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Abstract. The Trojan-horse method has been proposed to extract S-matrix
elements of a two-body reaction at astrophysical energies from a related reaction
with three particles in the ®nal state. This should be useful in cases where the
direct measurement of the two-body reaction at the necessary low energies is
experimentally dif®cult. The formalism of the Trojan-horse method for nuclear
reactions is developed in detail from basic scattering theory including spin
degrees of freedom of the nuclei and we specify the necessary approximations.
The energy dependence of the three-body reaction is determined by charac-
teristic functions that represent the theoretical ingredients for the method. In a
plane-wave Born approximation of the T-matrix the differential cross section
assumes a simple structure.

1 Introduction

The Trojan-horse method (THM) [1] has been suggested as an indirect method in
order to determine cross sections of charged-particle reactions relevant to nuclear
astrophysics. Ideally, reaction cross sections which serve as an input to various
astrophysical models, as primordial nucleosynthesis or stellar evolution, should be
measured directly in the laboratory. However, for the relevant low energies reaction
rates become very small because of Coulomb repulsion of the interacting particles,
and an experimental determination is very dif®cult or impossible. In order to cir-
cumvent this problem alternative methods have been proposed, where the considered
reaction is not studied directly, but a closely related process is investigated which
can be measured experimentally. An example is the Coulomb dissociation method
for the determination of radiative capture cross sections which has been successfully
used for several reactions in recent years [2±4]. In general, the relation to the
astrophysical reaction is established with the help of nuclear reaction theories,
however, approximations are necessary. These may depend on the reaction
investigated giving the possibility to select the appropriate method. Because of
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these approximations one cannot expect to extract absolute cross sections for
reactions of astrophysical interest, however, the Trojan-horse method will give
reliable information on their energy dependence. This is important, because at
higher energies the absolute cross section is usually well known from direct
experiments and with the information from the Trojan-horse method it can be
reliably extrapolated to the relevant energies. In particular, direct measurements can
suffer from the effect of electron screening at very small energies, which is not
understood suf®ciently well theoretically. In contrast, electron screening does not
affect cross sections extracted in the Trojan-horse method. The method is thus also
of interest in understanding the electron screening effect.

Let us consider a nuclear reaction

A� x! C � c �1:1�
with given Q-value. At low relative energies in the initial channel the Coulomb
repulsion of the charged nuclei A and x will lead to a strong reduction of the cross
section. In the Trojan-horse method the nuclear cluster x is hidden inside a pro-
jectile a � b� x by attaching it to a nucleus bÿ therefore the name of the
methodÿ and the reaction

A� a! C � c� b �1:2�
with three particles in the ®nal channel is studied (Fig. 1). The relative energy in the
A� a channel is chosen above the Coulomb barrier, thus there is no Coulomb
reduction of the three-body cross section. However, reactions between A and x can
still be induced at small relative energies due to the Fermi motion of x inside a
which can compensate, at least partially, the large relative momentum in the A� a
system. The nucleus b is thus assumed to be a mere spectator to the relevant
process. The method, in principle, is very ¯exible, since one is not restricted to
inelastic processes but also the elastic A� x! A� x scattering can be investigated.
The method can also be employed where the particle c is a photon and C is a bound
state of the A� x system.

In general, various reaction mechanisms can lead to a ®nal state with particles
b; c, and C. Besides the process, where nucleus b is emitted and only x and A
interact, one could also consider the formation of a compound nucleus D from
A� a and a subsequent decay with some ¯ux into the C � c� b channel. In case of
elastic A� x scattering the ®nal A� x� b state can be reached by a breakup of
a into x� b in the nuclear plus Coulomb ®eld of A. These other mechanisms
have to be distinguished experimentally from the process where the reaction
A� x! C � c is not affected by the presence of particle b.

Fig. 1. Diagram for the three-body breakup reaction in the

quasi-free mechanism
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The THM has already been applied in some cases [5±8] in order to identify the
quasi-free reaction mechanism and to test the method. The experimental results
were analyzed essentially within the plane-wave-impulse approximation (PWIA),
where nucleus b is assumed to be unaffected by the collision. The PWIA was
originally developed for the description of �-particle knockout reactions in order to
deduce momentum distributions of the �-cluster inside nuclei like 6Li or 7Li [9]. In
PWIA the breakup cross section is written as [9]

d3�

dECc d
Cc d
Bb

� �KF�j�a�k f
bB�j2

d�N

d


����
Ax!Cc

: �1:3�

It is a product of three factors: (i) a kinematical factor KF, (ii) a momentum
distribution of the nucleus a at the bB ®nal momentum, and (iii) an off-shell two-
body A� x! C � c cross section, which is replaced in the quasi-free approxima-
tion by an appropriate on-shell two-body cross section. In the THM one is interested
in the latter quantity. Although this factorization is quite appealing some questions
remain about the approximations involved. This concerns the replacement of the
complete three-body T-operator by the two-body T-operator, i.e., the impulse
approximation [9], and the relation between the off-shell and the on-shell two-body
cross section. In the application of Eq. (1.3) d�N=d
 has been interpreted as the
nuclear cross section without Coulomb barrier effects and the astrophysically
relevant two-body cross section d�=d
 has been written as

d�

d

� G

d�N

d

; �1:4�

where G is supposed to account for the penetration factor for the dominant partial
wave through the Coulomb barrier, which was taken in a simple semiclassical
approximation. Such empirical procedures also have to be justi®ed.

The relation between the cross section of two-body reaction (1.1) and the cross
section of three-body reaction (1.2) can be clari®ed within the theory of direct
nuclear reactions as will be shown in the following. In the original suggestion of the
Trojan-horse method [1] the relation was established more or less qualitatively with
emphasis on the energy dependence of the cross sections. The employed approx-
imations were not speci®ed in detail. Here, they will be stated more explicitly. They
can be tested experimentally as well as theoretically. Besides the full formulation
for the three-body cross section in distorted-wave Born approximation (DWBA) we
deduce a plane-wave Born approximation (PWBA) which resembles in structure the
result of the PWIA, but is more general. We treat both elastic and inelastic processes
for the two-body reaction.

Our work is organized as follows: In Sect. 2 we will introduce the relevant
quantities for the description of reaction (1.2) and express the cross section with
three particles in the ®nal state with the help of the T-matrix of the process. The
following section is devoted to the approximations for the T-matrix in the post-form
distorted wave description. In Sect. 4 the relation of the cross sections for reaction
(1.1) and reaction (1.2) is deduced with the help of the asymptotic form of the two-
body scattering wave function. In Sect. 5 the T-matrix for the three-body breakup
is calculated in plane-wave Born approximation (PWBA) and compared to the
PWIA. Finally, we close with a summary. For transparency we develop the
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formalism-disregarding spin. The general expressions including spin are given in an
Appendix.

2 The Three-Body Breakup Reaction A� a! C � c� b

We will denote the mass, the spatial coordinate and the momentum of a nucleus i
by mi; ri, and pi � �hki � mi _ri, respectively. Furthermore we introduce relative
coordinates

rij � ri ÿ rj �2:1�
between nuclei i and j, and the conjugated momenta

pij � �hkij � �ij _rij �
mj pi ÿ mi pj

mi � mj

; �2:2�

where �ij � �mimj�=�mi � mj� is the corresponding reduced mass. For a three-body
system with particles b; c, and C we have the total energy

Etot � mC � mc � mb � ECc � E�Cc�b � P2

2M
�2:3�

with the total momentum P �Pi pi and total mass M �Pi mi.

Eij �
p2

ij

2�ij

�2:4�

is the kinetic energy of relative motion between particles i and j. The relative
motion of the three particles is completely speci®ed by the two Jacobi momenta
pCc and p�Cc�b. In case of the two-body system A� a we have

Etot � mA � ma � EAa � P2

2M
�2:5�

with only one relevant kinetic energy EAa. For simplicity we will assume P � 0 in
the following.

In general, the cross section for reaction (1.2) is given by [10, 11]

d� � 2�

�h

�Aa

pi
Aa

d3p
f
Cc

�2��h�3
d3p

f
Bb

�2��h�3 jTf i�k f
Cc; k

f
Bb; ki

Aa�j2��E f
Cc � E

f
Bb ÿ Ei

Aa ÿ Q�; �2:6�

where B stands for the system C � c. Quantities in the initial and ®nal channels are
given superscripts i and f , respectively. The �-function with the Q-value

Q � mA � ma ÿ mC ÿ mc ÿ mb �2:7�
of the reaction guarantees energy conservation in the scattering process. The T-
matrix contains all information about the dynamics and its calculation is the
principle problem for the description of the reaction. With p

f
Ccdp

f
Cc � �CcdE

f
Cc we

®nd the triple differential cross section

d3�

dE
f

Cc d
Cc d
Bb

� �Aa�Bb�Cc

�2��5�h6

k
f

Bbk
f

Cc

ki
Aa

jTf i�k f
Cc; k

f
Bb; ki

Aa�j2; �2:8�
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which depends on the ®nal relative energy E
f

Cc in system B and the directions of
both relative momenta p̂ f

Cc and p̂ f
Bb for the given initial momentum pi

Aa. Here and in
the following we have neglected possible spins of the participating nuclei in order
to simplify the equations. The relevant formulas with inclusion of spin degrees of
freedom will be given in the Appendix.

3 Approximations to the Three-Body T-Matrix

The exact T-matrix is given in terms of the interaction between the particles and
the exact solution of the scattering problem for the total wave function. Of course,
this is not known in the general case and we have to employ approximations which
should retain the relevant physics of the reaction process. We assume that the total
interaction in our system is given by a sum of two-body potentials V��. Then the
potential between two nuclei

Vij �
X
�2i
�2j

V�� �3:1�

depends not only on the relative coordinate rij but also on the internal coordinates
of the nucleons inside the nuclei i and j, respectively. On the other hand, we can
write the kinetic energy operator for the relative motion as

Tij �
�p2

ij

2�ij

�3:2�

with the momentum operator of the relevant Jacobi momentum �pij. We de®ne the
internal Hamiltonian of a nucleus i to be hi (including the rest mass) which depends
only on internal coordinates with the solution �i of the corresponding Schr�odinger
equation. Considering the different partitions into nuclei in the initial and ®nal
channels we have for the total Hamiltonian the expressions in the initial state

H � hA � ha � TAa � VAa; ha � hx � hb � Txb � Vxb �3:3�
and in the ®nal state

H � hB � hb � TBb � VBb; hB � hC � hc � TCc � VCc: �3:4�
The exact T-matrix element is now given in the post formulation by [10, 11]

Tf i�k f
Cc; k

f
Bb; k i

Aa� � h� f
0 �Bb��B�bjVBbj	����Aa�i; �3:5�

where 	����Aa� is the full solution of the scattering problem with a plane wave in
the initial channel A� a and outgoing spherical waves in all channels with or
without rearrangement. The outgoing plane wave

� f
0 �Bb� � exp�ik f

Bb � rBb� �3:6�
appears on the left-hand side. The wave function �B for the system C � c will be
speci®ed in Sect. 4, depending on whether one considers a bound state or a
scattering state.

The T-matrix element is transformed with the help of the Gell-Mann±
Goldberger relation into a sum of two contributions. For this we split the total
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Hamiltonian H into two parts

H � Hi � �VAa ÿ UAa�; Hi � hA � ha � TAa � UAa; �3:7�
introducing an (optical) potential UAa depending only on the relative coordinate rAa.
The scattering problem for the Hamiltonian Hi can be solved exactly as the potential
UAa only allows elastic Aa scattering without any excitation of internal degrees of
freedom of the colliding nuclei. The relative motion is given by a distorted wave

�TAa � UAa������Aa� � E i
Aa�

����Aa�: �3:8�
Similarly, in case of the ®nal state we have the decomposition

H � Hf � �VBb ÿ UBb�; Hf � hB � hb � TBb � UBb �3:9�
and the distorted wave

�TBb � UBb������Bb� � E
f

Bb�
����Bb�: �3:10�

The Gell-Mann±Goldberger relation [10] now leads to the result

Tf i�k f
Cc; k

f
Bb; ki

Aa� � h��ÿ��Bb��B�bjVAa ÿ �VBb ÿ UBb�j�0�Aa��A�ai
� h��ÿ��Bb��B�bjVBb ÿ UBbj	����Aa�i; �3:11�

which is still exact. Note that in the ®nal channel we have to insert the wave
function ��ÿ��Bb� which is the time-reversed of �����Bb�. The original Gell-Mann±
Goldberger relation [12] was derived for identical partitions of the Hamiltonian in
the initial and ®nal channels whereas here we apply the more general result for
different partitions [10, 11].

Next we observe that the ®rst contribution to the T-matrix element vanishes
exactly. By using Eqs. (3.3) and (3.4) we ®nd

VAa ÿ �VBb ÿ UBb�
� �H ÿ hA ÿ ha ÿ TAa� ÿ �H ÿ hB ÿ hb ÿ TBb ÿ UBb�
� hB � hb � TBb � UBb ÿ �hA � ha � TAa�: �3:12�

Since the wave functions in the matrix element are solutions of the Schr�odinger
equations

�hB � hb � TBb � U
y
Bb���ÿ��Bb��B�b � Etot�

�ÿ��Bb��B�b �3:13�
and

�hA � ha � TAa��0�Aa��A�a � Etot�0�Aa��A�a �3:14�
with total energy Etot the ®rst matrix element vanishes. Then the T-matrix relevant
for our calculation is still exactly given only by the second contribution

Tf i�k f
Cc; k

f
Bb; ki

Aa� � h��ÿ��Bb��B�bjVBb ÿ UBbj	����Aa�i: �3:15�
This expression still contains the full solution of the scattering problem on the right
side of the T-matrix. As a ®rst approximation, we apply the distorted-wave Born
approximation by replacing the full solution 	����Aa� by the distorted wave

�����Aa��A�a

TDWBA
f i �k f

Cc; k
f
Bb; ki

Aa� � h��ÿ��Bb��B�bjVBb ÿ UBbj�����Aa��A�ai: �3:16�
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The next approximation is introduced as usual by replacing the potential

VBb ÿ UBb � VCb � Vcb ÿ UBb � VAb � Vxb ÿ UBb � Vxb; �3:17�
where we assume that the transferred nucleus x is small and that the optical potential
UBb ®ts elastic scattering of b by nucleus B. Neglecting the difference VAb ÿ UBb is
expected to be of the same order as the uncertainties of DWBA. This approximation
for the interaction potential has been extensively discussed, e.g., in ref. [13] where it
was applied to deuteron stripping. In a plane-wave approximation of the T-matrix
the potential UBb is not introduced and the above approximation means to neglect
the interaction between nucleus A and the spectator b. This just corresponds to the
impulse approximation for the three-body reaction. Finally the relevant T-matrix of
the three-body breakup reaction assumes the form

TDWBA
f i �k f

Cc; k
f
Bb; ki

Aa� � h��ÿ��Bb��B�bjVxbj�����Aa��A�ai: �3:18�

4 Relation Between the Two-Body and the Three-Body Cross Sections

We now formulate the relation between the cross section for the two-body reaction
(1.1) and the three-body breakup reaction (1.2). The T-matrix element (3.18) for the
three-body reaction is calculated with the wave function �B for the system B in the
®nal state. In our case, this is the full scattering wave function of the unbound
B � C � c system, and thus the three-body T-matrix element also contains the
information on the C � c! A� x reaction, therefore giving the connection
between the two-body and three-body cross sections. In the following formulae we
will neglect effects of antisymmetrization.

4.1 The Two-Body Scattering Cross Section

The two-body differential cross section is given as

d�

d
Cc

�Ax! Cc� � v
f

Cc

vi
Ax

j f �Ax! Cc�j2 �4:1�

with the appropriate scattering amplitude f . The velocities are determined from the
corresponding momenta p

f
Cc � �Ccv

f
Cc and pi

Ax � �Axv
i
Ax. The scattering amplitude

is derived from the full scattering wave function 	����Ax; ki
Ax� with the system

A� x in the initial channel. Its asymptotic form is given by (we only consider two-
body ®nal states)

	����Ax; kAx� ! 4�

ki
Ax

X
�

X
lm

�
���
l ��; k�r��

r�
ilYlm�̂r����Y�lm�k̂i

Ax�: �4:2�

The sum runs over all possible ®nal channels �, where �� is the corresponding
wave function which depends on all internal variables of the two particles in the
®nal state. The radial wave function

�
���
l ��; k�r�� � exp�i�l��i

Ax��
2i

�������
vi

Ax

v f
�

s
� �Sl�Ax! ��u���l ���; k�r�� ÿ ��Axu

�ÿ�
l ���; k�r��� �4:3�
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can be expressed by the (nuclear) S-matrix element Sl�Ax! �� and linear com-
binations of the regular and irregular Coulomb wave functions (Fl and Gl), where
we have introduced the notation

u
���
l ���; k�r�� � Gl���; k�r�� � iFl���; k�r��

! exp � i k�r� ÿ �� ln�2k�r�� ÿ l�

2
� �l����

� �� �
: �4:4�

The Coulomb phase shift �l���� for the partial wave l depends on the Sommerfeld
parameter

�� � Z�1
Z�2

e2

�hv�
�4:5�

with the charge numbers Z�i
of the two nuclei i in channel � and their relative

velocity v�. The asymptotic form of the radial wave function (4.3) will be of
importance for establishing the relation between the cross sections for the two- and
three-body reactions. Assuming that the initial momentum pi

Ax is directed along the
z-axis we have

Ylm�k̂i
Ax� �

������������
2l� 1

4�

r
�m0 �4:6�

and for the total scattering amplitude (including Coulomb scattering)

f �Ax! Cc� � ÿi

���
�
p
ki

Ax

�������
vi

Ax

v f
Cc

s X
l

������������
2l� 1
p

Yl0�r̂Cc�

� �expfi��l��i
Ax� � �l�� f

Cc��g Sl�Ax! Cc� ÿ �CcAx�: �4:7�
Finally, the total reaction cross section for an inelastic reaction �Cc 6� Ax�

��Ax! Cc� � �

�ki
Ax�2

X
l

�2l� 1�jSl�Ax! Cc�j2 �4:8�

is obtained by integrating Eq. (4.1) over all possible directions r̂Cc. It is obvious
that the S-matrix contains all the essential information of the scattering process. At
very small energies Ei

Ax in the initial state the energy dependence of the S-matrix is
dominated by the Coulomb barrier and decreases like exp�ÿ��i

Ax�. In astrophysical
applications one therefore de®nes the S-factor

S�Ei
Ax� � ��Ax! Cc�Ei

Ax exp�2��i
Ax� �4:9�

which shows a much weaker variation with energy as compared to the cross
section.

4.2 The Three-Body Scattering Cross Section

In case of the three-body breakup the triple differential cross section is given by
Eq. (2.8).

We now use the approximation (3.18) for the T-matrix. Assuming that the optical
potentials UAa and UBb depend only on rAa and rBb, respectively, we write

Tf i�k f
Cc; k

f
Bb; ki

Aa�
� h��ÿ��Bb; k f

Bb�	�ÿ��Cc; k f
Cc��bjVxbj�����Aa; k i

Aa��A�ai: �4:10�
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We have replaced the wave function �B in Eq. (3.18) by the exact two-body
scattering wave function 	�ÿ��Cc; k f

Cc� which asymptotically behaves as a plane
wave in the Cc channel and ingoing spherical waves in all other channels. It can be
obtained from Eq. (4.2) by applying the time-inversion operator and replacing Ax by
Cc. Then, its asymptotic form is given by

	�ÿ��Cc; k f
Cc� !

4�

k
f

Cc

X
�

X
l

�
�ÿ�
l ��; q�r��

r�
ilYlm�̂r����Y�lm�k̂ f

Cc� �4:11�

with radial wave functions

�
�ÿ�
l ��; k�r�� � i

exp�ÿi�l�� f
Cc��

2

�������
v f

Cc

v�

s
� �S�l �Cc! ��u�ÿ�l ���; k�r�� ÿ ��Ccu

���
l ���; k�r��� �4:12�

for all possible partitions �.
The expression (4.10) can be calculated in DWBA by replacing the exact

scattering wave 	�ÿ��Cc; k f
Cc� by a distorted wave. But then we do not obtain an

explicit relation to the two-body cross section. We therefore introduce the essential,
so-called surface approximation [14]. From the form of the T-matrix element (4.10)
we can deduce which channel � gives the most important contribution. The
potential Vxb only acts on the bound-state wave function �a of the b� x system and
does not depend on rAa. The distorted wave �����Aa; ki

Aa� will become very small
for small rAa since the optical potential UAa is strongly absorptive there. For small
momenta pi

Aa the Coulomb barrier in the initial channel will additionally reduce the
amplitude of the wave function at small rAa. On the other hand, asymptotically,
the channels A� a and C � c become orthogonal. Therefore, there will be a sub-
stantial contribution to the T-matrix element only in the surface region of nucleus
A, i.e., for rAa close to the radius of A. Thus we can expect that the product
Vxb�

����Aa; k i
Aa��A�a projects onto contributions mainly from the A� �b� x�

structure and only little onto the C � �b� c� and other partitions. We conclude that
in the wave function 	�ÿ��Cc; k f

Cc� the channel � with the A� x fragmentation is
selected in the matrix element and further, that we can use the asymptotic form
(4.11) of the wave function, since the substantial contributions to the matrix element
arise from not too small rAx. Using this surface approximation [14] we replace the
full wave function by its asymptotic form (in the Aÿ x channel)

	�ÿ��Cc; k f
Cc ! Ax�

� 4�

k
f

Cc

X
lm

exp�ÿi�l�� f
Cc��

�������
v f

Cc

v f
Ax

s
ilYlm�r̂Ax��A�xY�lm�k̂ f

Cc�

� S�l �Cc! Ax� �
�ÿ�
l �Ax; k

f
AxrAx�

rAx

ÿ �AxCc
�
���
l �Ax; k

f
AxrAx�

rAx

" #
�4:13�

with the radial wave functions

�
���
l �Ax; k

f
AxrAx� � ��rAx ÿ RAx� i

2
u
���
l �� f

Ax; k
f

AxrAx�; �4:14�
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where we introduced a cut-off at a suitable radius RAx in the radial wave functions
�
���
l to eliminate contributions from the interior including the divergence from the

irregular Coulomb function at small rAx. The momentum in the Ax channel and the
corresponding velocity v f

Ax are determined by

mA � mx � � p
f
Ax�2

2�Ax

� mC � mc � � p
f
Cc�2

2�Cc

; �4:15�

i.e., the Cc! Ax S-matrix is taken on-shell. The surface approximation can be
tested in an actual calculation, e.g., by a comparison of the results obtained with a
distorted wave approximation for the radial wave function without the radial cut-off
and with the asymptotic wave function with proper radial cut-off. In case of inclusive
deuterium breakup reactions the results of a full calculation and of the surface
approximation were compared and found to be in satisfactory agreement [15].

For an inelastic process with Cc 6� Ax the T-matrix ®nally assumes the form

Tf i�k f
Cc; k

f
Bb; ki

Aa� �
�������������
�Axk

f
Ax

�Cck
f

Cc

s
�
X

lm

exp�i�l�� f
Cc��Sl�Cc! Ax�Y�lm�k̂ f

Cc�t�ÿ�lmfi �k f
Ax; k

f
Bb; ki

Aa�

�4:16�
with the reduced T-matrix element

t
���lm
f i �k f

Ax; k
f

Bb; ki
Aa� � 4�ilh��ÿ��Bb; k f

Bb�
�
���
l �Ax; k

f
AxrAx�

k
f

AxrAx

� Ylm�̂rAx��A�x�bjVxbj�����Aa; ki
Aa��A�ai: �4:17�

In case of the elastic process with Cc � Ax we ®nd

Tf i�k f
Ax; k

f
Bb; ki

Aa� �
X

lm

exp�i�l�� f
Ax��Y�lm�k̂ f

Ax�

� �Sl�Ax! Ax�t�ÿ�lmf i �k f
Ax; k

f
Bb; ki

Aa� ÿ t
���lm
f i �k f

Ax; k
f
Bb; ki

Aa��:
�4:18�

The reduced T-matrix elements t
���
f i , Eq. (4.17), are the essential ingredients in the

THM, since they are needed to extract the two-body S-matrix Sl�Cc! Ax� from the
measured three-body cross section. They have the form of a DWBA T-matrix for
the transfer reaction A� �bx�a ! �Ax�unbound � b, i.e., for the transfer of x to an
unbound state in A� x with relative momentum p

f
Ax, Eq. (4.15), mediated by the

interaction Vxb. Here p
f
Ax is the momentum for the astrophysical energy E

f
Ax, at

which the A� x! C � c cross section is to be investigated. Thus the reduced T-
matrix is the amplitude for preparing the �Ax�-system at the corresponding energy.
Its structure will become clearer in the PWBA in the next section.

As seen in Eqs. (4.16) and (4.18) there is no simple relationship between the
two-body and three-body cross sections in general. The S-matrix elements in Eq.
(4.16) are for the inverse process C � c! A� x, but both are related by unitarity.
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In general, one has interference between different partial waves in the triple
differential cross section (2.8), and one has to perform angular correlations
between the different fragments to extract the partial-wave S-matrix elements. The
reduced T-matrix elements, depending on three momenta, have to be supplied from
theoretical calculations to the THM. In principle they can be evaluated in DWBA,
even though they involve six-dimensional integration, i.e., are of the exact ®nite-
range type.

The reduced T-matrix elements t
���
f i are not model-independent. They depend

on assumptions on the distorted waves, the radial cut-offs, the bound-state wave
function �a, and the Vbx residual interaction. Thus the THM will not allow to
determine the two-body S-matrix absolutely. However, it will give reliably the
energy dependence, which is just the important information in the extrapolation to
astrophysical energies.

5 Plane-Wave Approximation

In order to see the structure of the above expressions and also for a comparison to
the literature, we now use the plane-wave approximation. The calculation of the
reduced T-matrix elements (4.17) simpli®es considerably, when we replace the
distorted waves ��ÿ��Bb; k f

Bb� and �����Aa; ki
Aa� by plane waves exp�ÿik f

Bb � rBb�
and exp�iki

Aa � rAa�, respectively. Notice that in this approximation the wave
function for the system B still contains the full effect of the Coulomb potential.

We Fourier transform the product of the potential Vxb and the bound-state wave
function �a both depending on rxb

Vxb�rxb��a�rxb� �
�

d3q

�2��3 W�q� exp�iq � rxb��x�b; �5:1�

where we have introduced the momentum amplitude W�q�. A zero-range approx-
imation for the product Vxb�a would correspond to a constant W . For the reduced
T-matrix element we ®nd

t
���lm
f i �k f

Cc; k
f
Bb; ki

Aa�

� 4�

�
d3q

�2��3 W�q�
�

d3rBb

�
d3rAx

� �
����
l �Ax; k

f
AxrAx�

k
f

AxrAx

Y�lm�̂rAx� exp�i�ki
Aa � rAa � q � rxb ÿ k f

Bb � rBb��: �5:2�

Using

rxb � rBb ÿ mA

mA � mx

rAx; �5:3�

rAa � mb

mx � mb

rBb � mxM

�mA � mx��mx � mb� rAx; �5:4�

we can write for the exponential

exp�i�ki
Aa � rAa � q � rxb ÿ k f

Bb � rBb�� � exp�i�qBb � rBb � qAx � rAx�� �5:5�
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with the momenta

qBb �
mb

mx � mb

ki
Aa � qÿ k f

Bb; �5:6�

qAx �
mxM

�mA � mx��mx � mb� k
i
Aa ÿ

mA

mA � mx

q: �5:7�

Integrating over rBb yields a �-function and the q integration becomes trivial. We
obtain

t
���lm
f i �k f

Cc; k
f
Bb; ki

Aa�

� 4�W�QBb�
�

d3rAx

�
����
l �Ax; k

f
AxrAx�

k
f

AxrAx

Y�lm�̂rAx� exp�iQAa � rAx� �5:8�

with

QBb � k f
Bb ÿ

mb

mx � mb

ki
Aa; �5:9�

QAa � ki
Aa ÿ

mA

mA � mx

k f
Bb: �5:10�

Here QBb is the difference between the momentum of b in the ®nal channel and the
fraction of the initial momentum in the projectile a. Thus it is the recoil of b.
Similarly QAa is the recoil of A. In PWBA the reduced T-matrix is the product of
the Fourier transforms of the bound �bx� wave function at QBb with that of the Ax-
scattering state at QAa. Introducing a partial-wave expansion of the plane wave and
performing the angular integration for rAx we obtain

t
���lm
f i �k f

Cc; k
f
Bb; ki

Aa� � �4��3W k f
Bb ÿ

mb

mx � mb

ki
Aa

� �
�
X
l00m00

X
l0m0
ÿil00ÿl0

���������������������������������
�2l� 1��2l0 � 1�

4��2l00 � 1�

s
�l0l00jl000��lml0m0jl00m00�

� R
���
l00l0l�Ax; ki

Aa; k
f

Bb; k
f

Ax�Y�l00m00 �k̂i
Aa�Yl0m0 �k̂ f

Bb� �5:11�
with the radial integral

R
���
l00l0l�Ax; ki

Aa; k
f

Bb; k
f

Ax�
� �k f

Ax�ÿ1

�1
0

drAx rAx jl00 �k i
AarAx� jl0 ��Axk

f
BbrAx������l �Ax; k

f
AxrAx� �5:12�

and the abbreviation

�Ax � mA

mA � mx

: �5:13�

Due to the parity Clebsch-Gordan coef®cient �l0l00jl000� some combinations of l00; l0,
and l will give no contribution to the reduced T-matrix elements. The radial integral
over continuum wave functions can conveniently be calculated with the methods
given in ref. [16] by passing to the complex plane for the variable rAx with a suitable
decomposition of the integrand. For small momenta p

f
Ax the contribution of the
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irregular Coulomb wave function in �
���
l will dominate and we ®nd with ref. [17]

the very low energy behaviour of the radial integral

R
���
l00l0l�Ax; ki

Aa; k
f

Bb; k
f

Ax�

/ ÿi
exp��� f

Ax��������������������
2�QAxk

f
Ax

q
�
�1

RAx

drAxrAx jl00 �ki
AarAx� jl0 ��Axk

f
BbrAx�

����������������
2QAxrAx

p
K2l�1�2

����������������
2QAxrAx

p
� �5:14�

with the (constant) inverse Bohr length

QAx � � f
Axk

f
Ax �

ZAZxe2�Ax

�h2
: �5:15�

In Eq. (5.14) only the factor in front of the integral depends on k
f

Ax. For low energies
the exponential factor increases strongly cancelling the decrease of the two-body
S-matrix elements in the three-body T-matrix element (4.16).

Finally, in case of the inelastic two-body reaction the result for the total three-
body T-matrix becomes

Tf i�k f
Cc; k

f
Bb; ki

Aa� �
�������������
�Axk

f
Ax

�Cck
f

Cc

s
W k f

Bb ÿ
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mx � mb

ki
Aa

� �
�
X

l

�2l� 1� exp�i�l�� f
Cc�� Sl�Cc! Ax�

�
X
l00l0

R
�ÿ�
l00l0l�Ax; ki

Aa; k
f

Bb; k
f

Ax�Xl00l0
l �k̂ f

Cc; k̂
f
Bb; k̂i

Aa� �5:16�

with the angular distribution function

Xl00l0
l �k̂ f

Cc; k̂
f
Bb; k̂i

Aa� � �4��5=2
il
00ÿl0 �l0l00jl000�

����������������������������������
2l0 � 1

�2l00 � 1��2l� 1�

s
�
X
m00m0

m

�lml0m0jl00m00�Y�l00m00 �k̂i
Aa�Yl0m0 �k̂ f

Bb�Y�lm�k̂ f
Cc�: �5:17�

In the elastic case we ®nd

Tf i�k f
Ax; k

f
Bb; ki

Aa�

� W k f
Bb ÿ

mb

mx � mb

ki
Aa

� �X
l

�2l� 1� exp�i�l�� f
Ax��

X
l00l0

Xl00l0
l �k̂ f

Ax; k̂
f
Bb; k̂i

Aa�

� �Sl�Ax! Ax�R�ÿ�l00l0l�Ax; ki
Aa; k

f
Bb; k

f
Ax� ÿ R

���
l00l0l�Ax; ki

Aa; k
f

Bb; k
f

Ax��: �5:18�
The essential feature of the THM is the occurrence of the factor exp��� f

Ax� in the
low-energy approximation (5.14) of the radial integrals R

���
l00l0l which compensates the

low-energy suppression of the S-matrix element Sl�Cc! Ax� from the Coulomb
barrier in the Ax channel. Therefore we have no suppression of the cross section in
the three-body reaction [1]. Of course, the energy dependence derived here in the
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PWBA also applies to the more general case with distorted waves in the T-matrix
element.

Rewriting the plane-wave approximation for the T-matrix

Tf i�k f
Cc; k

f
Bb; ki

Aa� � W k f
Bb ÿ

mb

mx � mb

ki
Aa

� �
~Tf i�k f

Cc; k
f
Bb; ki

Aa�; �5:19�

we obtain for the three-body cross section

d3�

dE
f

Cc d
Cc d
Bb

� �Aa�Bb�Cc

�2��5�h6

k
f

Bbk
f

Cc

ki
Aa

W k f
Bb ÿ

mb

mx � mb

ki
Aa

� ����� ����2j~Tf i�k f
Cc; k

f
Bb; ki

Aa�j2; �5:20�

a result which resembles the PWIA (1.3) in structure. We also have a product of
three factors: (i) a kinematical factor, (ii) a momentum distribution, and (iii) an
expression like a cross section. But there are clear differences as compared to
PWIA. The momentum distribution jW j2 is not simply the Fourier transform of the
ground-state wave function of nucleus a but the Fourier transform of the product of
this wave function with the interaction Vxb. In case of a nucleus a with an l � 0
ground-state wave function for the xb relative motion, e.g., 6Li, jW j2 will peak at
zero momentum. This means

k f
Bb �

mb

mx � mb

ki
Aa;

i.e., the ®nal momentum of the spectator b is just the corresponding mass fraction of
the initial momentum of projectile a. Therefore it remains constant during the
reaction as assumed in the impulse approximation. In the PWIA the last factor is
directly the two-body cross section of the A� x! C � c reaction [9]. Here it is a
function, where the S-matrix elements of this reaction enter. This function contains
the off-shell effects for the two-body cross section and goes beyond the quasi-free
approximation. In particular it contains an explicit expression for the barrier
penetration factors through the radial integrals R���. Although we have used the
plane-wave approximation for the Aa and Bb relative motion the Coulomb effects in
the C � c scattering are still fully included.

6 Summary

We speci®ed approximations involved in the Trojan-horse method in order to
determine the cross section of a two-body reaction from a related process with three
bodies in the ®nal state. The full expression for the triple differential cross section of
a three-body breakup reaction has been derived in a post-form distorted-wave Born
description. The relation to the two-body cross section of interest can be established
via the S-matrix elements if the surface approximation is applied. In a further plane-
wave Born approximation of the T-matrix element the three-body cross section
assumes a form similar to the plane-wave impulse approximation. In our formu-
lation the full effect of Coulomb penetration in the relevant two-body process is
included as well as off-shell effects in the breakup. The Trojan-horse method has

88 S. Typel and H. H. Wolter



already been shown to be useful in the application with the simpli®ed, semi-
empirical PWIA expressions of Eq. (1.3) [6±8]. For an application of the Trojan-
horse method to a speci®c reaction of astrophysical interest various combinations of
spectator nucleus and projectile energy with different three-body ®nal states can be
selected. The actual choice depends strongly on the experimental possibilities for
the detection of the particles in the ®nal state. In particular, the range in relative
energy of the two-body reaction which is accessible in the experiment is connected
to projectile energy and the momentum of the spectator in the ®nal state. It should
be chosen to be close to the maximum of the momentum distribution so that the
quasi-free reaction mechanism dominates. Thus, the application of the method
depends strongly on the experimental realization. A Trojan-horse experiment under
suitably chosen conditions should be performed and the more detailed formulation
of the THM given here should be applied and discussed in that context. A
comparison of the extracted cross section for a two-body reaction with data from a
direct measurement would be useful to assess the applicability of the Trojan-horse
method for nuclear astrophysics.
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Appendix

Considering particles with spin leads to more complex expressions for the cross sections, wave

functions, and matrix elements. In the following we give the most important formulae, where we

denote the spin of a nucleus j by sj and sjk is the channel spin of the system j� k with projection �jk.

For cross sections we usually have to sum over all ®nal states and over all initial states in a reaction.

In case of a two-body reaction we calculate the differential cross section

d�

d
Cc

�Ax! Cc�

� 1

�2sA � 1��2sx � 1�
X
sax�Ax

X
sCc�Cc

v f
Cc

vi
Ax

j f �Ax; sAx; �Ax ! Cc; sCc; �Cc�j2 �A:1�

from the scattering amplitude f which can be derived from the full scattering wave function

	����Ax; ki
Ax; sAx; �Ax� with the system A� x in the initial channel. Its asymptotic form reads

	����Ax; kAx; sAx; �Ax�

! 4�

ki
Ax

X
�s�

X
JM

X
l�lAx

�
J���
l�s�lAxsAx

��; k�r��
r�

Yl�s�
JM ��; r̂��ZlAxsAx�Ax�

JM �k̂i
Ax� �A:2�

with the functions

Yls
JM��; r̂� �

X
m�

�lms�jJM�ilYlm�̂r����s�� �A:3�

and

Zls�
JM�k̂� �

X
m

�lms�jJM�Ylm�k̂�; �A:4�
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which describe the angular dependence. The radial wave function

�
J���
l�s�lAxsAx

��; k�r��

� exp�i�lAx
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u
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l�
���; k�r��� �A:5�

contains the (nuclear) S-matrix element SJ
l�s�lAxsAx

�Ax! �� which depends on the total angular

momentum J and on the orbital angular momenta and spins in the initial and ®nal channels. The total

scattering amplitude (including Coulomb scattering) is now given by
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and the total reaction cross section for an inelastic reaction �Cc 6� Ax� reads
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In case of the three-body breakup the triple differential cross section including spin degrees of

freedom is given by
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where the T-matrix depends on the spins and their projections

Tfi�k f
Cc; k

f
Bb; sBb; �Bb; ki

Aa; sAa; �Aa�
�
X
sCc

X
�Cc�b

X
�A�a

�sCc�Ccsb�bjsBb�Bb��sA�Asa�ajsAa�Aa�

� h��ÿ��Bb; k f
Bb�	�ÿ��Cc; k f

Cc; sCc�Cc��b�sb�b�jVxbj�����Aa; ki
Aa��A�sA�A��a�sa�a�i: �A:9�

The asymptotic scattering wave function in the C � c channel can be written
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with the radial wave functions

�
���
lAx
�Ax; k

f
AxrAx� � ��rAx ÿ RAx� i

2
u
���
lAx
�� f

Ax; k
f

AxrAx�: �A:11�

90 S. Typel and H. H. Wolter



In an inelastic process with Cc 6� Ax the T-matrix element assumes the form

Tf i�k f
Cc; k

f
Bb; sBb; �Bb; ki

Aa; sAa; �Aa�

�
�������������
�Axk

f
Ax

�Cck
f

Cc

s X
J

X
sCcsAx

X
lAxlCc

exp�i�lCc
�� f

Cc�� SJ
lAxsAxlCcsCc

�Cc! Ax�
X
�Cc�b

�sCc�Ccsb�bjsBb�Bb�

�
X

M

ZlCcsCc�Cc

JM �k̂ f
Cc�t�ÿ�JM

f i �k f
Ax; k

f
Bb; lAx; sAx; �b; ki

Aa; sAa; �Aa� �A:12�

with the reduced T-matrix element
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In case of the elastic process with Cc � Ax we ®nd
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In the plane-wave approximation we introduce the Fourier transform of the product
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and obtain for the reduced T-matrix
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after performing the angular algebra. Finally, in case of the inelastic two-body reaction the result for

the total three-body T-matrix becomes
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with the angular distribution function
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In the elastic case we have
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The plane-wave approximation for the full T-matrix can again be factorized
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with the result
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for the cross section.
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