (or
above) 1 or 0.5, respectively.

One ®nds that the smallest � for which the convergence criterion can be ful®lled
increases with increasing c1 and c2. If one increases the values for c1 and c2 further
one ®nally reaches the point where convergence is totally lost.

The above-described loss of convergence happens ®rst for J� � 1
2

�
, whose

convergence is always slowest due to the presence of the bound state. However,

even for larger values of c1 and c2 where there is no longer convergence in the 1
2

�

channels, the 3NF contribution to the Faddeev amplitude T is still signi®cantly
smaller than the NN-force contribution. Thus naively one would expect no
dif®culty with the convergence. However, iterating Eq. (19) mixes the perturbation
series for the 3NF with the iteration series for the solution of T and therefore we
lose convergence even for relatively small 3NFs.

It might be that this behaviour is an artifact of our way of parameterizing the
new 3NF terms (e.g., of our choice for the form factors). Unfortunately, we did not
have the resources necessary to study this. Since we intend to study only the
cardinal effects of these new 3NF terms, this problem is not particularly important.
We simply con®ne ourselves to smaller values for c1 and c2 for which we can
present fully converged results.

Even if the convergence problem turns out not to arise from our choice of
parameterization, it is still not a problem of principle. We would just have to use a
different algorithm for the incorporation of a 3NF into the Faddeev equations,
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either the one we used in the past [20] or, due to the advance of super-computers,
just treat the 3NF in a straight-forward way (i.e., solve the Lippmann-Schwinger
equation driven by V

�1�
4 and then use the corresponding t-matrix in the Faddeev

equations).
All calculations presented in the following have been performed with a

somewhat reduced accuracy. That means that the maximally allowed angular
momentum for the two-body subsystem has been reduced to jmax � 2 everywhere
except for the inner states during the calculation of the 3NF matrix elements (see
ref. [23] for details), which have been reduced to jmax � 3. With these restrictions
we are still within 2±3% of the results for a fully converged calculation at 3 and 10
MeV and not much worse at 50 MeV. This is suf®cient for our purpose.

In the following we concentrate on the neutron analyzing power Ay. Of course,
if we want to ®nd a solution for the Ay-puzzle we also need to look at the deuteron
analyzing power iT11. We do not do this here for several reasons. First, we do not
intend to present a solution, but rather to see if a solution is possible. Second, there
are no nd data for iT11, but only pd data. Since we cannot include the Coulomb
force in our calculations it makes more sense to concentrate on Ay here. Third, the
effects on iT11 are always very similar to the effects on Ay; there are no signi®cant
differences. This suggests that if we are able to describe Ay we probably will also
describe iT11.

In Figs. 6±8 we show the nucleon analyzing power Ay for elastic neutron-
deuteron scattering. The negative sign for c1 was chosen in order to get an
enhancement in the maximum of Ay instead of a decrease. Although the

Fig. 6. The elastic neutron analyzing power Ay at Elab � 3MeV. The solid line in both ®gures

represents the prediction for the NN potential (AV18) alone. In the left-hand ®gure the long-dashed

line is the prediction for AV18 plus the d1-term 3NF with c1 � ÿ1. The short-dashed line is the

prediction of AV18 plus the d2-term 3NF with c2 � 0:5. (Note that the short-dashed line overlaps

almost completely with the solid line, and is nearly invisible.) In the right-hand ®gure the long

dashed line is the prediction of AV18 plus the TM0 3NF with the cut-off parameter � � 5:215m�:

For the short-dashed line on top of TM0 the d1- and d2-terms have been added with parameters

c1 � ÿ1 and c2 � 0:5, respectively. Form factors and other parameters have been chosen as

described in Sect. 4. The circles are nd data from ref. [25]
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enhancement by d1 of the maximum of Ay at 3 MeV (depicted in Fig. 6 ) is not
terribly large and Ay calculated with the d1-term is still far from the data, this is
nevertheless a very promising result, since one can easily reach the experimental
points with a larger value for c1 (i.e., more negative than ÿ1) that is still natural.
We will return to this point.

As can be seen from Fig. 6 the d2-term has practically no effect on Ay at 3 MeV.
This is ideal since one can ®x the value of c1 at 3 MeV without worrying about
effects from d2.

One should note that the 2�-exchange 3NF (TM0) already causes a visible
increase in the maximum of Ay. However, plausible choices for the parameters in
the 2�-exchange 3NF will not be able to explain the Ay-puzzle, since these
parameters are much more restricted than they are for the new 3NF terms. Our
choice for the cut-off parameter of the �NN form factors in the TM0 3NF
(� � 5:215 m�) probably makes our 2�-exchange 3NF somewhat too small. But
even with the recommended choice of the Tucson-Melbourne group, one can only

Fig. 7. Same as Fig. 6 but for Elab � 10MeV. The circles are nd data from ref. [26]

Fig. 8. Same as Fig. 6 but for Elab � 50MeV. The circles are nd data from ref. [27]
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expect that the effect of the 2�-exchange 3NF would be larger by about 20%. This
means that with a 2�-exchange 3NF one can come nowhere close to the experi-
mental values.

At 10 MeV the situation is similar to 3 MeV. One can see, however, that the d2-
term has a small effect on Ay at this higher energy.

At 50 MeV the situation has totally changed. Firstly, there is no Ay-puzzle at
this energy (the predictions of all modern NN forces agree reasonably well with the
data). However, it should be emphasized that the experimental situation is not as
clear as at the lower energies, since the error bars are signi®cantly larger. This
means that there is still some room for small 3NF effects at this energy.

Secondly, the form of Ay has changed. The maximum that we have seen at the
two lower energies has become a minimum here, and there are two less-
pronounced maxima, one at each side of the minimum. This is due to the fact that
at this energy the mechanisms that build up the analyzing power have changed. We
know from ref. [3] that at 50 MeV the P-waves have become less important and
that D-waves play a role.

If we now examine Fig. 8 we see that both the d1- and the d2-terms have large
effects on Ay at this energy. This does not come as a surprise. We know that a 3NF
always is of shorter range than the one-pion-exchange part of the NN force.
Therefore one naively expects that 3NFs become more and more important with
increasing energy. That this is indeed true for the 2�-exchange 3NF has been
shown in ref. [3] and more recently in refs. [1] and [2] for the total and differential
elastic cross sections, respectively. Since the new 3NF terms d1 and d2 are of even
shorter range than the 2�-exchange 3NF, one expects that their effects grow even
faster with increasing energy. Our calculations suggest that this is true.

Of course, in this case we will face serious problems in our attempt to ®nd a
solution for the Ay-puzzle via 3NFs of shorter range than the 2�-exchange 3NF. We
will discuss this below.

There is one other interesting aspect of Fig. 8. If we look at the left maximum
in the left-hand ®gure of Fig. 8 we see that the effects both of the d1- and d2-terms
in that maximum are moderate. However, if we add these two terms on top of the
2�-exchange 3NF this combined 3NF has very large effects on that maximum, as
can be seen in the right-hand ®gure of Fig. 8, whereas the effect of the 2�-
exchange 3NF alone is almost zero. This means that in this special case a very
strong constructive interference develops between the various 3NF terms. It tells us
that in dealing with 3NFs one has to be very careful if one excludes certain 3NF
terms, since even if their individual effects are small, their interference with other
3NF terms might lead to surprisingly large effects.

Next we want to quantify our ®ndings. For this purpose we list in Table 2 the
effects of the various 3NFs alone and together in the extrema of Ay. This table
includes more calculations than we have shown in the ®gures. We included one
calculation with c1 � ÿ2 at 3 MeV. For this calculation we could only reach a
convergence with � � 10ÿ3. Therefore we did not repeat this calculation for the
higher energies.

The ®rst thing we see in Table 2 is that the effect of the elimination of the
short-range part of the c-term in the original TM 3NF is negligible at 3 MeV, but
already signi®cant at 10 MeV. This means that older calculations with the original
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TM 3NF should be repeated using TM0 for energies above the deuteron breakup
threshold.

Next we see that the effect of the d1-term at 3 and 10 MeV is more or less linear
with the value of c1, but not so at 50 MeV. On the other hand the effect of the d2-
term is not linear with the value of c2 at 3 MeV and is dramatically less so at 10
MeV, but becomes more or less linear at 50 MeV.

A look at the last line of Table 2 reveals that at all energies there are some
interference effects between the various 3NF terms, though they are strongest in
the maximum at 50 MeV. Interestingly, we have a signi®cant destructive inter-
ference in the minimum of Ay at 50 MeV.

Next we want to see if it is possible to ®nd a combination of d1 and d2 with
which it is possible to come close to the experimental data for Ay. Of course, due to
the nature of our calculations, any such combination that we might ®nd can only
give a rough estimate for the values of c1 and c2, but that is all we want. If we can
®nd such a combination we would have shown that a solution of the Ay-puzzle
using these two 3NF terms of pion-range±short-range nature is possible.

So let us start with 3 MeV. Here the situation is relatively simple, since we can
neglect the effect of the d2-term on Ay. Taking into account that we probably
underestimate the effect of the 2�-exchange 3NF somewhat (as we stated above), we
can extrapolate from Table 2 that a value for c1 of about ÿ3 would probably be able
to close the gap (� 30%) between the data and the predictions of the NN potentials.

If we move on to 10 MeV we see that (not taking into account d2 for the
moment) a combination of TM0 ÿ 3d1 (this notation means that we are using TM0
and a d1 force with c1 � ÿ3) would probably overestimate the data a little bit,

Table 2. Theoretical predictions for Ay at the extrema for various energies. The c.m. angles of the

extrema are given in brackets in the second header line of the table. For calculations where a 3NF is

added to AV18, the deviation of that result from the calculation with AV18 alone is given in percent in

brackets as well. All calculations were performed with jmax � 2 except the ones in the two lines

marked with *, which were performed with jmax � 3. For simplicity we denoted different values for the

dimensionless constants c1 and c2 as multiplicative factors in front of d1 and d2 in the ®rst column of

the table (e.g., ÿ 2d1 means c1 � ÿ2)

3 MeV 10 MeV 50 MeV 50 MeV

Ayjmax�105�� Ayjmax�122:5�� Ayjmax�47:5�� Ayjmin�112:5��
AV18* 0.04549 0.1275 0.1599 ÿ 0.5066

AV18 0.04536 0.1294 0.1539 ÿ 0.5016

�TM* 0.04857 (� 6.8%) 0.1328 (� 4.2%) 0.1543 (ÿ 3.6%) ÿ 0.4953 (ÿ 2.3%)

�TM0 0.04825 (� 6.4%) 0.1420 (� 9.7%) 0.1472 (ÿ 4.5%) ÿ 0.5066 (� 1.0%)

� d1 0.04343 (ÿ 4.4%) 0.1231 (ÿ 5.1%) 0.1589 (� 3.2%) ÿ 0.4306 (ÿ 16.5%)

ÿ d1 0.04778 (� 5.3%) 0.1370 (� 5.9%) 0.1388 (ÿ 10.9%) ÿ 0.5606 (� 11.8%)

ÿ 2d1 0.05094 (� 12.3%)

� 0.5d2 0.04521 (ÿ 0.3%) 0.1277 (ÿ 1.3%) 0.1578 (� 2.5%) ÿ 0.5157 (� 2.8%)

ÿ 0.5d2 0.04561 (� 0.6%) 0.1469 (� 13.5%) 0.1503 (ÿ 2.4%) ÿ 0.4832 (ÿ 3.8%)

TM0 ÿ d1 0.05106 (� 12.6%) 0.1497 (� 15.5%) 0.04804 ÿ 0.5367 (� 7.0%)

� 0.5d2
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since the gap is also about 30% at this energy, but the 2�-exchange 3NF has a
somewhat larger effect at 10 MeV than at 3 MeV, whereas the effect of d1 is more
or less the same at both energies. However, at 10 MeV the d2-term has a small but
visible effect on Ay. So we can use the d2-term to counterbalance the increased
effect of the 2�-exchange 3NF. This leads us to a value for c2 that should be
positive and small, perhaps 0.5 or 1. Thus a combination like TM0 ÿ 3d1 � 0:5d2 or
TM0 ÿ 3d1 � d2 would be able to bring the theoretical prediction for Ay close to the
experimental data at 3 and 10 MeV.

It might be, however, that the values we just gave for c1 and c2 are even smaller
in reality. The reason is that, as mentioned above, we used the �NN form factor
Eq. (16) for the d1- and d2-terms with the same small value for � as for the 2�-
exchange part of the 3NF. This might cause us to underestimate the strength of d1

and d2 somewhat.
Now let us look at 50 MeV. We see immediately from Table 2 that the combi-

nation of 3NF terms mentioned above does not work at this energy. The effects
would be far too large. If that is so, is there any way out of this dilemma?

One might argue that 3NF terms of even shorter range than d1 and d2 might
become important at this higher energy. If that is the case these additional 3NF
terms will provide additional parameters with which one might be able to describe
the data at 50 MeV. As we mentioned in Sect. 4 such terms exist: the so-called e1-,
e2-, and e3-terms, which are of short-range±short-range nature. However, we
believe that the inclusion of these terms will lead to serious problems for two
(connected) reasons.

We face the conceptual and practical problem that the short-range e1-, e2-, and
e3-terms are indistinguishable from very short-range (i.e., �-function) parts of the
2�-exchange 3NF. Disentangling these terms is usually made more serious by the
lack of consistency between the NN-force and the 3NF models we use. In addition,
accumulating too many parameters (the values of e1, e2, and e3 are unknown) in a
three-nucleon problem is self-defeating.

This leads us immediately to a deeper, basic question: How high in energy do
models for the nuclear force based on meson exchange make sense? Meson-
exchange models have been extremely successful, even at much higher energies
than we are considering here. Could it be that the meson-exchange picture ± or
rather the way we usually implement it ± breaks down (i.e., becomes excessively
complicated) at an energy as low as 50 MeV as soon as one starts to look into
(admittedly small) details of the nuclear force? To answer this question one would
have to investigate whether the short-range±short-range 3NF terms play any role in
Ay (and other observables) at 50 MeV. Since this is such a basic question it might
be worthwhile to do so.

However, there is one other possibility. We have not yet mentioned the so-called
3NF Born terms [28, 11]. These terms are also predicted by �PT to be the same
order in power counting as all the other 3NF terms mentioned here. These terms
are model-dependent in the sense that they depend on how the `̀ off-shellness'' of
the NN potential has been de®ned, and they thus depend on the details of the NN
potential that one uses [28, 11]. Usually these Born terms are neglected, on the one
hand due to the complications they bring (such as nonlocality), and on the other
hand because a subset of them is known to be small [6]. One of the 16 Born terms
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is of spin-orbit nature [28], however. This particular Born term might be important
for Ay, since that observable is very sensitive to the spin-orbit force [4]. The next
step in exploring the Ay-puzzle should be to take into account (at least) this
particular Born term.

We have found that the effects of the d1- and d2-terms on other observables in
elastic nd scattering are usually smaller than their effects on Ay and iT11. Only for
some tensor-polarization observables are the effects comparable to those on Ay and
iT11.

7 Summary and Conclusions

In Sect. 2 we have reviewed the current state of affairs for the 2�-exchange 3NF.
Due to the elimination of the pion-range±short-range part of the c-term of the TM
3NF, the question of the operator form of the 2�-exchange 3NF is now settled. We
showed that in low-energy elastic nd scattering the effect of the 2�-exchange 3NF
is dominated by the b-term, as in the bound state. In addition we found that those
observables that scale with the triton binding energy show 3NF effects only for the
channels for which the 3N system is bound (viz., those with J � � 1

2

�
).

Next we commented in Sect. 3 on the results found so far using 3NFs that
include the exchange of one or more mesons that are heavier than the pion. Due to
the nature of these effects we suspect that the �-� TM 3NF is also dominated by its
b-term and therefore cannot explain the Ay-puzzle.

In Sect. 4 we introduced the Texas force, which is based on �PT. We explained
which of the 3NF terms of the Texas force are of interest to us, and we extended the
zero-range parts of these terms to ®nite range in order to connect with the
traditional models we use for the NN force and the 2�-exchange 3NF. Thereafter
we gave a meson-exchange interpretation to the new terms. Finally we commented
on the appearance of those terms in calculations that are not based on �PT.

A brief review of our approach to solving the Faddeev equations for the 3N
continuum has been given in Sect. 5. For the PWD of the new 3NF terms we refer
to Appendix A.

Finally we presented our results in Sect. 6. We studied the effects of the new
3NF terms on Ay at 3, 10, and 50 MeV. For the two lower energies we could ®nd a
combination of the d1- and d2-terms that (together with the NN force and the 2�-
exchange 3NF) would be able to describe the Ay data. Although this is only a
qualitative ®nding, it is of considerable importance because we have developed for
the ®rst time a microscopic model of the nuclear force that has the potential to
describe the low-energy vector-analyzing-power data. To make this model
quantitative will involve considerable effort. We typically obtain the b and d
parameters from ®ts to �-N scattering, and in principle the d1 and d2 parameters
can be obtained from pion production in NN scattering, although the latter remains
to be seen. If that proves impractical we would have to ®t d1 and d2 (and the cut-off
parameter � in the �NN form factor) to the triton binding energy, to Ay, and to
other nd observables for which we have nd data. Given the complexity of three-
nucleon calculations, this three-parameter search would be very time-consuming.

However, as discussed in Sect. 6, such a 3NF would not be able to describe the
Ay data (and possibly data for other observables) at 50 MeV and higher. This might
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be due to the fact that other 3NF terms than those included in this paper become
important at that energy. One such 3NF term could be one of the Born terms that is
of spin-orbit type, and therefore is a candidate to be of importance for Ay. Up to
now the Born terms have been largely neglected, but it seems obvious that at least
the one just mentioned has to be included in 3N continuum calculations as a next
step towards a solution of the Ay-puzzle.

Other candidates for 3NF terms that might become important at 50 MeV are the
ones of short-range±short-range type, which are predicted by �PT to be the same
order as the d1- and d2-terms and the 2�-exchange 3NF terms that have been
included in this study. If it turns out that these terms do become important at
50 MeV we face serious problems with meson-exchange models.

Unfortunately, another problem would also arise: We would have to ®t many
more terms, which on the one hand is very dif®cult for a 3N problem, and on the
other hand we might loose any predictive power by accumulating too many
parameters with increasing energy. Since these are important questions, it might be
worthwhile to check ®rst whether or not the short-range±short-range 3NF terms
predicted by �PT in lowest non-vanishing order have any effect at 50 MeV.

In this paper we believe that we have made an important step forward toward
the solution of the long-standing Ay-puzzle by identifying new 3NF terms that have
a signi®cant effect on Ay even at low energies. We found these terms using a
systematic approach for the classi®cation of the 3NF terms (i.e., the power-
counting scheme of �PT). In doing so new questions arose that require further
testing of our models of nuclear forces. However, we have to leave the answers to
these questions to future work.
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Appendix A. Partial-Wave Decomposition

For the partial-wave decomposition (PWD) of the new 3NF terms we will closely follow ref. [23].

We will not repeat here the principles and ideas behind the PWD as developed in ref. [23] but rather

apply them to the new d1 and d2 terms. We will often refer to equations from ref. [23] in the form (xx

[23]), where xx is the equation number in ref. [23]. In addition, we refer to ref. [23] for the notation

used here.

A.1 The d1-Term

Let us begin with the d1-term. It is given in Eq. (11) as

V
�1�
4 � d1

�2��6
gA

2f 2
�

r1 � Q0 r2 � Q0 F�Q02�
Q02 � m2

�

OSR�Q2� s1 � s2

� d1

�2��6
gA

2f 2
�

OSR�Q02� r1 � Q r3 � Q F�Q2�
Q2 � m2

�

s1 � s3: �A:1�

112 D. HuÈber et al.



For the notation see Fig. 5. As in ref. [23] we will deal with the momentum-spin matrix elements and

the isospin matrix elements separately (see Eq. (35[23])).

We start with the momentum-spin matrix elements. In analogy to Eqs. (28[23]), (31[23]), and

(35[23]) we split the momentum-spin-dependent part of the d1-term into two quasi-two-body

operators. This leads to matrix elements

MJ;2
d1
� 2h pq�J jr1 � Q r3 � Q F�Q2�

Q2 � m2
�

p1q1�1Jj i2

� ��qÿ q1�
q2

���1
�II1

X
mm1

C� jm IM ÿ m; JM� C� j1m1 I1M1 ÿ m1; J1M1�

� 2h pjmjr1 � Q r3 � Q F�Q2�
Q2 � m2

�

p1 j1m1j i2|�����������������������������������{z�����������������������������������}
�M

j;2
d1

; �A:2�

~M J;3
d1
� 3 p2q2�2Jh jO�Q02� p0q0�0J

�� �
3

� ��q2 ÿ q0�
q02

��0�2
�I0I2

X
m2m0

C� j2m2 I2M2 ÿ m2; J2M2� C� j0m0 I0M0 ÿ m0; J0M0�

� 3 p2 j2 m2h jO�Q02� p0j0m0j i3|���������������������{z���������������������}
� ~M j;3

d2

�A:3�

for the second term in Eq. (A.1). The momentum transfers Q and Q0 are given by

Q � pÿ p1; �A:4�
Q0 � p0 ÿ p2: �A:5�

For M
j;2
d1

we have to decompose the operator

r1 � Q r3 � Q � 4� j pÿ p1j2 �1; Y1� dpÿ p1f g0
; �1; Y1� dpÿ p1f g0

n o0

�
������
4�
p

jpÿ p1j2
X

i

C�10 10; i0�

�
X

a�b�i

pa�ÿp1�b
j pÿ p1ji

����������
4�̂i!

â! b̂!

s
�1; �3f gi; Yi

ab� p̂; p̂1�
� 	0

� 4�

�
ÿ 1���

3
p jpÿ p1j2 �1; �3f g0;Y0

00� p̂; p̂1�
n o0

� 4
���
5
p X

a�b�2

pa�ÿp1�b����������
â! b̂!

p �1; �3f g2;Y2
ab� p̂; p̂1�

n o0
�
: �A:6�

For the expansion of the angular dependence in the propagator and form factor we use Eqs. (43±

47[23]) and (59[23]). Putting this together with the result (A.6) we get

M
j;2
d1
� �4��

2

2

�X
�l

�ÿ��l
��̂
�l

q
~H�l� pp1� 2h pjmj �1; �3f g0; Y0

00� p̂; p̂1�
n o0

�Y00
�l�l � p̂; p̂1� p1 j1m1j i2�

���
2

3

r ����
5!
p X

a�b�2

pa�ÿp1�b����������
â! b̂!

p X
�l

�ÿ��l
��̂
�l

q
H�l� pp1�

� 2h pjmj �1; �3f g2; Y2
ab� p̂; p̂1�

n o0

Y00
�l�l � p̂; p̂1� p1 j1m1j i2

�
: �A:7�
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Next we need to recouple the spherical harmonics that appear in the two matrix elements of

Eq. (A.7):

�1; �3f g0; Y0
00� p̂; p̂1�

n o0

Y00
�l�l � p̂; p̂1� � 1

4�
�1; �3f g0 Y00

�l�l � p̂; p̂1�; �A:8�
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and therefore M
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d1
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pa�ÿp1�b����������
â! b̂!

p X
i1i2

�ÿ��l�a�i2

�
�������
âb̂̂�l

q
i1 i2 2

b a �l

� �
C�a0 �l0; i10�C�b0 �l0; i20�

� 2h pjmj �1; �3f g2; Y2
i1i2
� p̂; p̂1�

n o0

p1 j1m1j i2: �A:10�

Now we have to evaluate the two matrix elements in Eq. (A.10):

2h pjmj �1; �3f g0 Y00
�l�l � p̂; p̂1� p1 j1m1j i2

� �jj1 �mm1
�ll1 �ss1

�l�l 2
���
3
p
�ÿ�l�s 1 ��̂

l
p 1

2
1
2

s
1
2

1
2

1

( )
; �A:11�

2h pjmj �1; �3f g2; Y2
i1i2
� p̂; p̂1�

n o0

p1 j1m1j i2

� �jj1 �mm1
�li1 �l1i2 6

���
5
p
�ÿ�j�s1

������
ŝ̂s1

p l1 s1 j

s l 2

� � 1 1 2
1
2

1
2

s
1
2

1
2

s1

8><>:
9>=>;:

�A:12�

Inserting these results into Eq. (A.10) yields

M
j;2
d1
� �jj1 �mm1

�ll1 �ss1
4� �ÿ�s�1 ~Hl� pp1�

1
2

1
2

s
1
2

1
2

1

( )

� �jj1 �mm1
240� �ÿ�j1�l1�s1

������
ŝŝ1

p l1 s1 j

s l 2

� � 1 1 2
1
2

1
2

s
1
2

1
2

s1

8><>:
9>=>;

�
X

�l

�̂l H�l� pp1�
X

a�b�2

pa�ÿp1�b����������
â! b̂!

p l l1 2

b a �l

� �
� C�a0 �l0; l0�C�b0 �l0; l10�: �A:13�
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Thus the ®nal result for M
J;2
d1

, after evaluating the sums over m and m1 in Eq. (A.2), becomes

MJ;2
d1
� ��q1 ÿ q�

q2
�JJ1

�MM1
�jj1 ���1

�II1

� �ll1 �ss1
4� �ÿ�s�1 ~Hl� pp1�

1
2

1
2

s
1
2

1
2

1

( )"

� 240� �ÿ�j1�l1�s1
������
ŝŝ1

p l1 s1 j

s l 2

� � 1 1 2
1
2

1
2

s
1
2

1
2

s1

8><>:
9>=>;

�
X

�l

�̂l H�l� pp1�
X

a�b�2

pa�ÿp1�b����������
â! b̂!

p l l1 2

b a �l

� �
C�a0 �l0; l0�C�b0 �l0; l10�

#
:

�A:14�

A useful test for the correctness of the result (A.14) is a comparison with the result for MJ;2
d

in ref. [23]. The difference between M
J;2
d1

and M
J;2
d is that the ®rst matrix element has an

operator r1 � Q � 4� �1; Y
1�Q̂�� 	00

, whereas the latter matrix element has the operator

ÿi
���
2
p ����������

4�=3
p

�1; Y
1�Q̂�� 	1�

. Thus the difference between M
J;2
d1

and M
J;2
d , besides a different

factor in front, is that in one case we have a rank-0 operator and in the other case the same operator,

but with rank-1 this time. Of course the replacement of the rank-1 operator in the result for the d-

term with the rank-0 operator in order to get the result for the d1-term is not as straightforward as it

might appear and has to be done with great care. Nevertheless, one ®nds that the result (A.14) for

M
J;2
d1

is consistent with the result (90[23]) for M
J;2
d .

Besides MJ;2
d1

we will also need the matrix element

M J;3
d1
� 3h p2q2�2J jr1 � Q0 r2 � Q0 F�Q02�

Q02 � m2
�

p0q0�0J
�� �

3
�A:15�

for the ®rst term in Eq. (A.1). M J;3
d1

can easily be obtained from M J;2
d1

via the symmetry relation

MJ;2
d1
� pq�; p1q1�1� � MJ;3

d1
� p1q1�1; pq��: �A:16�

The second momentum-spin matrix element occurring in the d1-term is ~MJ;3
d1

, Eq. (A.3). For the

moment we do not need to specify which choice of Eqs. (13)±(15) we want to make for the short-

range operator O�Q02�. That means we just use Eq. (46[23]) for the expansion of the angular

dependence and do not yet specify how to determine H. With this we get

~M j;3
d1
� 2�

X
�l

��̂
�l

q
�H�l� p0p02� 3h p2q2�2J jY00

�l�l � p̂0p̂2� p0q0�0J
�� �

3
: �A:17�

The matrix element in Eq. (A.16) can easily be evaluated as

3h p2q2�2J jY00
�l�l � p̂0p̂2� p0q0�0J

�� �
3
� �j0j2 �l0l2 �s0s2

�m0m2

�ÿ�l0���̂
l0

p �A:18�

and with this we get

~M J;3
d1
� ��q2 ÿ q0�

q02
�J0J2

�M0M2
�j0j2 �l0l2 �s0s2

��0�2
�I0I2

2� �Hl0 � p0p2�: �A:19�

The symmetry relation to obtain ~MJ;3
d1

is given by

~MJ;2
d1
� pq�; p1q1�1� � ~MJ;3

d1
� p1q1�1; pq�� : �A:20�
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Let us now determine �H for the different choices Eqs. (13)±(15) for O�Q2�. Choosing O�Q2�
according to Eq. (13) as a propagator only we get instead of Eqs. (43±44[23])

f �x� � m2
sr

� pÿ p1�2 � m2
sr

� m2
sr

2pp1

1

Bmsr
ÿ x

�A:21�

and therefore �H becomes for this case

�Hl� pp1� � m2
sr

pp1

Ql�Bmsr
� : �A:22�

The second case, Eq. (14), where the propagator is multiplied by monopole form factors, has

already been calculated in Eqs. (43±47[23]). Thus for this case one has

�Hl� pp1� � m2
sr

1

pp1

�Ql�Bmsr
� ÿ Ql�B�sr

�� � �2
sr ÿ m2

sr

2� pp1�2
Q0l�B�sr

�
( )

: �A:23�

Finally we have the case where the propagator is multiplied by dipole form factors, Eq. (15):

f �x� � m2
sr

�pÿ p1�2 � m2
sr

�2
sr

�2
sr � Q2

� �4

� m2
sr �8

sr

�2pp1�5
2pp1

�2
sr ÿ m2

sr

� �4
1

Bmsr
ÿ x
ÿ 1

B�sr
ÿ x

� �
ÿ 2pp1

�2
sr ÿ m2

sr

� �3
1

�B�sr
ÿ x�2

(

ÿ 2pp1

�2
sr ÿ m2

sr

� �2
1

�B�sr
ÿ x�3 ÿ

2pp1

�2
sr ÿ m2

sr

� �
1

�B�sr
ÿ x�4

)
: �A:24�

This leads to

�Hl� pp1� � m2
sr

��2
sr ÿ m2

sr�4
1

pp1

�Ql�Bmsr
� ÿ Ql�B�sr

�� � �2
sr ÿ m2

sr

2� pp1�2
Q0l�B�sr

�
(

ÿ ��
2
sr ÿ m2

sr�2
�2pp1�2

Q00l �B�sr
� � ��

2
sr ÿ m2

sr�3
3�2pp1�4

Q000l �B�sr
�
)
: �A:25�

The only pieces still missing for the PWD of the d1-term are the isospin matrix elements. They

are given by

Id1
� 2h�t 1

2
�TMT js1 � s2 �t0 1

2
�T 0M0T

�� �
3

� �TT 0 �MT M0
T
�ÿ6�

�����
t̂t̂0

p 1
2

1
2

t
1
2

T t0

( )
1
2

1
2

t0
1
2

1
2

1

( )
; �A:26�

~Id1
� 2h�t 1

2
�TMT js3 � s1 �t0 1

2
�T 0M0T

�� �
3

� �TT 0 �MT M0
T
�ÿ�t�t0�1

6
�����
t̂t̂0

p 1
2

1
2

t
1
2

T t0

( )
1
2

1
2

t
1
2

1
2

1

( )

� Id1
for t � t0;

ÿId1
for t 6� t0:

�
�A:27�
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Now we can put all parts together in order to obtain the d1 matrix element. In order to do this we

will use an obvious symbolic notation:

1hV �1�4 jd1
i1 � P1$2 f� ~MJ;2

d1
P2$3 M

J;3
d1
� Id1
� �MJ;2

d1
P2$3

~MJ;3
d1
�~Id1
gP3$1: �A:28�

A.2 The d2-Term

The d2-term is given in Eq. (12) as

V
�1�
4 � ÿ d2

�2��6
gA

4f 2
�

r1 � r3 � Q0 r2 � Q0 F�Q02�
Q02 � m2

�

OSR�Q2� s1 � s2 � s3

ÿ d2

�2��6
gA

4f 2
�

OSR�Q02� r1 � r2 � Q r3 � Q F�Q2�
Q2 � m2

�

s1 � s3 � s2 : �A:29�

The isospin dependence is the same as in the d-term. The isospin matrix element for the d2-term

is therefore already given by Eq. (34[23]): Id2
� Id and ~Id2

� ÿId .

The d2-term does not fall into two parts as naturally as the d1-term does. Nonetheless we

can still split it into two quasi-two-body operators by rewriting (for the second term in Eq.

(A.29))

r1 � r2 � Q � i
���
6
p ������

4�

3

r
Q �1; �2f g1; Y1� dpÿ p1�
n o00

� ÿi
���
6
p ������

4�

3

r
Q �2; �1; Y

1�Q̂�� 	1
n o00

� i
���
2
p ������

4�

3

r
Q
X
�

�ÿ����2 �1; Y
1�Q̂�� 	1;ÿ� �A:30�

in analogy to Eq. (77[23]). Therefore we have to calculate the following two matrix elements for the

second term of Eq. (A.29):

M
J;2
d2
� 2h pq�ji

���
2
p ������

4�

3

r
Q �1;Y

1
ab� p̂p̂1�

� 	1;ÿ� r3 � Q
Q2 � m2

�

F�Q2� p1q1�1j i2

� ��qÿ q1�
q2

���1
�II1

X
mm1

C� jm IM ÿ m; JM�C� j1m1 I1M1 ÿ m1; J1M1�

� 2h pjmji
���
2
p ������

4�

3

r
Q �1;Y

1
ab� p̂p̂1�

� 	1;ÿ� r3 � Q
Q2 � m2

�

F�Q2� p1 j1m1j i2|�������������������������������������������������������������{z�������������������������������������������������������������}
�M

j;2
d2

;

�A:31�
~M J;3

d2
� 3h p2q2�2j��2 O�Q0� p0q0�0j i3
� ��q2 ÿ q0�

q02
��0�2

�I0I2

X
m0m2

C� j2m2 I2M2 ÿ m2; J2M2�C� j0m0 I0M0 ÿ m0; J0M0�

� 3h p2 j2m2j��2O�Q0� _p0j0m0j i3|����������������������{z����������������������}
� ~M j;3

d2

: �A:32�

The sum over � from Eq. (A.30) will be performed later on after we will have put together all the

pieces.
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The ®rst matrix element, M
J;2
d2

of Eq. (A.31), occurred already in the d-term (with opposite sign)

and is given by Eq. (90[23]):

MJ;2
d2
� ��qÿ q1�

q2
���1

�II1
�ÿ�I�J

���������������
ĵ̂j1ŝŝ1Ĵ1

q
C�1ÿ � J1M1; JM� 1 j1 j

I J J1

� �

� �ll1 i4�
���
6
p
�ÿ�l�s�1 ~Hl� pp1�

l s j

1 j1 s1

� � 1 1 1
1
2

1
2

s1

1
2

1
2

s

8><>:
9>=>;

264
� i240�

���
6
p
�ÿ�j1

X
�l

�̂l H�l� pp1�
X

a�b�2

pa pb
1����������������������2a�! �2b�!p

� a b 2

l1 l �l

� �
C�a0 �l0; l0� C�b0 �l0; l10�

�
X

i1

î1
2 i1 1

1 1 1

� � 2 i1 1

l1 s1 j1

l s j

8><>:
9>=>;

1 1 i1
1
2

1
2

s1

1
2

1
2

s

8><>:
9>=>;
375

� ÿMJ;2
d : �A:33�

(Note that there are two misprints in Eq. (90[23]): The phase in the second line of Eq. (90[23]) must

read �ÿ�l�s�1
, and the phase �ÿ�i in the third line has to be eliminated.)

For the ®rst term in Eq. (A.29) we need

r1 � r3 � Q0 � i
���
6
p ������

4�

3

r
Q0 �1; �3f g1; Y1� dp0 ÿ p2�
n o00

� ÿi
���
6
p ������

4�

3

r
Q0 �3; �1; Y

1Q̂0
� 	1

n o00

� i
���
2
p ������

4�

3

r
Q0
X
�

�ÿ����3 �1; Y
1�Q̂0�� 	1;ÿ�

; �A:34�

which leads us to calculate the matrix element

M
J;3
d2
� 3h p2q2�2ji

���
2
p ������

4�

3

r
Q0 �1;Y

1
ab� p̂0p̂2�

� 	1;ÿ� r2 � Q0
Q02 � m2

�

F�Q02� p0q0�0j i3
�A:35�

and M
J;3
d2
� ÿM

J;3
d . Eq. (91[23]) gives M

J;3
d2

and Eqs. (92±93[23]) the relation between M
J;2
d2

and M
J;3
d2

.

Note that Eq. (93[23]) has a misprint in the phase; the correct phase must be �ÿ�s�s1 .

For the second matrix element, ~MJ;3
d2

in Eq. (A.32), we need

~M j;3
d2
� ��p2 ÿ p0�

p02
�l2l0 C�1� j0m0; j2m2�

���
6
p

2��Hl0 � p2p0�

� �ÿ�j0�l0�s0�s2

����������
ĵ0ŝ0ŝ2

q
s0 j0 l0

j2 s2 1

� � 1
2

1
2

s0

1 s2
1
2

( )
: �A:36�

Again, what we have to insert for �H depends on our choice for O.
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With Eq. (A.36) we get after performing the sums over m2 and m0 in Eq. (A.32)

~MJ;3
d2
� �� p2 ÿ p0�

p02
��q2 ÿ q0�

q02
�l2l0 ��2�0 �I2I0

���
6
p

2� �Hl0 � p2p0�

� �ÿ�1�l0�s0�s2�I0�J2

�����������������
ĵ0̂j2ŝ0ŝ2Ĵ2

q
s0 j0 l0

j2 s2 1

� � 1
2

1
2

s0

1 s2
1
2

( )

� 1 j0 j2

I0 J2 J0

� �
C�1� J0M0; J2M2�: �A:37�

Similarly we get

~MJ;2
d2
� �� pÿ p1�

p2

��qÿ q1�
q2

�ll1 ���1
�II1

���
6
p

2� �Hl� pp1�

� �ÿ�1�l�I�J
���������������
ĵ̂j1ŝŝ1Ĵ1

q
s j l

j1 s1 1

� � 1
2

1
2

s

1 s1
1
2

( )

� 1 j j1

I J1 J

� �
C�1� J1M1; JM�: �A:38�
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