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Abstract. The two-bodyT-matrix is calculated directly as function of two vector
momenta for different Malfliet-Tjon-type potentials. At a few hundred MeV
projectile energy the total amplitude is quite a smooth function showing only a
strong peak in forward direction. In contrast, the corresponding partial-wave
contributions, whose number increases with increasing energy, become more and
more oscillatory with increasing energy. The angular and momentum dependence of
the full amplitude is studied and displayed on as well as off the energy shell as
function of positive and negative energies. The behaviour ofTtheatrix in the
vicinity of bound-state poles and resonance poles in the second energy sheet is
studied. It is found that the angular dependencd eixhibits very characteristic
properties in the vicinity of those poles, which are given by the Legendre function
corresponding to the quantum number either of the bound state or the resonance (or
virtual) state. This behaviour is illustrated along numerical examples.

1 Introduction

At low energies in the MeV and the few tenth of MeV region very few angular momenta
contribute to the nucleon-nucleoNK) scattering process. Consequently a description
using angular-momentum decomposition is an adequate tool for carrying out scattering
calculations. However, at intermediate energies, i.e., energies of a few hundred MeV,
and higher energies very many angular momenta contribute to the scattering amplitude.
In these energy domains those individual contributions to the scattering amplitude for a
fixed high angular momentum oscillate strongly in angle, whereas the total amplitude is
much smoother. This suggests the direct determinatioh &g function of the initial-
and final-momentum vectors avoiding angular-momentum decomposition totally. For
NN scattering, investigations of this kind have already been undertaken [1-4].

The choice of momentum vectors as adequate variables is also suggested from
the NN force. The dependence on momentum vectors in the case of the widely used
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one-boson-exchange forces is, for instance, rather simple, whereas the partial-wave
representation of this force leads to complicated expressions [5]. This is already
apparent in the most simple case of a scalar meson propagaiay,-1q)> + p2),

which is the central ingredient to amyN force. In a partial-wave decomposition this

is represented in the forrtl/qq)Q,(2), wherez = (q% + g% + x?)/2qq and Q,(2) is

the Legendre function of the second kind. For large values thie latter requires
some care in order to be handled correctly in numerical calculations.

Scattering of more than two particles requires two-bddpatrices off-the-energy-
shell (off-shell for short notation) as dynamical input, which are apparently easier to
handle if they enter the calculations as smooth functions instead of strongly varying
partial-wave components. Of course, these remarks also apply to the treatment of
scattering processes of more than two particles at intermediate energies, which
themselves are also treated more economically and transparently using momentum
vectors instead of partial-wave representations. Calculations of three and more particles
use as input fully off-shell two-body-matrices, whose properties as functions of
arbitrary initial and final momenta and in general positive and negative energies should
be well understood. Specifically at negative energies there may be bound-state poles and
in the second energy sheet there may be poles related to virtual states and resonances.

Our aim in this article is to generate two-bodymatrices directly in a three-
dimensional form and display their properties as functions of the magnitudes of the off-
shell momenta, the angle between the two momentum vectors and of the energy. We are
not aware of a similar study of this generality in the literature. Usually, only partial-
wave-projected amplitudes are displayed and discussed [6].

In Sect. 2 we describe our solution of the two-body Lippmann-Schwinger equation
directly as function of the momentum vectors and illustrate the on- and off-shell
properties of the resultin@-matrices obtained with simple Yukawa-type two-nucleon
potentials. In Sect. 3 we discuss the pole structure ofTtneatrix as function of the
energy and illustrate its angular and energy behaviour at and around bound-state poles.
In Sect. 4 we illustrate the behaviour of thanatrix for virtual and resonant states in the
second energy sheet. We conclude in Sect. 5.

2 The On- and Off-Shell Two-BodyT-Matrix at Positive Energies
Two-body scattering is governed by the Lippmann-Schwinger equation
T=V+VGT, (2.1

whereV is the two-body (e.g., two-nucleon) potenti@ly = (z— Hy) * the free two-
body propagator, and the transition operator. In momentum space its matrix elements
T(q',9,2 = (d'|T(2)|q) obey the integral equation

/ / /! !/ 4 1 1
T(q,d,2 = V(g ,q)+Jd3q V(@'.q") q//zT(OI .0, 2). 22

m

Here, q are the relative momentay the mass of each of the two particles andn
arbitrary energy. In the case of particles with unequal masses, the quairtig. (2.2)
is to be replaced by two times the reduced mass of the system. We use a nonrelativistic
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framework. In this article we restrict ourselves to two spinless particles and local
potentials. Thereforey(q’, q) as well asT(q', g, 2) are scalar functions

V.9 =V({,9,4-9) (2.3)
and
T(q/’ q) - T(q/’ a, q/' q) (24)

In Eq. (2.4) we dropped the parametric dependence on the en€fgis notation then
leads to the following explicit form of Eq. (2.2)

00 1 2m 1
T(q,,X) = V(d,q.x)+ JO dq’ Jld%’ JO de" V(A d'y) — »T(@..X),

m
(2.5)

wherex = §-4, X" =§"-q, andy = §”-q". We can expresg throughx andx” as

y = XX +V1—x2V/1—x2cosy’, (2.6)

where the arbitrary azimuthal angtefor § is chosen to be zero. If we define
v(d,0,X,X) = J de V(q,9,Xx+ V1 —x2V1— x?cose), 27
0

the integral equation (2.5) becomes

/ 1 / ® ! /. ! ! / /! ! 1 /! /
-I-(q’q’)():Z‘U(q’qa)(’]-)—i_J‘0 dd q ZJ—ld)( ‘U(Qaq ,X,X)TT(Q ’q’)()'

z— 4
m

(2.8)

This is a two-dimensional integral equation in the off-shell moment@’) and the
cosine of the ‘scattering angle&’ (x").

In this section we consider the solutions of the integral equation (2.8) at positive
energies, i.e., we choose=E + ie = (g3/m) + ie, corresponding to the incoming
momentumg,. In order to obtain insight into the behaviour of thenatrix, we shall
consider the on-shell elemefit(qy, go, X, E), whose square is proportional to the
differential cross section, as well as the half-off-shé&llg, qq, X, E), and fully off-shell,
T(9,q, X, E), T-matrix.

We solve the two-dimensional integral equation typically using 24 og-pdints
and 24x-points. The Cauchy singularity is separated into a principal-value part &nd a
function part, and the principal-value singularity is treated by subtraction. The
integration interval for theg-integration is covered by mapping the Gauss-Legendre
pointsu from the interval (0, 1) via

g = btan <g u)

to the interval (0). Typical values ob are 1000 Me\.
A very stringent test for our numerics is the off-shell unitarity relation, which is a
direct consequence of Eqg. (2.2). In our two-dimensional form it reads
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1 2T
Im T(q,q,X) = —gm%J 1d>(/ JO de” T(q, 0o, V)T *(0, Go, X, (29

wherey is given in Eqg. (2.6). With Eqg. (2.9) we allowed for the most general case of the
unitarity relation, where the energy= E = g3/m is not related to the incoming
momentumg, thus g # q # do. In our numerical tests Eq. (2.9) was fulfilled for
arbitraryq, g, andx values to an accuracy better than 0.001% with the above quoted
number of integration points.

As main application we choose potentials of the Malfliet-Tjon [7] type, i.e.

expl—prl] expl—pall
ey, , (2.10)

V() =V, .

and consequently

, 1 VR Va >
V(,9) =5 - . 211
@9 = 202 <(q’—q>2+u% (@ — ) +p3 -

In the case of a Malfliet-Tjon-type potential theintegration of Eq. (2.7) can be carried
out analytically with the result

(q,9,X,%) ! Ve
v R EEAN = -
T | /(% + 9% — 29'gXX + pd)? — 49%g%(1 — X?)(1 — x?)

Va
V@2 + = 20'gxx + pZ)? — 49°20P(1 — X (1 — P

] . (212

The parameters used fot are given asv!’ in Table 1. Note that they are slightly
different from the ones used in ref. [7].

As first numerical example we would like to demonstrate the connection of the
angle-depended on-shell amplitudéq, o, X, E) and its representation in terms of
partial-wave amplitudes,

221 +1

T(do, 9o, ¥) = A Ti(9w)P(X), (2.13
=0

where

Table 1. Parameters of the Malfliet-Tjon-type potentials. As conversion factor
we use units such thd@tc = 197.3286 MeV fm= 1

Va pa [MeV] VR pr[MeV]
v® 3.1769 305.86 7.291 613.69
v 6.0 305.86 7.291 613.69
A 5.1 305.86 7.291 613.69

vV 2.6047 305.86 7.291 613.69
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21 . .
Ti(q) = ;ﬁnequél(qo)] Sino(do)-

The guantity$;(qp) is the phase shift for a given angular momentuand is determined
in the standard manner. In Fig. 1 we show Reg, gy, X, E) at 300 and 800 MeV
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Fig. 1. Angular dependence of the real part
of the on-shellT-matrix, ReT(qy, qg, X, E).

At E, = 300MeV, @), the dashed line
represents the partial-wave sum up to
j = 2, the dashed-dotted line the sum up
to j = 4, and the solid line the sum up to
j = 6. The solid bullets stand for the calcu-
lation performed without angular-momen-
tum decomposition. AtE,, = 800 MeV,
(b), the dashed line represents the partial-
wave sum up tg = 6, the dashed-dotted
line stands for the sum up jo= 9, and the
solid line for the sum up tp= 12. Again,
the solid bullets represent the calculation
performed without angular-momentum
decomposition
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laboratory energies together with partial-wave sums up to a given angular momlentum
Note thate = E /2. The strong peak of RE&(qy, gp, X, E) in forward direction requires
high orders of Legendre polynomials for a correct description. This is, of course,
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Fig. 2. Angular dependence of the imaginary part of the on-shetiatrix, Im T(qg, g, X, E). At E;gp =
300 MeV, @), the dashed line represents the partial-wave sum pg-ta, the solid line the sum up jo= 4.
The solid bullets stand for the calculation performed without angular-momentum decomposititp. At
800 MeV, b), the dashed line represents the partial-wave sum jugt8, the solid line the sum up jo= 6.
The bullets stand for the calculation performed without angular momentum decomposition
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especially pronounced for the higher energy. In Fig. 2 we displa¥ (og, 0o, X, E) at
the same energies together with its representation in partial-wave sums. It can be seen
that ImT(qg, g, X, E) Nneeds less partial-wave amplitudes for its correct representation,
the reason being that I is proportional to sif\é;, whereas R4, is proportional to
cosé, sing,. For large values of the phase shifts become small, thusTirdecreases
with 62, whereas R&, only decreases proportional &p

An overview of the angular dependence of the full on-shell amplift@g, gy, X, E)
as function of the energy is given in Fig. 3. Starting from a relatively flat angular
distribution at lower energies the peaking in forward direction develops with increasing
energy. At the same time the angular range, where the cross section is flat and small,
becomes larger with increasing energy, indicating that forward scattering dominates at
higher energies.

ERe T

1000 E [MeV]

imT

000 E [MeV]

Fig. 3. Angular dependence of the real (up) and imaginary (down) parts of the onThaditrix as
function of the laboratory energy frof,, = 50 MeV to E,,;, = 1000 MeV
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Next we consider the half-off-shell amplitud€q, qo, X, E) for two energies. Fig. 4
shows thafT (g, qq, X, E) is rather small and structureless for all off-shell momenta
with the exception ofj being close to the on-shell momentug

The most general amplitude, the fully off-shell amplitutle, q’, x, E) is displayed
in Figs. 5 and 6 for its real part as function of the off-shell momenduand the angle
for two fixed off-shell momental’. Contrary to what one might expect, the strongest
forward peaking does not occur fqibeing close to the on-shell value, but fpe= q'.
This agrees with the behaviour of the driving term, which peaksjferq’. We found
this behaviour for all energids > 0.

G [mevic)

Qimevic]
1]

Fig. 4. Angular dependence of the real part of the

(b) half-off-shell T-matrices, ReT(q, gy, X, E), as func-
tion of the off-shell momentur at E, = 200 MeV
(a) andE,, = 500 MeV ()
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All numerical and graphical examples considered so far refer to a potential of
Malfliet-Tjon-type with repulsive and attractive parts (potentid! in Table 1). Its

MeV/
gmﬂ.QI eVic]

Fig. 5. Angular dependence of the real part of the
off-shell T-matrix, ReT(qg,q’ = 250 MeV/c, X, E),
as function of the off-shell momentuqat E,5p, =

400 MeV

.
=

\_ | Fig. 6. Angular dependence of the real
\ \ ; part of the off-shellT-matrix, ReT(g,q’ =
\ 1000 MeVic, x, E), as function of the off-
v shell momentuny at E,, = 400 MeV
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strength is such that it supports a bound state at—2.23 MeV. Though this potential
is of quite simple character, it captures essential featuri®afiteraction models based
on meson exchange with respect to the propagator structure.

3 The Off-Shell T-Matrix at Negative Energies

In the context of Faddeev-Yakubovsky equations two-b@ewatrices need to be
evaluated at negative energies. In a three-body system the energy argument for the two-
body T-matrix is given a€ = E,, — (3/4m)q? [9]. Here E, is the total energy of the
three-particle system an@/4m)q’ is the kinetic energy of the relative motion of the
third particle with respect to the interacting pair, which is described by-tmatrix. For
an interacting three-body system the relative momerjtyiis not conserved. Therefore
it can have arbitrary values atdcovers all energies belo,. Thus we are interested
to see, whether the angular dependence oTthwtrix evaluated at negative energies is
similar to the one observed at positive energies. A second consideration is that bound
states of the two-body system lead to poles inThmatrix. The angular dependence at
and around a pole should be dictated by the one of the bound state. We now investigate
these questions and provide numerical illustrations.

The formal solution to the Lippmann-Schwinger equation, Eq. (2.1), is given by

1
T=V+V——V, 31
@=V+V_— (31)
whereH is the full two-body Hamiltonian. If this Hamiltonian supports a bound state
|op) atz = E,, it follows immediately that

—E,

T2 — Viéy)

g @IV (32)

In momentum-space representation, Eq. (3.2) reads

7—Ey

T(d,d,2 — (d'|VIep)

g (@lVIa) (33)

The bound state obeyd|¢,) = Ep|¢p) and has a certain fixed angular momentym
such that

(Qldp) = Db, (ADYim(@). (34
SinceT is a scalar quantity, its behaviour at and around the pole has to have the form

’ Pand =T s / 1 * oA
T(q.0.2 —> 3" Yin@9(@) ,—E Tn@a(@

_2A+1, o o 6(@)g(@

—?PKQ q)z—iEb

_R@.a4-9

= (35)

Here

6(Q) = L dq’ q2%(q, o)) (36)
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with
/ 2 (" 2; R
u(0,9) = g drroi@nV)ji(gr). (3.7)

From Eq. (3.6) it can clearly be seen that the angular dependefiaxbfbits a very
characteristic behaviour in the vicinity of the bound-state poles, which is given by the
Legendre function corresponding to the angular quantum number of the bound state. In
order to illustrate the pole behaviour, we choose the potevﬂﬁlof Table 1, which
supports aswave bound state &, = —190.16 MeV and g-wave bound state at
E, = —14.629 MeV. These binding energies are determined in a standard manner
solving the Schidinger equation for a fixed angular momentum. This is a simple, one-
dimensional problem, whose solution also provides the funagiég) and thus the
residueR(q,qg,q§’-§) from Eq. (3.6). The values of the binding energies can also be
obtained by solving the two-dimensional integral equation (2.8) and determining the
pole position from the solution. Choosing the same integration pqiimshe partial-
wave-projected, one-dimensional form and the two-dimensional form, the bound-state
energiesE,, agree very well with the pole positiorts,,. For example, for 4@-points
(and 32x-points) we findE,(I = 0) = —190.162 MeV, which has to be compared to
Epoi(l = 0) = —190.164 MeV. Similarly, we fincE,(I = 1) = —14.6296 MeV com-
pared toE,, (I = 1) = —14.6296 MeV. These results can be pushed to higher accuracy
if desired. We also determine the residues at each pole from the solution of the two-
dimensional integral equation and illustrate our result in Table 2 for the arbitrary choice
of ' = q= gy = \/M|E| and the angle-averaged quantity

1 1
T = Py J_l dx R()T (o, Go, %, E)E — Epei(1)).

As demonstrated in Table 2, we approach the poles from both sides and the numbers
closest to the poles agree very well with the corresponding residues calculated directly
from the partial-wave-projected problem.

Table 2. Determination oﬂ7| = 1/q f,ll dx R(X)T(do, do X, E)E — Epgi(1)) as function

of E close to thd = 1 andl = 0 poles. The values for the constants ege= 2 and

¢; = 2 The entry p.w. indicates the value determined from the partial-wave-projected
problem

E [MeV] T1(E) [MeV fm?] E [MeV] To(E) [MeV fm?]
—14.60 1.08424 —-1898 4.37911
—-1461 1.08513 —-1899 4.37847
1462 1.08597 —1900 4.37772
—1463 1.08588 —1901 4.37722
—1464 1.08778 —~1902 4.37693
—1465 1.08857 —-1903 4.37608

p.W. 1.08684 p.W. 4.37685
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The angular dependence™fq,, go, X, E) with gy = /mM|E| for energies close to the
two poles is displayed in Fig. 7. Both parts of the figure show that near and at the pole
the T-matrix exhibits the characteristic behaviour of the Legendre function associated
with the angular-momentum quantum number of the corresponding bound state. In
Fig. 8 we show the angular dependencelddy, go, X, E) in the whole energy range

3.00 —— 1 ' l ' '

= —— E= -1 MeV 1
= r ----E= -5MeV
; 200 - _ B loMev s

[ —— E=-15MeV ]
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A [ e ]
= 200 F . ]
s e @ |
= -3.00 ' | ' | ' |
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& ‘ -—-- E=-180 MeV
5 — —- E=-185MeV

0 . —— E=-189MeV _
z -2.00 ——- E=-191 MeV
= —-— E=-195MeV
><6 300 L T E = -200 MeV .
O—l =J.
o
400
Lgm ~..\\
2 500
”.f (b)
S 600 - ' ‘ | | | |
-1.0 -0.5 0.0 0.5 1.0
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Fig. 7. Angular dependence ¢E — Eg)(E — E)T(do, Go. X, E) for energiesE around thep-wave pole §)
and thes-wave pole b)
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around and in between the bound-state poles. In order to include both poles we consider
(E — E9)(E — Ep)T(Qo, 9o, X, E) in Figs. 7 and 8. Starting from very small values/gf,

the angular dependence is first®fvave character, then turns tgpavave shape at and

near thep-wave pole, and then develops the forward peak known from corresponding
positive energies. Note that due to the multiplicative factors, the peak turns upward in
the two figures. WhernE| reaches thes-wave pole, T turns back to the purs-wave
behaviour and then finally flips back into a strong forward peak.

The fact that the angular dependence at negative energies is reminiscent of that at
the corresponding positive energies, except for the characteristic behaviour near the
poles, leads us to suspect that the real pars might be quite similar to each other at
energies of equal magnitude. This turns out to be the case, as demonstrated in Fig. 9,
where we display R&(qq, 0o, %, E) for the potentialvV" for different values|E|. A
similar result was found in ref. [10] for the partial-wave amplitudes of the off-dtell
matrix. It should be noted that the equality of Rey, qo, X, E) for positive and negative
energies is not the trivial consequence of Re: V, which does not hold. In order to
demonstrate thaV is significantly different from R&, we also display in Fig. 9.
Comparing R€T(qo, do, X, E) at the different energies, we have to conclude that the
rescattering terms, R€ — V, for the same absolute values of the energy become more
and more similar to each other when the absolute value of the energy increases.

(E-ES)E-Ep)T

Fig. 8. Angular dependence ofE — Eg)(E — E;)T(qo. 0o, %, E) as function of the energy from
E = —200MeV toE = —1 MeV. Note the characteristic angular behaviour aroundpthand s-wave
poles as well as the strong forward peak between the two poles and belewthe pole
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Finally, in Fig. 10 we display the real part of the fully off-shellmatrix
ReT(q,q’,x E) as function ofq and x for fixed energyE = 200 MeV and fixed
momentaq’ = 250 MeVk and q' = 1000 MeVEt. As in Figs. 5 and 6 for positive
energies, R& is most strongly peaked af= q’, what can be expected once the
information of Figs. 5 and 6 is known.

0.00 ~ =
- —— E=+200 MeV
| ——- E=-200 MeV
-4.00 +
~— -8.00 : : : :
o
* —-— oo T ——
> 0.00 |
E i
—~ | —— E=+400 MeV
K — —- E =-400 MeV
5 i
= -4.00 f
Z
=
(]
(a7
N e
| —— E=+800 MeV
400 -~ E=-800MeV
-8.00 : : s I ! ,
-1.0 -0.5 0.0 0.5 1.0

X =cos 0

Fig. 9. Angular dependence of the real part of the on-shetiatrix ReT(qg, o, X, E) for |E| = 200, 400,
and 800 MeV. For comparison, the angular dependence of the driving\téris also shown as dash-dotted
line
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Re T
2000 q [MeVic]

2000 q [MeV/ic]

Fig. 10. Angular dependence of the
real part of the off-shell T-matrix
(b) ReT(g,q’,x,E=200MeV) for q =

250MeVE (a) and for g’ = 1000
MeV/c (b)

4 The Off-Shell T-Matrix in the Second Energy Sheet

Two-bodyT-matrices might exhibit a resonant behaviour at positive energies or show a
strong energy dependence n&a& 0 due to a virtual state. This latter case is realized,

for instance, in thé&N system for the partial-wave stat&,. Our goal is to locate those
resonances in the second energy sheet and investigate the characteristic angular
dependence connected with the resonance or virtual state.
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Im q

Fig. 11. Modified integration path in
the complexq plane for the analytic

continuation of the Lippmann-
Re q Schwinger equation into the second
energy sheet as described in the text

The transition to the second energy sheet requires an analytic continuation of the
Lippmann-Schwinger equation, Eq. (2.2), into the second energy sheet, which we
briefly describe here [9]. For a complex enemipcated in the upper half-plane, we
modify the integration path as indicated in Fig. 11. The contribution along the closed
path Il gives a residue and we find

7

T(q,q9,2 = V(q,q) —itmg, J dg’ V(@',4"9)T(q"q, a,2)

/! / 4 l "
+J d*q" V(d.q9")——,T(@".q.,2. (4.1)
n q
Z _—
m

Here, g, = \/mzis the magnitude of the complex momentum vedién,, and the
symbol at the second integral indicates the deformed integration path I. Since we
deformed the integration path such that it is located above the emengyare able to
take z into the lower half of the complex plane without hitting a singularity in the
propagator. Once the energys located in the lower half-plane, we can return with the
integration path | to the real axis and have instead of Eq. (4.1)

T(',0,2 =V(q',q) — iTmg, J dg” v(d,4"a)T@"a, 9,2
" ! Y 1 "
+ Jd3q V@0 7T 0.2 42)

zZ—_
m

This equation is valid on the second energy sheet, which is reached from the upper rim
of the cut along the positive real-energy axis in the physical sheet. Due to the additional
imaginary term, Eq. (4.2) has to be supplemented by another equation, which we obtain
by choosingy’ = qa,,

T(G'0, 0,2 =V(§"q,, q) — immag, J dg” V(§'a, q"9)T(0"a,. 9,2

" A/ " 1 1
+Jd3q V@a0)— 5 T@0.0) 3
Z —

m
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Similar to the bound state, which induces a nontrivial solution for the homogeneous
equation related to Eqg. (2.1), the homogeneous set of equations related to Egs. (4.2) and
(4.3) has a nontrivial solution at discrete valueszofThese discrete values either
correspond to resonances with Re 0 and Imz < 0 or to virtual states with Re< 0
and Imz = 0. The fact that this homogeneous set of equations has a nontrivial solution
together with the compactness property of the integral kernel meanB(ih&ias a pole
at those energiea We are interested not only in determining the positions of those
poles but also in understanding the residues and their angular dependence.

As itis obvious from Eq. (4.3), the driving term singles out the first entry as complex
number. In order to simplify the formal steps leading to a determination of the residue, it
is convenient to supplement the set of equations given in Egs. (4.2) and (4.3) by another
set in which the driving term has a complex entry in the second argument. The two sets
can then be combined using the following matrix notation

< T9.9,2 T(,409,2 )
T('q,0.2 T(G'0, 00,2
_ ( V(. a) V(qﬁdq») L[ JedvVad) o fdd V. a)
V(G'q,9) V(Gq,Ga) [d*q" V@a,q") o [df’ V({Fa,'q)

72 " ".q
) (ﬂ[z—(q /mi 0 >< T@.q.2  T@.44,2 ) (4.4)

0 —in(m/e}) ) \T@"% 9.2 T@"q, G0, 2
Introducing the appropriate matrices, we write Eq. (4.4) as
T=V+VGT. (4.5)
We also need to study the corresponding homogeneous problem, which we want to
write in the following form

A2¥ = VGX. (4.6)

In this form the eigenvalue i&(2) and the energy is a parameter. Sinc¥G is a
compact operator, there is a discrete set of eigenvalues, which accumulgte-ato
[11]. The physical resonances occur at those vahseE, ., for whichA(E.9 = 1. In
the following we choose = E,.s Then we have

5 = VGx. 4.7)

Since the kernel is nonsymmetric, we also have to consider the left-hand eigenvalue
problem

0" =0'VG. (4.8)
Defining
' =0"V (4.9)
we deduce
" =d'GV (4.10)

or
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d=V'Go. (4.11)

SinceV" =V, we obtain® = X.
In the immediate neighborhood ot= E,.s and as a consequence of

To=1-VG6)V (4.12)
one has
T2 252 31— \@) é)T\7, (4.13)
whereN is a normalization factor. In the neighborhoodzoi& E,.s We can put
N2 =1+ N@ |k, (Z— Ered (4.14)
and obtain
F Zhm L 1 1o (4.15)

Xz- EresN (Dl=g NX

For the case of a bound-state pole it is easy to prove that
-1 1
)\/(Z)IZ_E N

for a normalized bound staté,) and|x) = V|¢y,). If we consider the right-hand side of
Eqg. (4.15) as function of an auxiliary strength factor to the potential, we can adopt the
normalization of the bound state and define

1 ~T
X - (4.16)
- Eres

T (Z) I'ES ~

The final remark concerns the scalar natur@(mf, g, 2). Since aresonant state has a
unique angular momentuimthe functiony(q) will have the form

x(@) = x1(Q)Yim(@), 4.17)
and we have to conclude that
= —Eres 2I + 1 ’ 1 Al A
T(d,0,2 = xi(@) XI(@P(E - 8. (4.18)
Z— Eres

If Re E, > 0 and if Im E, < O is sufficiently small, th@-matrix will feel the nearby pole
also for real, positive energies and a resonance will occur in the differential cross
section. In the case of a virtual state, like f& in NN scattering, the pole is located at
Re E, < 0 and ImE, = 0. For sufficiently small values dReE,| the T-matrix will be
strongly enhanced near andzat 0.

For our numerical realization we rewrite Egs. (4.2) and (4.3) analogously to Eqg. (2.8)
as

T(d,0,X) = —v(q a, %, 1)

1
/ /. 4 / a / 1 /! /
+L dq qZJ ld% v(d,q",X,X") q,,ZT(q ,0,X")

m
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1
—iwmqj dX" o(q, q,, X, X")T(q,, g,X") (4.19
-1
and
1
T(qu q7 )() = 2— v(Qz’ q’ X, l)
+J dq’ ”ZJ dX’ v(0, q". X, X)) ——5 q//z T(q",a.x")
m
_ 1
—iTmg, J_ dX" v(qy, 0y, X, X)T(0, q, X). (4.20)
Herez= E = |E|€ with ¢ < 0 andq, = \/mE = \/m[E|€*”%. The nontrivial solution

to the homogeneous system of Eq. (4.7) has a fixed angular momentum. When
employing Eq. (4.17), we obtain

xi1(Q) = Jdd q%(a,9) q/2x|(q)—lrmozvl(q,qz)xqu) (4.21)

z—
m

and

xl(qz)=J 4 200 o) () — TG BN (@), (422)
0 , 9
m

We used the above equations (4.21) and (4.22) to determine the location of the
resonances in the second energy sheetsf@ves they are usually called virtual states
and are located on the negative-energy axis. For partial waves withor higher, the
energy eigenvalues have a positive real part and a negative imaginary part. For varying
potential strength, they move along trajectories in the complex energy plane. In the
following, we numerically study two different cases, namelg-@ave virtual state

Table 3. Pole trajectories in the complex energy plane as function of the strength
parameteW, for the potentiala/™" (p-wave pole trajectory) and™’ (s-wave virtual-
state trajectory)

Vo (V) Eredl = 1) [MeV] Va (V) Eres(l = 0) [MeV]
54 0.9267-i0.1821 2.6047 —0.06663
5.3 2.1972-i0.7101 2.6 —0.07380
5.2 3.3254-i1.4134 2.5 —0.31004
5.1 4.3177-i2.2386 2.4 —0.69870
5.0 5.1801-i3.1552 2.3 —1.22970
4.9 5.9178-i4.1413 2.2 —1.89300
4.8 6.5358-i5.1806 2.1 —2.67878

4.7 7.0388-i 6.2597 2.0 —3.57733
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supported by potential mod&i!Y) of Table 1 and g-wave resonance of potential
model V") of Table 1. The corresponding trajectories are listed in Table 3.

For the case of the-wave virtual state we started from potential motél’ of
Table 1. Thes-wave phase shift of this potential has an effective-range expansion with a
scattering lengtla; = —23.5818 fm and an effective range= 2.8789 fm. Using these
values, the pole position for th&matrix can be estimated via the effective-range
expansion as

Y N (4.23)
rs \/[rslagl 2

e il 2 1]

which leads in our specific case to a position of the virtual state

e _ (@)
m

q’Z)_

= —0.06738 MeV,

where we usedn = 9389 MeV. This number is very close to the exactly calculated
value given a€,(l = 0) = —0.06663 MeV, quoted in Table 3. In the same table we
ql(Jls)ntify thes-wave trajectory as a function of the strength paramejeof potential
\VARE

For obtaining ap-wave resonance state, we start from potentid) of Table 1,
which supports g@-wave bound state, and decrease the attraction by decreasing the
strength parameté&f, until the bound state turns into a resonance state. Selected values
for the so obtained trajectory for thpewave resonance are listed in Table 3. Of course,
this model does not correspond to the reality oNaiforce, even for the lowest value of
V5 = 4.7 given in Table 3, the binding energy of tlsewave bound state is still
E; = —5252 MeV. Nevertheless, this example illustrates in a simple manner, what can
be expected for other cases like an effective nucleon-nucleus interaction, which
supports low-energy resonances for certain angular-momentum states. Qualitatively
the same picture would emerge.

We would like to mention that we solved the homogeneous set of Egs. (4.21) and
(4.22) by the very efficient power method [7, 9]. Regarding the notation of Eq. (4.7), one
has to determine the eigenvaldéz) and vary the energy such thatz) = 1. For the
potentials used here, the largest eigenvalue in magnitude was always an unphysical one
with a negative real part generated by the repulsive short-range piece of the force. Once
the largest eigenvalue is determined, we introduce a new integral kernel, consisting of
the old one minus that specific eigenvalue. The new kernel defined in this way has then
the physical eigenvalue as the largest one in magnitude.

Next we investigate the solution of tHematrix in the second energy sheet as given
by Egs. (4.19) and (4.20). We are interested in verifying the location of the pole as
well as the angular dependence of the residue at the pole as given in Eqg. (4.18).
We illustrate our findings for the potenti™ of Table 1, which has g-wave
resonant state @l = 1) = (4.3177— i2.2386 MeV, and for the potential/"V) of
Table 1, which has a virtuad-wave state aE.{l = 0) = —0.06663 MeV. For the
p-wave resonance we show in Figs. 12 and 13 the angular dependence of
Re(E — Eodl = 1))T(Qe, 90, %, E)] as function of the complex energl located
along two straight lines going through the pole position. In Fig. 12 we start on the
real axis atE = 4.3 MeV and successively increase the imaginary parEofFor



Two-Body T-Matrices Without Angular-Momentum Decomposition 75

0.20
—— E=43  MeV
---- E=43-10.5MeV
——- E=43-15MeV
—— E=43-i24MeV
010 | —-— E=43-i35MeV
—— - E=43-i50MeV

0.00

res

-0.10

Re {(E-E_)*T(q,.q,x.E)} [MeV*fm’]

-0.20 ' : :
-1.0 -0.5 0.0 0.5 1.0

X =cos 0

Fig. 12. Angular dependence of the real par{Bf— E,¢9)T(ge, 0o, X, E) as function of the complex energy
E around thep-wave resonance of potential modél"’. The off-shell momentury, is fixed at 100 Me\¢

0.20 : ; —————
—— E=0.88 - 0.46 MeV
----E=1.76-10.92 MeV
——-E=2.64-1.38MeV
—-— E=3.52-i1.84 MeV
0.10 -—— E=4.40-12.30 MeV
~~~~~~~~~~ E=5.28-i2.76 MeV
——- E=6.16-13.22 MeV
—— E=8.80-14.60 MeV

0.00

res

-0.10

Re {(E-E_)*T(qg,q,%.E)} [MeV*fmz]

-0.20 ‘ ‘
-1.0 -0.5 0.0 0.5 1.0

X =cos 0

Fig. 13. Same as Fig. 12, but for a different path of the complex en&rgy
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—— E=-0.01 MeV
---- E=-0.05MeV
—— E=-0.06 MeV
&2 001 | ——- E=-0.08MeV
= —-— E=-0.10MeV
* | L —
X E = -0.50 MeV
[0}
=
I
~ @ -—-r—- Y Y Y
= -
@ -0.03 .
=
-
*
!
]
-0.05 : ' '
-1.0 -0.5 0.0 0.5 1.0

X =cos 0

Fig. 14. Angular dependence 0E — E,¢9)T(qg, qo, X, E) as function of the negative enerfyin the second
energy sheet around tlsavave virtual state of potential mode("’. The off-shell momentury, is fixed at
100 MeVk

E = (4.3 —i2.4) MeV we clearly see an angular dependence characteristip-ovae
residue. Since the width of the resonance is relatively smallptivave behaviour is
present along the whole vertical energy line including the point on the real axis. For our
second choice of energy line (Fig. 13), a declined line starting from zero energy, begins
with a behaviour being a mixture ef andp-wave, but still relatively flat. Approaching
the resonance, the shape becomes predominantly the o G @iven by thep-wave
residue.

A corresponding study based on the potential mad&} is shown in Fig. 14 for
the negative real axis in the second sheet, where the neighborhood of the virtual-
pole position is considered. In the vicinity of the virtual state, the residue exhibits
perfects-wave characteristics.

Finally, we would like to demonstrate the structure of fhenatrix as given
in Eg. (4.18) in a numerical example. First, we verify numerically that
lim,_g_(z— EdT(d,q,x 2 behaves likeP;(2). Then we determing;(q) by com-
paring the numerically calculated quanti®— E,.9T(q, g, X, 2) to the form given in
Eq. (4.18). Instead of dividing bk, (xX) we use

1
es -1

Yignd =

The values ofx;(q) for z approachingg,.s are shown for a few arbitrarily selected
momentum pointgy in Table 4. They stabilize foz approaching the pole position
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Table 4. Determination ofx;(q) in the vicinity of the p-wave resonance of potential mode{"’ as
function of the complex energy

X1 X1 X1 X1
E [MeV] (q=9489MeVic) (q=29273MeV/ic) (q=527.50MeV/c) (q= 75809MeV/c)
432—-i20 1105-1i0.400 1856—10.729 1149-10.473 0491-i0.212
432—-i210 1103-i0.400 1851—-i0.729 1144—i0.471 Q488—i0.207
432—-i220 1101-i0.400 1846—i0.729 1139-i0.468 0484—i0.202
432-i223 1101-i0.400 1844—i0.729 1138—i0.467 0483-i0.201
432—i24 1098-i0.400 1835—i0.729 1129-i0.461 Q477-i0.192
432—i25 1.096—i0.400 1830-1i0.729 1124—10.459 Q473-10.187
p.w. 1102-i0.400 1844—i0.729 1138—-i0.468 Q482—1i0.200

Table 5. Comparison ofT = 2r ffl dx PL(X)(E — Ee9T(q, q, %, E) with x1(q)x1(q) for a
fixed valueq and different values af at thep-wave resonance of potential modél". The
energyE for calculatingT was fixed att = (4.32—i2.23) MeV

q [MeV/c] q’ [MeV/c] T [MeV fm?] X1@x1(q") [MeV fm?]
292.73 94.89 7398—i1.5395 17397—i1.5398
527.50 94.89 D668— i 0.9683 10667— i 0.9689
758.09 94.89 @522— 104134 04521— i 0.4140

Eres = (4.318—12.239) MeV. The lastrow in Table 4 shows the values obtained from the
solution of the homogeneous set of Egs. (4.21) and (4.22). They have been normalized at
oneq point to thex(q) extracted fronil (g, g, X, z— E,.9). The agreement is perfect.

Finally, we directly verified the separable structurd &f, g, X, z— E¢ as given in
Eg. (4.18) by evaluating

1
T Zvrj dx PLOO(E — Ere9T(d. G X, E)
-1

very close toE = E, for differentq’ # g and comparing them to the values obtained
via Table 4. The agreement is again perfect and the values for a selected set of
momentum points]’ andq are given in Table 5.

5 Summary

Two-nucleon scattering at intermediate energies of a few hundred MeV requires quite a
few angular-momentum states in order to achieve convergence of, e.g., scattering
observables. This is even more true for the scattering of three or more nucleons on
each other. An alternative approach to the conventional one, which is based on
angular-momentum decomposition, is to work directly with momentum vectors,

specifically with the magnitudes of the momenta and the angles between them. We
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formulated and numerically illustrated this alternative approach for the case of two-
body scattering, bound states, and resonances. The angular dependence of the two-
body T-matrix is directly determined from the Lippmann-Schwinger equation, which
now is a two-dimensional integral equation in contrast to the one-dimensional one for
a fixed angular momentum in a partial-wave formulation. This two-dimensional
integral equation is quite easily tractable numerically. We determined the angular
dependence of the on-shell, half-off-shell and fully off-shelinatrices as functions

of the scattering energy and different choices of momenta. As two-body force we
concentrated on a superposition of an attractive and repulsive Yukawa interaction,
which is typical for nuclear physics. We neglected spin degrees of freedom in all our
studies.

The on-shelll-matrix develops a strong forward peak as the energy increases, which
is more and more difficult to build up in a calculation based on angular-momentum
decomposition, but relatively simple accessible in our approach using momentum
vectors. The angular dependence of the half-off-shetlatrix is strong only around
the on-shell momentum and rather mild otherwise. For a fully off-shathatrix
T(9,9’,%x E) a strong angular dependence occurs for momentaq’, which do
not necessarily have to coincide with the on-shell momentum. At negative energies
theT-matrix has poles located at the bound-state energies, if those exist. As example we
investigateds- andp-wave bound states. The numerically determiemhatrix turned
out to be very well under control even quite close to the bound-state poles, where the
homogeneous version of the Lippmann-Schwinger equation has a nontrivial solution.
We determined the angular dependence of theatrix at the two poles, at energies
between them, and at energies way below the deepest bound state. Directly at the poles
the angular behaviour displays the characteristics of the Legendre polynomial of the
same angular momentuinas the bound state. Between the poles as well as for energies
below the last bound state tiiematrix exhibits the same forward peaking as visible at
positive energies. This latter result is interesting by itself. The angular dependence at
positive and negative energies is very similar. More quantitatively, we found that the
real parts of thel-matrix are extremely close to each other at positive and negative
energies of equal magnitude long before this statement becomes trivial due to the
validity of the zeroth order Born approximatidn= V.

Finally we studied the analytical continuation of the Lippmann-Schwinger equation
into the second energy sheet, which is reached through the cut along the positive
real axis of the physical sheet. In the lower half-plane possible resonance poles of
theT-matrix are located, which are, of course, of interest only if they are close to the real
axis. As example we studiedmwave resonance and mapped out its pole trajectory
by varying the potential strength. At the pole, fienatrix assumes a separable form,
which we verified numerically. We also found the characteristic angular dependence of
the T-matrix close to the resonance, which corresponds to the Legendre polynomial of
degred of the angular-momentum state of the resonance. For negative energies in the
second sheet we investigated the pole trajectory of a vigwedve state, which is of
interest in theNN system for the quantum numbt,.

Summarizing we can state that the two-dimensional Lippmann-Schwinger equation
can be handled quite easily in a manner very reliable numerically. In this approach one
determines directly the angular dependence ofTtmeatrix for arbitrary momenta and
energies. Once supplemented by spin degrees of freedom this approach will be of
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interest in theNN system. In addition, this approach will be generalizable to systems
with three particles, like three nucleons or two nucleons and a meson. In the case of
three nucleons, Faddeev calculations at an energy of, e.g., 150 MeV and higher are
getting quite tedious because of the very many orbital-angular-momentum states
involved [8] and a direct, three-dimensional approach appears to be preferable. First
steps in this direction are under way.
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