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Abstract. The Faddeev equation for three-body scattering below the three-body
breakup threshold is directly solved without employing a partial-wave
decomposition. In the simplest form it is a three-dimensional integral equation
in four variables. From its solution the scattering amplitude is obtained as function
of vector Jacobi momenta. Based on Mal¯iet-Tjon-type potentials differential and
total cross sections are calculated. The numerical stability of the algorithm is
demonstrated and the properties of the scattering amplitude discussed.

1 Introduction

Traditionally three-nucleon scattering calculations are carried out by solving Faddeev
equations in a partial-wave truncated basis. A partial-wave decomposition replaces
the continuous angle variables by discrete orbital angular-momentum quantum
numbers, and thus reduces the number of continuous variables, which have to be
discretized in a numerical treatment. For low projectile energies the procedure of
considering orbital angular-momentum components appears physically justi®ed due
to arguments related to the centrifugal barrier. However, the algebraic and algorithmic
steps to be carried out in a partial-wave decomposition can be quite involved when
solving the Faddeev equations. If one considers three-nucleon scattering at a few
hundred MeV projectile energy, the number of partial waves needed to achieve
convergence proliferates, and limitations with respect to computational feasibility
and accuracy are reached. The amplitudes acquire stronger angular dependence,
which is already visible in the two-nucleon amplitudes, and their formation by an
increasing number of partial waves not only becomes more tedious but also less
informative. The method of partial-wave decomposition looses its physical
transparency, and the direct use of angular variables becomes more appealing.
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It appears therefore natural to avoid a partial-wave representation completely
and work directly with vector variables. This is common practice in bound-state
calculations of few-nucleon systems based on variational [1] and Green's function
Monte Carlo (GFMC) methods [2±5], which are carried out in con®guration
space.

Our aim is to work directly with vector variables in the Faddeev scheme in
momentum space. In ref. [6] we demonstrated for Mal¯iet-Tjon-type potentials that
the two-body Lippmann-Schwinger equation can readily be solved in momentum
space as function of vector momenta. At intermediate energies the strong forward
peaking of the t-matrix was quite easily achieved through the angular variable but
required relatively many partial-wave contributions. The choice of momentum
vectors as adequate variables is also suggested by the nucleon-nucleon (NN) force.
Here the dependence on momentum vectors can be rather simple, e.g. in the widely
used one-boson-exchange force, whereas the partial-wave representation of this
force leads to rather complicated expressions [7].

In ref. [8] we showed that the bound-state Faddeev equation has a rather
transparent structure when formulated with vector variables compared to the coupled
set of two-dimensional integral equations obtained in a partial-wave decomposed
form. Based on Mal¯iet-Tjon-type interactions it was demonstrated that the
numerical solution of the bound-state equation using vector variables is straight-
forward and numerically very accurate.

In this article we want to show that the solution of the three-body scattering
equation can also be obtained in a straightforward manner when employing vector
variables, i.e. magnitudes of momenta and angles between the momentum vectors.
In this work we concentrate on scattering below the three-body breakup threshold.
Though we avoid the singularity of the free three-body propagator, we already
encounter the two-body fragmentation cut related to the pole in the two-body t-
matrix. As a further simpli®cation we neglect spin and iso-spin degrees of
freedom and treat three-boson scattering. The interactions employed are of
Yukawa type, and no separable approximations are involved. The Faddeev
equation for three identical bosons is solved exactly as function of momentum
vectors. To the best of our knowledge this is the ®rst time such an approach is
carried out.

This article is organized as follows. Sect. 2 describes our choice of momentum
and angle variables for the unknown amplitude in the Faddeev equation and the
integral kernel of that equation. The calculation of the only scattering observable,
the differential cross section is also derived. In Sect. 3 we discuss details of our
algorithms and numerical procedures and present our results. In addition properties
of the Faddeev amplitude are displayed. In Sect. 4 we discuss an alternative choice
of variables and demonstrate that this choice leads to the same result as the choice
of Sect. 2. We conclude in Sect. 5.

2 Three-Body Scattering Equations

We solve the Faddeev equations for three identical particles in the form

T j�i � tPj�i � tG0PT j�i; �1�
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where t is the two-body t-matrix de®ned in the subsystem and the operator P is the
sum of a cyclic and an anticyclic permutation of three objects. The initial channel
state j�i is composed of a deuteron j'di and the momentum eigenstate jq0i of
the projectile nucleon. The free three-nucleon propagator is given by G0 �
�E ÿ H0 � i"�ÿ1

, with E being the total centre-of-mass (c.m.) energy

E � 3

4m
q2

0 � Ed: �2�

Here Ed is the binding energy of the two-body subsystem. Since we work below the
three-particle breakup threshold we only need to consider the operator for elastic
scattering

U � PGÿ1
0 � PT : �3�

From U one obtains the differential cross section for elastic scattering [9] as

d�

d

� 2

3
m

� �2

�2��4jhq0'djUjq0'dij2; �4�

where jq0j � jq0j. The total cross section is either obtained by integrating over the
angle variable

�el
tot �

�
d


d�el

d

� 2

3
m

� �2

�2��5
�1

ÿ1

dx0jhq0x0'djUjq0'dij2 �5�

or via the optical theorem

�tot � ÿ�2��3 4m

3q0

Im�hq0'djUjq0'di�: �6�

In order to solve Eq. (1) we introduce the standard Jacobi momenta p, the
relative momentum in the subsystem, and q, the relative momentum of the spectator
with respect to the subsystem. With j�i � jq0'di Eq. (1) reads

hpqjT jq0'di � hpqjtPjq0'di � hpqjtG0PT jq0'di: �7�

The driving term of Eq. (1) is given by

hpqjtPj�i �
�

d3q0d3p0d3q00d3p00hpqjtjp0q0ihp0q0jPjp00q00ihp00q00j�i

�
�

d3q0d3p0d3p00hpqjtjp0q0ihp0q0jPjp00q0ihp00j'di: �8�

The momentum states are normalized according to hp0q0jpqi �
�3�p0 ÿ p��3�q0 ÿ q�. To evaluate the permutation operator P � P12P23 � P13P23

explicitly, the Jacobi coordinates in the different subsystems (12) and (13) need to
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be expressed through those de®ned in the subsystems (23), which gives

q1 � ÿp2 ÿ 1
2

q2;

p1 � ÿ 1
2

p2 � 3
4

q2;

q1 � p3 ÿ 1
2

q3;

p1 � ÿ 1
2

p3 ÿ 3
4

q3: �9�
Then the permutation operator occurring in Eq. (8) can be evaluated as

hp0q0jPjp00q00i � hp0q0jp00q00i2 � hp0q0jp00q00i3
� �3�p0 � 1

2
q0 � q00��3�p00 ÿ q0 ÿ 1

2
q00�

� �3�p0 ÿ 1
2

q0 ÿ q00��3�p00 � q0 � 1
2

q00�: �10�
The indices 2 and 3 indicate the corresponding subsystem (for more details see
ref. [8]). Inserting this relation into Eq. (8) reduces the driving term to

hpqjtPj�i � ts p;
1

2
q� q0; E ÿ 3

4m
q2

� �
'd�jq� 1

2
q0j�; �11�

where ts�p;q;E� is the symmetrized two-nucleon t-matrix,

ts�p; q;E� � t�p; q;E� � t�ÿp; q;E�: �12�
Since we neglect spin, the deuteron consists only of an S-state, and thus the

wave function depends only on the magnitude of the momenta.
Carrying out a similar calculation for the integral term in Eq. (7) leads to the

explicit form of the Faddeev equation

hpqjT jq0'di � ts p;
1

2
q� q0; E ÿ 3

4m
q2

� �
'd�jq� 1

2
q0j�

�
�

d3q00
ts p;

1

2
q� q00; E ÿ 3

4m
q2

� �
E ÿ 1

m
�q2 � q � q00 � q002�

hq� 1
2

q00; q00jT jq0'di: �13�

The transition operator T is needed for all values of q. Thus one encounters the
pole of the two-body t-matrix at the bound-state energy Ed. Extracting explicitly
the residue by de®ning

ts�p;q;E� � t̂s�p;q;E�
E ÿ Ed

�14�

and similarly for T, Eq. (13) can be written as

hpqjT̂ jq0'di � t̂s p;
1

2
q� q0; E ÿ 3

4m
q2

� �
'd�jq� 1

2
q0j�

�
�

d3q00
t̂s p;

1

2
q� q00; E ÿ 3

4m
q2

� �
E ÿ 1

m
�q2 � q � q00 � q002�

hq� 1
2

q00; q00jT̂ jq0'di
E ÿ 3

4m
q002 ÿ Ed � i"

: �15�
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This expression is the starting point for our numerical calculation of the
transition amplitude. Correspondingly the operator for elastic scattering in Eq. (3)
reads

hq0'djUjq0'di � 2'd
1
2

q0 � q0

ÿ �
E ÿ 1

m
�q02 � q0 � q0 � q2

0�
� �

'd�q0 � 1
2

q0�

� 2

�
d3q00'd

1
2

q0 � q00
ÿ �

q0 � 1
2

q00;q00jT jq0'd


 �
: �16�

The transition amplitude T̂ as given in Eq. (15) depends on the vector variables
q0, q, and p. Going to c.m. coordinates and choosing the z-axis in the direction of
q0 we are left with ®ve independent variables. Those are the magnitudes of the
vectors q and p, their angles with respect to the z-axis and the azimuthal angle 'pq

between them. The vectors q0 and q de®ne the x-z plane in a Cartesian coordinate
system. In these variables the matrix element for the transition amplitude can be
written as hp; xp; cos'pq; q; xqjT jq0'di with

p � jpj;
q � jqj;

xp � p̂ � q̂0;

xq � q̂ � q̂0;

cos'pq � cos'�p; q� � p̂xy � q̂xy: �17�

The index xy denotes the projection of the vectors into the x-y plane. In order to
obtain the matrix elements hpqjT̂ jq0'di, Eq. (15) needs to be solved. For the
integration we choose the z-axis parallel to q. This implies that the azimuthal angle
' between �q� 1

2
q00� and q00 for hq� 1

2
q00;q00jT̂ jq0'di in the kernel of Eq. (15) is

zero, and thus cos'pq � 1 in Eq. (17). This also means that we only need to solve
Eq. (15) for cos'pq � 1, or in other words, that p lies in the same plane that is
spanned by q and q00. From these considerations follows that we only have to solve
Eq. (15) for hp; xp; 1; q; xqjT̂ jq0'di, i.e. for four independent variables instead of
®ve, as it could be assumed from the considerations proceeding Eq. (17). Thus, for
our calculations we arrive from Eq. (17) with cos'pq � 1 at the following two
additional angle variables

xpq � p̂ � q̂ � xpxq �
�������������
1ÿ x2

p

q �������������
1ÿ x2

q

q
cos'pq � xpxq �

�������������
1ÿ x2

p

q �������������
1ÿ x2

q

q
;

x00 � q̂ � q̂00: �18�

The angle variables xp and xq are already given in Eq. (17). The momenta occurring
in Eq. (15) are now given explicitly as

j 1
2

q� q0j �
����������������������������������
1
4

q2 � qq0xq � q2
0

q
; j 1

2
q� q00j �

������������������������������������
1
4

q2 � qq00x00 � q002
q

;

jq� 1
2

q0j �
�����������������������������������
q2 � qq0xq � 1

4
q2

0;
q

jq� 1
2

q00j �
������������������������������������
q2 � qq00x00 � 1

4
q002

q
: �19�
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Expressions for the remaining angle variables can be found in Appendix A. Inserting
all variables into Eq. (15), the ®nal expression for the transition amplitude reads

h p; xp; 1; q; xqjT̂ jq0'di

� 'd

����������������������������������
q2 � qq0xq � 1

4
q2

0

q� �

� t̂s p;
����������������������������������
1
4

q2 � qq0xq � q2
0

q
;

1
2

qxpq � q0xp����������������������������������
1
4

q2 � qq0xq � q2
0

q ; E ÿ 3

4m
q2

0B@
1CA

�
�1

0

dq00q002
�1

ÿ1

dx00
�2�

0

d'00
1

E ÿ 1

m
�q2 � qq00x00 � q002�

� t̂s p;
������������������������������������
1
4

q2 � qq00x00 � q002
q

;
1
2

qxpq � q00yp������������������������������������
1
4

q2 � qq00x00 � q002
q ; E ÿ 3

4m
q2

0B@
1CA

�

������������������������������������
q2 � qq00x00 � 1

4
q002

q
;

qxq� 1
2
q00yq0������������������������

q2� qq00x00 � 1
4
q002

p ; 1; q00; yq0
jT̂ jq0'd

� �
E ÿ 3

4m
q002 ÿ Ed � i"

: �20�

This is a three-dimensional integral equation in four variables, namely p, xp, q, and
xq. The advantage of our choice of the coordinate system is that the free propagator
has a relatively simple form, it depends only on the magnitude of momenta and one
angle. Though in the present work we stay with our calculations below the breakup
threshold, this particular form of the propagator will be the most suited form for
considering the solution of Eq. (20) above.

The matrix elements of T̂ provide input to the calculation of the matrix
elements hq0'djUjq0'di according to Eq. (16). In this integration we choose the
z-axis parallel to q0, so that there is no azimuthal angle between �q0 � 1

2
q00� and q00.

This speci®c choice ensures that we only need T̂ as function of four variables. For
the explicit representation of U the following angle variables are needed, together
with the magnitude of q0 and q00

x0 � q̂0 � q̂0 � cos#0;
x00 � q̂0 � q̂00 � cos#00; �21�

and the momenta

j 1
2

q0 � q0j �
�����������������������������������
1
4

q02 � q0q0x0 � q2
0

q
� q0

�����������
5
4
� x0

q
;

jq0 � 1
2

q0j �
�����������������������������������
q02 � q0q0x0 � 1

4
q2

0

q
� q0

�����������
5
4
� x0

q
;

j 1
2

q0 � q00j �
��������������������������������������
1
4

q02 � q0q00x00 � q002
q

;

jq0 � 1
2

q00j �
��������������������������������������
q02 � q0q00x00 � 1

4
q002

q
: �22�
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The explicit expressions for the remaining angles are calculated in Appendix B.
The ®nal expression for the elastic scattering amplitude is then given by

hq0'djUjq0'di
� hq0x0'djUjq0'di

� 2'2
d q0

�����������
5
4
� x0

q� �
E ÿ q2

0

m
�2� x0�

� �
� 2

�1
0

dq00q002
1

E ÿ 3

4m
q002 ÿ Ed � i"

�
�1

ÿ1

dx00
�2�

0

d'00'd

��������������������������������������
1
4

q2
0 � q0q00x00 � q002

q� �
�

��������������������������������������
q2

0 � q0q00x00 � 1
4

q002
q

;
q0x0 � 1

2
q00y��������������������������������������

q2
0 � q0q00x00 � 1

4
q002

q ; 1; q00; yjT̂ jq0'd

* +
: �23�

From hq0x0'djUjq0'di we obtain the differential cross section according to Eq. (4),
and the total cross section via Eqs. (5) and (6).

3 Calculation of Scattering Observables

For our model calculations Yukawa interactions of Mal¯iet-Tjon-type [10] are
used,

V�p0; p� � 1

2�2

VR

�p0 ÿ p�2 � �2
R

ÿ VA

�p0 ÿ p�2 � �2
A

 !
: �24�

We study two different types of pairwise forces, a purely attractive Yukawa
interaction and a superposition of a short-ranged repulsive and a long-ranged
attractive Yukawa interaction. It should be pointed out that we calculate the
potentials as functions of vector momenta and thus de®ne the interaction as a truly
local force acting in all partial waves. The parameters are given in Table 1, which
also lists the corresponding deuteron binding energies. The parameters are chosen
such that the deuteron binding energy is close to the experimental one. With these
interactions we ®rst solve the Lippmann-Schwinger equation for the fully-off-shell
two-nucleon t-matrix directly as function of the vector variables as described
in detail in ref. [6]. The resulting t-matrix is then symmetrized to get
ts�p0; p; x; E ÿ �3=4m�q2�. We would like to point out that after having solved the

Table 1. Parameters and deuteron binding energy for the Mal¯iet-Tjon-type potentials. As conversion

factor we use units such that �hc � 197:3286 MeV fm � 1. We also use �h2=m � 41:47 MeV fm2

VA �MeV fm� �A �fmÿ1� VR �MeV fm� �R �fmÿ1� Ed �MeV�
MT-IIIa ÿ626.8932 1.550 1438.7228 3.11 ÿ2.231

MT-IVa ÿ65.1776 0.633 ± ± ÿ2.209
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Lippmann-Schwinger equation on Gaussian grids for p, p0, and x, we solve the
integral equation again to obtain the t-matrix at points x � �1. Thus, when solving
Eq. (15), we do not have to extrapolate numerically to angle points x of
ts�p0; p; x; E ÿ �3=4m�q2�, which can very well be located outside the upper or lower
boundary of the Gaussian angle grid of the t-matrix.

The fully off-shell t-matrix, t�p0; p; x;E�, is obtained for each ®xed energy on a
symmetric momentum grid, which is divided as �0; p1� [ �p1; pmax�. The intervals
contain NP1 and NP2 Gauss points, with typical values of NP1� 40 and
NP2� 16 points. Typical values for the interval boundaries are p1 � 20 fmÿ1

and pmax � 60 fmÿ1. For the angular integration x 32 Gauss points are suf®cient.
Since the momentum region which contributes to a solution of the two-body t-
matrix is quite different from the region of importance in a three-body calculation,
we map our solution for ts onto a momentum grid relevant for the three-body
transition amplitude. This is done by applying the Lippmann-Schwinger equation
repeatedly. The t-matrix ts�p0; p; x; "� is obtained at energies " � E ÿ �3=4m�q2,
exactly at the q values needed in the three-body transition amplitude of Eq. (20).
For extracting the residue of the two-body t-matrix, Eq. (14), we represent ts as

�E ÿ Ed�tsÿÿ!
E!Ed

V j'dih'djV : �25�

The Mal¯iet-Tjon-type potentials support only an s-wave bound state, and thus
Eq. (25) reads explicitly

�E ÿ Ed�ts�p;p0� ÿÿÿ!
E!Ed

1

4�

�1
0

dp00p002V0�p; p00�'d�p00�
� �

�
�1

0

dp00p002V0�p0; p00�'d�p00�
� �

; �26�

where V0 is the l � 0 component of the potential.
In order to solve Eq. (20) we follow the iterative procedure outlined in ref. [11].

The method consists of ®rst generating the Neumann series of Eq. (20) and then
summing up the series using the PadeÂ method [12±14]. We typically need to sum
15±18 terms to obtain a converged result. This is not surprising, since due to the
presence of the three-body bound state the Neumann series itself diverges.

The q0-integration in Eq. (20) is cut off at a value of qmax � 20 fmÿ1. The
integration interval is divided into two parts, �0; q1� [ �q1; qmax�, in which we use
Gaussian quadrature with NQ1 and NQ2 points, respectively. The value for q1 is
chosen to be 5 fmÿ1. Typical values for NQ1 and NQ2 are 24 and 16. For the
distribution of quadrature points we use the maps given in ref. [15]. The x00
integration requires typically at least 18 integration points, while for the '00
integration 16 points are already suf®cient. The p variable is also de®ned in an
interval �0; p1� [ �p1; pmax�, where p1 is chosen to be 7 fmÿ1 and pmax � 30 fmÿ1.
The two intervals contain NP1 and NP2 points, and we usually choose NP1�NQ1
and NP2�NQ2, respectively.

When solving Eq. (20) we have to carry out two-dimensional and three-
dimensional interpolations on t̂s and T̂ . We use the cubic Hermitean splines of ref.
[16]. The functional form of those splines is described in detail in Appendix B of
this reference and shall not be repeated here. We ®nd these splines very accurate in
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capturing the peak structure of the two-body t-matrix, which occurs for off-shell
momenta p ' p0. An additional advantage of the cubic Hermitean splines is their
computational speed, which is an important factor, since the integral in Eq. (20)
requires a very large number of interpolations.

In Fig. 1 the real and the imaginary parts of the scattering amplitude
T̂� p; xp � 1; cos'pq � 1; q; xq � 1; q0� as obtained from the MT-IVa potential are
displayed. The projectile energy is 3 MeV, and the amplitude is taken in forward
direction, i.e. the two angles are set to zero. The ®gures show that most of the
structure of the amplitude is concentrated at small momenta p and q. The
corresponding amplitudes derived from the MT-IIIa potential are shown in Fig. 2.

Fig. 1. Real and imaginary part of T̂� p; xp � 1; cos'pq � 1; q; xq � 1; q0� at 3 MeV projectile

energy as obtained from the MT-IVa potential
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Though the imaginary part has a little more structure for p smaller than 1 fmÿ1, the
function is in general very smooth. The real part of T̂ has for both potentials a quite
similar structure.

The solution for the transition amplitude serves as basic input to obtain the
elastic scattering amplitude according to Eq. (23). In carrying out the integrals we
use the same grids as in the integral equation for T̂. The differential cross section
obtained from the MT-IVa potential is shown in Fig. 3 as function of the projectile
laboratory energy E and the scattering angle # for energies from 0:01 MeV to 3:2
MeV. As expected, for very low energies the differential cross section is isotropic,
which indicates that in a partial-wave description only s-waves contribute. At about
1 MeV projectile energy the differential cross section starts to develop its more

Fig. 2. Same as Fig. 1 but for the MT-IIIa potential
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characteristic shape, namely in forward and backward direction and a minimum
around # � 100�. In Fig. 4 the differential cross section obtained from the MT-IIIa
potential is displayed as function of the projectile energy and the scattering angle.
The obvious difference with respect to Fig. 3 is that the magnitude of ��#�
obtained from the MT-IIIa is about 5 times larger than the one obtained from MT-
IVa at small energies. The difference is related to the different values of the three-

Fig. 3. The differential cross section ��#� as function of the projectile energy and scattering angle #

obtained from the MT-IVa potential

Fig. 4. Same as Fig. 3 but for the MT-IIIa potential
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body scattering length for the different potentials. The one for MT-IIIa turns out to
be 2.034 fm and is much larger than the one for MT-IVa, which is 0.887 fm.
These numbers are related to the different three-body binding energies, which are

Fig. 5. The differential cross section ��#� at 3 MeV projectile energy obtained from the MT-IIIa

potential (solid line) and the MT-IVa potential (dashed line)

Fig. 6. The total cross sections �tot as function of the projectile energy obtained from the MT-IIIa

potential (solid line) and the MT-IVa potential (dashed line)
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ÿ19.8625 MeV for the MT-IIIa potential and ÿ25.1632 MeV for the MT-IVa
potential. According to ref. [17] the scattering length can be calculated via

a � 2�

3
mhq0'djUjq0'di

����
q0�0

: �27�

Due to the different scale the onset of a deviation from the isotropic ��#� is not
so easily visible in Fig. 4, but it also occurs at about 1 MeV. In order to better
compare the differential cross section obtained from both potentials, this
observable is shown in Fig. 5 at 3 MeV for both potentials as function of the
scattering angle. Here one can see that ��#� is larger especially in forward
direction for the purely attractive potential MT-IVa. This behavior is even clearer
visible in Fig. 6, where the total cross sections �tot obtained from MT-IIIa and MT-
IVa are shown as function of energy.

For demonstrating and discussing the numerical stability and accuracy of our
algorithm we choose the MT-IVa potential and a ®xed energy and discuss the
behavior of the observables as function of the grid points. Table 2 contains the total
cross section calculated at 3 MeV using Eq. (5) and also via the optical theorem,

Table 2. The total cross section for the MT-IVa potential at 3.0 MeV. The numbers of grid points for T̂

are NQ�NQ1�NQ2, NP�NP1�NP2, NXP, and NXQ as explained in the text. The grid points for

the integration are NX00 and N'00. The grids for the t-matrix are denoted with NPt and NXt

NQ NP NXP NXQ NX00 N'00 NPt NXt �int:
tot �opt:

tot

30 30 18 14 18 10 40 40 3903.18 3906.53

30 30 18 14 18 16 40 40 3909.12 3913.19

30 30 18 14 18 20 40 40 3909.22 3913.95

30 30 18 18 18 20 40 40 3909.93 3914.09

30 30 18 22 18 20 40 40 3910.06 3914.09

30 30 22 22 18 20 40 40 3909.73 3914.00

30 38 22 22 18 20 40 40 3909.66 3914.30

30 42 22 22 18 20 40 40 3909.11 3913.45

38 42 22 22 18 20 40 40 3916.66 3921.11

42 42 22 22 18 20 40 40 3913.17 3917.47

46 42 22 22 18 20 48 40 3911.16 3915.16

46 42 22 22 18 20 56 40 3911.13 3915.02

46 42 22 22 18 20 64 40 3911.11 3914.96

50 42 22 22 18 20 64 40 3911.15 3915.06

50 42 22 22 24 20 64 40 3910.88 3915.04

50 50 22 22 24 20 64 40 3910.78 3914.93

50 50 22 22 24 22 72 40 3910.79 3914.88

50 50 22 22 24 22 80 40 3910.71 3914.72

50 50 22 22 24 22 80 40 3910.71 3914.69

58 58 22 22 24 22 80 40 3913.31 3917.22

58 58 26 26 24 26 80 40 3913.95 3917.44

58 58 30 30 24 26 80 40 3913.85 3917.44

58 58 34 34 24 26 80 40 3913.85 3917.46

58 58 38 38 24 26 80 40 3913.86 3917.61
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Eq. (6). The ®rst calculations listed in the table are performed with a moderate
amount of grid points in all variables. We then successively increase the points of
one variable at a time and see that the variation in the total cross section stays about
0.3%. From this we conclude that our algorithm is very stable, and the numerical
error, which necessarily has to occur due to the large number of interpolations, is
certainly not higher than 1%.

We choose to consider the total cross section for this stability study, since state-of-
the-art measurements of the total cross section have an accuracy of about 0.5% [18].
We also see the different ways of calculating �tot differ consistently by about 0.2%,
almost independent of the number of grid points used. From this we can conclude
that the general error of our calculation is 0.5% or lower, which is for all practical
purposes suf®ciently accurate. A further test of the accuracy and convergence of our
numerical calculation is in the insertion of our converged solution for the transition
amplitude T̂ a further time into Eq. (20) and then recalculate the observables with this
new solution for T̂. The comparison is carried out for the differential cross section at 3
MeVand listed in Table 3. Here we used the results of the calculation with the highest
number of points from Table 2, but results for the other calculations are similar. As
can be seen the agreement of the two calculations is excellent, and we conclude that
our calculations are properly converged.

Table 3. The differential cross section for the MT-IVa potential at 3.0

MeV. The second column contains the cross section obtained from the

PadeÂ sum and the third column the cross section obtained by reinsert-

ing the solution. The corresponding total cross sections are 3913.86

mb and 3913.93 mb, respectively

# �deg� ��#� �mb� ��#� �mb�
0.000 634.458 634.483

8.215 624.423 624.446

17.548 590.018 590.040

26.893 535.377 535.396

36.240 467.039 467.056

45.589 392.139 392.153

54.938 316.841 316.853

64.288 245.326 245.336

73.638 180.241 180.249

82.988 123.550 123.557

92.337 78.909 78.917

101.687 53.890 53.899

111.037 61.678 61.690

120.387 120.744 120.760

129.736 250.915 250.937

139.085 464.483 464.511

148.434 752.825 752.860

157.780 1074.342 1074.383

167.122 1354.729 1354.775

176.421 1508.989 1509.036

180.000 1522.727 1522.774
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4 A Second Choice of Variables for the Scattering Equations

In Sect. 2 we described our choice of the coordinate system used to solve the
integral equation, Eq. (13), for the transition amplitude T . There we choose the z-
axis for the integration parallel to q, which has the advantage of giving the free
propagator in the kernel a relatively simple functional form. It also led to Eq. (20)
being a three-dimensional integral equation in 4 variables. Obviously, the above-
described choice is not the only one. In order to test our calculations we
additionally solve Eq. (13) with a different choice of coordinate systems. For this
speci®c calculation we choose the z-axis for the overall coordinate system to be
parallel to q0 as well as for the integration in Eq. (13). Due to the rotational
invariance of the problem we can choose the azimuthal angle between those 2
coordinate systems to be zero. With these assumptions the variables necessary to
explicitly express Eq. (20) are

p � jpj;
q � jqj;

xp � p̂ � q̂0;

xq � q̂ � q̂0;

cos'pq � cos'�p; q� � p̂xy � q̂xy;

yq � q̂ � q̂00 � xqx00 �
�������������
1ÿ x2

q

q ���������������
1ÿ x002
p

cos'00;

yp � p̂ � q̂00 � xpx00 �
�������������
1ÿ x2

p

q ���������������
1ÿ x002
p

cos�'pq ÿ '00�;
q00 � jq00j;
x00 � q̂00 � q̂0;

cos'00 � cos'00�q00;q�: �28�

The calculation of the remaining angles and momenta is straightforward and
similar to the ones given in Sect. 2. Thus they are not given here. Using the above
de®nitions of the variables we ®nally arrive at the explicit expression for the
transition amplitude T̂

hp; xp; cos'pq; q; xqjT̂jq0'di

� 'd

����������������������������������
q2 � qq0xq � 1

4
q2

0

q� �

� t̂s p;
����������������������������������
1
4

q2 � qq0xq � q2
0

q
;

1
2

qxpq � q0xp����������������������������������
1
4

q2 � qq0xq � q2
0

q ; E ÿ 3

4m
q2

0B@
1CA

�
�1

0

dq00q002
�1

ÿ1

dx00
�2�

0

d'00
1

E ÿ 1

m
�q2 � qq00yq � q002�

Three-Body Scattering Below Breakup Threshold 29



� t̂s p;
������������������������������������
1
4

q2 � qq00yq � q002
q

;
1
2

qxpq � q00yp������������������������������������
1
4

q2 � qq00yq � q002
q ; E ÿ 3

4m
q2

0B@
1CA

�

������������������������������������
q2 � qq00yq � 1

4
q002

q
;

qxq� 1
2q00x00������������������������

q2� qq00yq� 1
4q
002

p cos ~'; q00; x00jT̂ jq0'd

� �
E ÿ 3

4m
q002 ÿ Ed � i"

: �29�

As in Eq. (20) we solve for T̂, where the residue at the deuteron pole is
explicitly taken into account as described in Eq. (14). In the form of Eq. (29) the
three-body propagator has an explicit angle dependence. In addition one has a
three-dimensional integral depending on ®ve variables. The latter makes the
numerical solution an order of magnitude more time-consuming. Thus Eq. (29) is
solved on similar grids as Eq. (20), however with fewer grid points.

After solving for T̂, we obtain the elastic scattering amplitude by employing
Eq. (16). Using the same coordinate system, namely the z-axis being parallel to q0,
the explicit expression for U reads

hq0'djUjq0'di � hq0x0'djUjq0'di

� 2'2
d q0

�����������
5
4
� x0

q� �
E ÿ q2

0

m
�2� x0�

� �
� 2

�1
0

dq00q002
1

E ÿ 3

4m
q002 ÿ Ed � i"

�
�1

ÿ1

dx00
�2�

0

d'00'd

������������������������������������
1
4

q2
0 � q0q00y� q002

q� �
�

������������������������������������
q2

0 � q0q00y� 1
4

q002
q

;
q0x0 � 1

2
q00x00������������������������������������

q2
0 � q0q00y� 1

4
q002

q ; cos ~'; q00; x00jT̂ jq0'd

* +
:

�30�
Here x0 � q̂0 � q̂0 and y � q̂0 � q̂00. The calculation of the azimuthal angle ~' between
�q� 1

2
q00� and q00 is more complicated and given in Appendix C.

It should be clear from the beginning that the solution of Eq. (29) is not only
much more time-consuming, but will also a priori contain a larger numerical error
due to the increased number of interpolations. In addition four-dimensional
interpolations are required, whereas for the solution of Eq. (20) the maximum
dimension for the interpolation is three. In Fig. 7 we compare the differential cross
sections at 3.0 MeV obtained from both algorithms using a medium number of grid
points only. As an aside, solving Eq. (29) with the same high number of grid points
as in Eq. (20) is too expensive, especially since we only had in mind to perform a
rough comparison of the two schemes. Thus, we also did not perform the same
amount of accuracy tasks as described in Sect. 3 for the solution of Eq. (20). As seen
in Fig. 7, both solutions are reasonably close, and the accuracy is good enough to
establish that in general both methods give similar results. However, for practical
calculations, the procedure described in this section should not be recommended.
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5 Summary

An alternative approach to the state-of-the-art three-nucleon scattering calcula-
tions, which are based on solving the Faddeev equations in a partial wave basis, is
to work directly with momentum vector variables. We formulate the three-body
scattering equations below the three-body breakup threshold for identical particles
as function of vector Jacobi momenta and the projectile momentum, speci®cally the
magnitudes of the momenta and the angles between them. We would like to point
out that our speci®c formulation and the choices of coordinate systems are also
applicable above the breakup threshold. However, here the logarithmic singularities,
inherent to the breakup, have to be treated explicitly.

As two-body force we concentrate on a superposition of an attractive and a
repulsive Yukawa interaction, which is typical for nuclear physics, as well as on an
attractive Yukawa interaction. The corresponding two-body t-matrices, which enter
the Faddeev equations, were also calculated as function of vector momenta. We
neglected spin degrees of freedom in all our calculations.

In order to obtain scattering observables, which are in our case the differential
and the total cross section, one solves ®rst an integral equation for the transition
amplitude T̂ . The scattering amplitude is then obtained by an additional integration
over the half-shell amplitude T . This set of equations contains in essence four
vector momenta, the projectile momentum, the Jacobi momenta, and a momentum
vector as integration variable in the kernel. In principle, one has different choices
of the coordinate system, in which the calculations are carried out. We present
different choices, one leading to a three-dimensional integral equation in four

Fig. 7. The differential cross section obtained from the MT-IVa potential at 3.0 MeV based on the

solution of T̂ using four variables (solid line) and using ®ve variables (dashed line). The explanation

of the calculations is given in the text
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variables for the transition amplitude T̂ and one leading to a three-dimensional
integral equation in ®ve variables for T̂. Obviously, the ®rst choice is the preferred
one. It has the additional advantage that the free three-body propagator acquires a
relatively simple form, which will become relevant considering scattering above
the breakup threshold.

Using the transition amplitude given as function of four variables we calculate
the observables for different projectile energies and test the accuracy and stability
of our algorithms. We establish that our calculations have an overall accuracy of
less than 0.5%, which is suf®cient for all practical purposes, i.e. comparison with
experimental measurements. We also calculate the scattering observables at one
energy using the transition amplitude given as function of ®ve variables. The two
different algorithms are in qualitative agreement, which gives us con®dence that
our calculation is correct.

Summarizing we can state that the Faddeev equations for scattering below the
breakup threshold can be handled in a straightforward and numerically reliable
fashion when using vector momenta as variables. Our formulation allows to treat
the logarithmic singularities above the breakup threshold in a straightforward
fashion, and work along this line is in progress.
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Appendix A. Variables for the Transition Amplitude T

In this case we need to rotate around the y � y00 axis by the angle #q. The vectors needed in the new

coordinate system are

Q0 � R�#q�q0 �
cos#q 0 ÿsin#q

0 1 0

sin#q 0 cos#q

0@ 1Aq0 � q0

ÿsin#q

0

cos#q

0@ 1A; Q00 � q00
sin#00 cos'00

sin#00 sin'00

cos#00

0@ 1A;
�A:1�

P � R�#q�p � p

cos#q sin#p ÿ sin#q cos#p

0

sin#q sin#p � cos#q cos#p

0@ 1A: �A:2�

It is then straightforward to obtain the following angles:

yp � P̂ � Q̂00 � x00xpq �
���������������
1ÿ x002
p

xq

�������������
1ÿ x2

p

q
ÿ xp

�������������
1ÿ x2

q

q� �
cos'00;

yq0
� Q̂

00 � Q̂0 � xqx00 ÿ
�������������
1ÿ x2

q

q ���������������
1ÿ x002
p

cos'00;

P̂ � 1
2
dQ�Q00

� �
�

1
2

qxpq � q00yp������������������������������������
1
4

q2 � qq00x00 � q002
q ;

Q̂0 � dQ� 1
2

Q00
� �

� qxq � 1
2

q00yq0������������������������������������
q2 � qq00x00 � 1

4
q002

q : �A:3�
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Appendix B. Angles for the Scattering Amplitude U

We need the angle between q̂0 and q̂00. It can be calculated in terms of the integration variables in the

new coordinate system. We have chosen the z-axis for the integration being in the x-z plane of the

original coordinate system, and the azimuthal angle between them is zero. To get to the new coordinate

system we only need to rotate around the y � y00 axis by the angle #0 using the rotation matrix

R�#0� �
cos#0 0 ÿsin#0

0 1 0

sin#0 0 cos#0

0@ 1A: �B:1�

The two vectors in the new coordinate system are given by

Q0 � R�#0�q0 � q0

ÿsin#0

0

cos#0

0@ 1A; Q00 � R�#q�q00 � q00
sin#00 cos'00

sin#00 sin'00

cos#00

0@ 1A: �B:2�

The angle between them is

y � Q̂
00 � Q̂0 � ÿsin#0 sin#00 cos'00 � cos#0 cos#00

� x0x00 ÿ
��������������
1ÿ x02
p ���������������

1ÿ x002
p

cos'00: �B:3�
The other angle we are looking for is

Q̂0 � Q0d� 1
2
Q00

� �
� q0x0 � 1

2
q00y��������������������������������������

q2
0 � q0q00x00 � 1

4
q002

q : �B:4�

Appendix C. Angles in the Five-Dimensional Case

We are looking for the azimuthal angle ~' between �q� 1
2

q00� and q00. We had chosen q being in the

x-z plane, now one can ®nd the azimuthal angle ~' by going into the x-y plane and using the cosine

theorem

jqxyj2 � 1
2

q00xy

��� ���2� q� 1
2

q00
ÿ �

xy

��� ���2ÿ 2 1
2

q00xy

��� ��� q� 1
2

q00
ÿ �

xy

��� ���cos ~': �C:1�

The components of the vectors in the x-y plane are given by

jqxyj � q sin#q � q
�������������
1ÿ x2

q

q
;

1
2

q00xy

��� ��� � 1
2

q00 sin#q00 � 1
2

q00
���������������
1ÿ x002
p

;

q� 1
2

q00
ÿ �

xy

��� ��� � q� 1
2

q00
�� ��sin#q0;

1
2
q00�q� � � q� 1

2
q00

�� �� �������������
1ÿ x2

1

q
�C:2�

with

x1 � q̂0 � dq� 1
2

q00
� �

�
1
2

q00x00 � qxq

q� 1
2

q00
�� �� : �C:3�

Inserting these relations in Eq. (C.1) we ®nd

cos ~' �
1
4

q002�1ÿ x002� � q� 1
2

q00
�� ��2�1ÿ x2

1� ÿ q2�1ÿ x2
q�

q00
���������������
1ÿ x002
p

q� 1
2

q00
�� �� �������������1ÿ x1

p ; �C:4�

which can be simpli®ed to the ®nal result

cos ~' �
1
2

q00
���������������
1ÿ x002
p

� q
�������������
1ÿ x2

q

q
cos'00�����������������������������������������������������������������������������������������������������������������������������������

1
4
�q00

���������������
1ÿ x002
p

�2 � �q
�������������
1ÿ x2

q

q
�2 � �q00

���������������
1ÿ x002
p

��q
�������������
1ÿ x2

q

q
� cos'00

r : �C:5�

Three-Body Scattering Below Breakup Threshold 33



References

1. Arriaga, A., Pandharipande, V. R., Wiringa, R. B.: Phys. Rev. C52, 2362 (1995)

2. Carlson, J.: Phys. Rev. C36, 2026 (1987)

3. Carlson, J.: Phys. Rev. C38, 1879 (1988)

4. Zabolitzki, J. G., Schmidt, K. E., Kalos, M. H.: Phys. Rev. C25, 1111 (1982)

5. Carlson, J., Schiavilla, R.: Rev. Mod. Phys. 70, 743 (1998)

6. Elster, Ch., Thomas, J. H., GloÈckle, W.: Few-Body Systems 24, 55 (1998)

7. Machleidt, R., Holinde, K., Elster, Ch.: Phys. Rep. 149, 1 (1987)

8. Elster, Ch., Schadow, W., Nogga, A., GloÈckle, W.: Few-Body Systems 27, 83 (1999)

9. GloÈckle, W., Witaøa, H., HuÈber, D., Kamada, H., Golak, J.: Phys. Rep. 274, 107 (1996)

10. Mal¯iet, R. A., Tjon, J. A.: Nucl. Phys. A127, 161 (1969)

11. Kloet, W. M., Tjon, J. A.: Ann. Phys. (NY) 79, 407 (1973)

12. Baker, G. A., Gammel, J. L. (eds.): The PadeÂ Approximant in Theoretical Physics. New York:

Academic Press 1970

13. GloÈckle, W.: The Quantum Mechanical Few-Body Problem. Berlin-Heidelberg-New York:

Springer 1983

14. HuÈber, D.: Ph.D. Thesis. Bochum: Bochum University 1996

15. GloÈckle, W.: Computational Nuclear Physics, I: Nuclear Structure (Langanke, K., Maruhn, J. A.,

Koonin, S. E., eds.), p. 152. Berlin-Heidelberg-New York: Springer 1991

16. HuÈber, D., Witaøa, H., Nogga, A., Kamada, W. G. H.: Few-Body Systems 22, 107 (1997)

17. HuÈber, D., et al.: Phys. Rev. C51, 1100 (1995)

18. Abfalterer, W. P., et al.: Phys. Rev. Lett. 81, 57 (1998)

Received March 9, 1999; revised July 29, 1999; accepted for publication September 6, 1999

34 W. Schadow et al.


