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Abstract. The two-bodyT-matrix is calculated directly as function of two vector
momenta for different Malfliet-Tjon-type potentials. At a few hundred MeV
projectile energy the total amplitude is quite a smooth function showing only a
strong peak in forward direction. In contrast, the corresponding partial-wave
contributions, whose number increases with increasing energy, become more and
more oscillatory with increasing energy. The angular and momentum dependence of
the full amplitude is studied and displayed on as well as off the energy shell as
function of positive and negative energies. The behaviour of theT-matrix in the
vicinity of bound-state poles and resonance poles in the second energy sheet is
studied. It is found that the angular dependence ofT exhibits very characteristic
properties in the vicinity of those poles, which are given by the Legendre function
corresponding to the quantum number either of the bound state or the resonance (or
virtual) state. This behaviour is illustrated along numerical examples.

1 Introduction

At low energies in the MeV and the few tenth of MeV region very few angular momenta
contribute to the nucleon-nucleon (NN) scattering process. Consequently a description
using angular-momentum decomposition is an adequate tool for carrying out scattering
calculations. However, at intermediate energies, i.e., energies of a few hundred MeV,
and higher energies very many angular momenta contribute to the scattering amplitude.
In these energy domains those individual contributions to the scattering amplitude for a
fixed high angular momentum oscillate strongly in angle, whereas the total amplitude is
much smoother. This suggests the direct determination ofT as function of the initial-
and final-momentum vectors avoiding angular-momentum decomposition totally. For
NN scattering, investigations of this kind have already been undertaken [1–4].

The choice of momentum vectors as adequate variables is also suggested from
the NN force. The dependence on momentum vectors in the case of the widely used
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one-boson-exchange forces is, for instance, rather simple, whereas the partial-wave
representation of this force leads to complicated expressions [5]. This is already
apparent in the most simple case of a scalar meson propagator, 1=ððq0 ¹ qÞ2 þ m2Þ,
which is the central ingredient to anyNN force. In a partial-wave decomposition this
is represented in the formð1=q0qÞQlðzÞ, wherez ¼ ðq02 þ q2 þ m2Þ=2q0q and QlðzÞ is
the Legendre function of the second kind. For large values ofl the latter requires
some care in order to be handled correctly in numerical calculations.

Scattering of more than two particles requires two-bodyT-matrices off-the-energy-
shell (off-shell for short notation) as dynamical input, which are apparently easier to
handle if they enter the calculations as smooth functions instead of strongly varying
partial-wave components. Of course, these remarks also apply to the treatment of
scattering processes of more than two particles at intermediate energies, which
themselves are also treated more economically and transparently using momentum
vectors instead of partial-wave representations. Calculations of three and more particles
use as input fully off-shell two-bodyT-matrices, whose properties as functions of
arbitrary initial and final momenta and in general positive and negative energies should
be well understood. Specifically at negative energies there may be bound-state poles and
in the second energy sheet there may be poles related to virtual states and resonances.

Our aim in this article is to generate two-bodyT-matrices directly in a three-
dimensional form and display their properties as functions of the magnitudes of the off-
shell momenta, the angle between the two momentum vectors and of the energy. We are
not aware of a similar study of this generality in the literature. Usually, only partial-
wave-projected amplitudes are displayed and discussed [6].

In Sect. 2 we describe our solution of the two-body Lippmann-Schwinger equation
directly as function of the momentum vectors and illustrate the on- and off-shell
properties of the resultingT-matrices obtained with simple Yukawa-type two-nucleon
potentials. In Sect. 3 we discuss the pole structure of theT-matrix as function of the
energy and illustrate its angular and energy behaviour at and around bound-state poles.
In Sect. 4 we illustrate the behaviour of theT-matrix for virtual and resonant states in the
second energy sheet. We conclude in Sect. 5.

2 The On- and Off-Shell Two-BodyT-Matrix at Positive Energies

Two-body scattering is governed by the Lippmann-Schwinger equation

T ¼ V þ VG0T; ð2:1Þ

whereV is the two-body (e.g., two-nucleon) potential,G0 ¼ ðz¹ H0Þ
¹1 the free two-

body propagator, andT the transition operator. In momentum space its matrix elements
Tðq0

; q; zÞ ; hq0jTðzÞjqi obey the integral equation

Tðq0
;q; zÞ ¼ Vðq0

; qÞ þ

�
d3q00 Vðq0

;q00Þ
1

z¹
q002

m

Tðq00
; q; zÞ: ð2:2Þ

Here,q are the relative momenta,m the mass of each of the two particles andz an
arbitrary energy. In the case of particles with unequal masses, the quantitym in Eq. (2.2)
is to be replaced by two times the reduced mass of the system. We use a nonrelativistic
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framework. In this article we restrict ourselves to two spinless particles and local
potentials. Therefore,Vðq0

; qÞ as well asTðq0
;q; zÞ are scalar functions

Vðq0
; qÞ ¼ Vðq0

;q; q̂0· q̂Þ ð2:3Þ

and

Tðq0
;qÞ ¼ Tðq0

; q; q̂0·q̂Þ: ð2:4Þ

In Eq. (2.4) we dropped the parametric dependence on the energyz. This notation then
leads to the following explicit form of Eq. (2.2)

Tðq0
; q; x0Þ ¼ Vðq0

; q; x0Þ þ

�∞

0
dq00 q002

�1

¹1
dx00

�2p

0
dJ00 Vðq0

; q00
; yÞ

1

z¹
q002

m

Tðq00
; q; x00Þ;

ð2:5Þ

wherex0 ¼ q̂0·q̂, x00 ¼ q̂00· q̂, andy ¼ q̂00· q̂0. We can expressy throughx0 andx00 as

y ¼ x0x00 þ
��������������
1 ¹ x02

p ���������������
1 ¹ x002

p
cosJ00

; ð2:6Þ

where the arbitrary azimuthal angleJ for q̂ is chosen to be zero. If we define

vðq0
;q; x0

; xÞ ;
�∞

0
dJ Vðq0

; q; x0x þ
��������������
1 ¹ x02

p �������������
1 ¹ x2

p
cosJÞ; ð2:7Þ

the integral equation (2.5) becomes

Tðq0
;q; x0Þ ¼

1
2p

vðq0
; q; x0

; 1Þ þ

�∞

0
dq00 q002

�1

¹1
dx00 vðq0

; q00
; x0

; x00Þ
1

z¹
q002

m

Tðq00
;q; x00Þ:

ð2:8Þ

This is a two-dimensional integral equation in the off-shell momentaq0 (q00) and the
cosine of the ‘scattering angle’x0 (x00).

In this section we consider the solutions of the integral equation (2.8) at positive
energies, i.e., we choosez; E þ i« ¼ ðq2

0=mÞ þ i«, corresponding to the incoming
momentumq0. In order to obtain insight into the behaviour of theT-matrix, we shall
consider the on-shell elementTðq0; q0; x;EÞ, whose square is proportional to the
differential cross section, as well as the half-off-shell,Tðq;q0; x;EÞ, and fully off-shell,
Tðq;q0

; x;EÞ, T-matrix.
We solve the two-dimensional integral equation typically using 24 or 32q-points

and 24x-points. The Cauchy singularity is separated into a principal-value part and ad-
function part, and the principal-value singularity is treated by subtraction. The
integration interval for theq-integration is covered by mapping the Gauss-Legendre
pointsu from the interval (0, 1) via

q ¼ b tan
p

2
u

� �
to the interval (0,∞). Typical values ofb are 1000 MeV/c.

A very stringent test for our numerics is the off-shell unitarity relation, which is a
direct consequence of Eq. (2.2). In our two-dimensional form it reads
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Im Tðq0
; q; x0Þ ¼ ¹

p

2
mq0

�1

¹1
dx00

�2p

0
dJ00 Tðq0

; q0; yÞT
¬ðq;q0; x

00Þ; ð2:9Þ

wherey is given in Eq. (2.6). With Eq. (2.9) we allowed for the most general case of the
unitarity relation, where the energyz ¼ E ¼ q2

0=m is not related to the incoming
momentumq, thus q Þ q0 Þ q0. In our numerical tests Eq. (2.9) was fulfilled for
arbitraryq0

;q, andx0 values to an accuracy better than 0.001% with the above quoted
number of integration points.

As main application we choose potentials of the Malfliet-Tjon [7] type, i.e.

VðrÞ ¼ Vr
exp½¹mRrÿ

r
¹ VA

exp½¹mArÿ
r

; ð2:10Þ

and consequently

Vðq0
; qÞ ¼

1
2p2

VR

ðq0 ¹ qÞ2 þ m2
R

¹
VA

ðq0 ¹ qÞ2 þ m2
A

� �
: ð2:11Þ

In the case of a Malfliet-Tjon-type potential theJ-integration of Eq. (2.7) can be carried
out analytically with the result

vðq0
;q; x0

; xÞ ¼
1
p

VR�������������������������������������������������������������������������������������������������������
ðq02 þ q2 ¹ 2q0qx0x þ m2

RÞ2 ¹ 4q02q2ð1 ¹ x02Þð1 ¹ x2Þ
p"

¹
VA�������������������������������������������������������������������������������������������������������

ðq02 þ q2 ¹ 2q0qx0x þ m2
AÞ2 ¹ 4q02q2ð1 ¹ x0 2Þð1 ¹ x2Þ

p #
: ð2:12Þ

The parameters used forV are given asVðIÞ in Table 1. Note that they are slightly
different from the ones used in ref. [7].

As first numerical example we would like to demonstrate the connection of the
angle-depended on-shell amplitudeTðq0;q0; x;EÞ and its representation in terms of
partial-wave amplitudes,

Tðq0;q0; xÞ ¼
X∞

l¼0

2l þ 1
4p

Tlðq0ÞPlðxÞ; ð2:13Þ

where
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Table 1. Parameters of the Malfliet-Tjon-type potentials. As conversion factor
we use units such thatÉ c ¼ 197:3286 MeV fm¼ 1

VA mA [MeV] VR mR [MeV]

VðIÞ 3.1769 305.86 7.291 613.69
VðII Þ 6.0 305.86 7.291 613.69
VðIII Þ 5.1 305.86 7.291 613.69
VðIV Þ 2.6047 305.86 7.291 613.69
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Tlðq0Þ ¼
2
p

1
q0m

exp½idlðq0Þÿ sindlðq0Þ:

The quantitydlðq0Þ is the phase shift for a given angular momentuml and is determined
in the standard manner. In Fig. 1 we show ReTðq0;q0; x;EÞ at 300 and 800 MeV
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Fig. 1. Angular dependence of the real part
of the on-shellT-matrix, ReTðq0; q0; x;EÞ.
At Elab ¼ 300 MeV, (a), the dashed line
represents the partial-wave sum up to
j ¼ 2, the dashed-dotted line the sum up
to j ¼ 4; and the solid line the sum up to
j ¼ 6. The solid bullets stand for the calcu-
lation performed without angular-momen-
tum decomposition. AtElab ¼ 800 MeV,
(b), the dashed line represents the partial-
wave sum up toj ¼ 6, the dashed-dotted
line stands for the sum up toj ¼ 9, and the
solid line for the sum up toj ¼ 12. Again,
the solid bullets represent the calculation
performed without angular-momentum
decomposition
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laboratory energies together with partial-wave sums up to a given angular momentuml.
Note thatE ¼ Elab=2. The strong peak of ReTðq0;q0; x;EÞ in forward direction requires
high orders of Legendre polynomials for a correct description. This is, of course,
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Fig. 2. Angular dependence of the imaginary part of the on-shellT-matrix, Im Tðq0; q0; x;EÞ. At Elab ¼

300 MeV, (a), the dashed line represents the partial-wave sum up toj ¼ 2, the solid line the sum up toj ¼ 4.
The solid bullets stand for the calculation performed without angular-momentum decomposition. AtElab ¼

800 MeV, (b), the dashed line represents the partial-wave sum up toj ¼ 3, the solid line the sum up toj ¼ 6.
The bullets stand for the calculation performed without angular momentum decomposition
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especially pronounced for the higher energy. In Fig. 2 we display ImTðq0;q0; x;EÞ at
the same energies together with its representation in partial-wave sums. It can be seen
that ImTðq0;q0; x;EÞ needs less partial-wave amplitudes for its correct representation,
the reason being that ImTl is proportional to sin2 dl , whereas ReTl is proportional to
cosdl sindl . For large values ofl the phase shifts become small, thus ImTl decreases
with d2

l , whereas ReTl only decreases proportional todl .
An overview of the angular dependence of the full on-shell amplitudeTðq0;q0; x;EÞ

as function of the energy is given in Fig. 3. Starting from a relatively flat angular
distribution at lower energies the peaking in forward direction develops with increasing
energy. At the same time the angular range, where the cross section is flat and small,
becomes larger with increasing energy, indicating that forward scattering dominates at
higher energies.
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Fig. 3. Angular dependence of the real (up) and imaginary (down) parts of the on-shellT-matrix as
function of the laboratory energy fromElab ¼ 50 MeV toElab ¼ 1000 MeV
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Next we consider the half-off-shell amplitudeTðq; q0; x;EÞ for two energies. Fig. 4
shows thatTðq;q0; x;EÞ is rather small and structureless for all off-shell momentaq,
with the exception ofq being close to the on-shell momentumq0.

The most general amplitude, the fully off-shell amplitudeTðq;q0
; x;EÞ is displayed

in Figs. 5 and 6 for its real part as function of the off-shell momentumq and the anglex
for two fixed off-shell momentaq0. Contrary to what one might expect, the strongest
forward peaking does not occur forq being close to the on-shell value, but forq ¼ q0.
This agrees with the behaviour of the driving term, which peaks forq ¼ q0. We found
this behaviour for all energiesE > 0.
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Fig. 4. Angular dependence of the real part of the
half-off-shell T-matrices, ReTðq; q0; x;EÞ, as func-
tion of the off-shell momentumq at Elab ¼ 200 MeV
(a) andElab ¼ 500 MeV (b)
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All numerical and graphical examples considered so far refer to a potential of
Malfliet-Tjon-type with repulsive and attractive parts (potentialVðIÞ in Table 1). Its
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Fig. 5. Angular dependence of the real part of the
off-shell T-matrix, ReTðq; q 0 ¼ 250 MeV=c; x;EÞ,
as function of the off-shell momentumq at Elab ¼

400 MeV

Fig. 6. Angular dependence of the real
part of the off-shellT-matrix, ReTðq; q 0 ¼

1000 MeV=c; x;EÞ, as function of the off-
shell momentumq at Elab ¼ 400 MeV
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strength is such that it supports a bound state atE ¼ ¹2.23 MeV. Though this potential
is of quite simple character, it captures essential features ofNN interaction models based
on meson exchange with respect to the propagator structure.

3 The Off-Shell T-Matrix at Negative Energies

In the context of Faddeev-Yakubovsky equations two-bodyT-matrices need to be
evaluated at negative energies. In a three-body system the energy argument for the two-
bodyT-matrix is given asE ¼ Etot ¹ ð3=4mÞq2 [9]. HereEtot is the total energy of the
three-particle system andð3=4mÞq2 is the kinetic energy of the relative motion of the
third particle with respect to the interacting pair, which is described by theT-matrix. For
an interacting three-body system the relative momentumjqj is not conserved. Therefore
it can have arbitrary values andE covers all energies belowEtot. Thus we are interested
to see, whether the angular dependence of theT-matrix evaluated at negative energies is
similar to the one observed at positive energies. A second consideration is that bound
states of the two-body system lead to poles in theT-matrix. The angular dependence at
and around a pole should be dictated by the one of the bound state. We now investigate
these questions and provide numerical illustrations.

The formal solution to the Lippmann-Schwinger equation, Eq. (2.1), is given by

TðzÞ ¼ V þ V
1

z¹ H
V; ð3:1Þ

whereH is the full two-body Hamiltonian. If this Hamiltonian supports a bound state
jfbi at z ¼ Eb, it follows immediately that

TðzÞ −−−−−→z→Eb Vjfbi
1

z¹ Eb
hfbjV: ð3:2Þ

In momentum-space representation, Eq. (3.2) reads

Tðq0
; q; zÞ −−−−−→z→Eb

hq0jVjfbi
1

z¹ Eb
hfbjVjqi: ð3:3Þ

The bound state obeysHjfbi ¼ Ebjfbi and has a certain fixed angular momentuml,
such that

hqjfbi ¼ fb;lðqÞYlmðq̂Þ: ð3:4Þ

SinceT is a scalar quantity, its behaviour at and around the pole has to have the form

Tðq0
; q; zÞ −−−−−→z→Eb

X
m

Ylmðq̂0Þglðq
0Þ

1
z¹ Eb

Y¬
lmðq̂ÞglðqÞ

¼
2l þ 1

4p
Plðq̂

0·q̂Þ
glðq

0ÞglðqÞ

z¹ Eb

;
Rlðq

0
;q; q̂0· q̂Þ

z¹ Eb
: ð3:5Þ

Here

glðqÞ ¼

�∞

0
dq0 q02vlðq; q

0Þfb;lðq
0Þ ð3:6Þ
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with

vlðq; q
0Þ ¼

2
p

�∞

0
dr r2j lðqrÞVðrÞj lðq

0rÞ: ð3:7Þ

From Eq. (3.6) it can clearly be seen that the angular dependence ofT exhibits a very
characteristic behaviour in the vicinity of the bound-state poles, which is given by the
Legendre function corresponding to the angular quantum number of the bound state. In
order to illustrate the pole behaviour, we choose the potentialVðII Þ of Table 1, which
supports as-wave bound state atEs ¼ ¹190.16 MeV and ap-wave bound state at
Ep ¼ ¹14.629 MeV. These binding energies are determined in a standard manner
solving the Schro¨dinger equation for a fixed angular momentum. This is a simple, one-
dimensional problem, whose solution also provides the functionglðqÞ and thus the
residueRlðq

0
;q; q̂0·q̂Þ from Eq. (3.6). The values of the binding energies can also be

obtained by solving the two-dimensional integral equation (2.8) and determining the
pole position from the solution. Choosing the same integration pointsq in the partial-
wave-projected, one-dimensional form and the two-dimensional form, the bound-state
energiesEb agree very well with the pole positionsEpol. For example, for 40q-points
(and 32x-points) we findEbðl ¼ 0Þ ¼ ¹190.162 MeV, which has to be compared to
Epolðl ¼ 0Þ ¼ ¹190.164 MeV. Similarly, we findEbðl ¼ 1Þ ¼ ¹14.6296 MeV com-
pared toEpolðl ¼ 1Þ ¼ ¹14.6296 MeV. These results can be pushed to higher accuracy
if desired. We also determine the residues at each pole from the solution of the two-
dimensional integral equation and illustrate our result in Table 2 for the arbitrary choice
of q0 ¼ q ¼ q0 ¼

����������
mjEj

p
and the angle-averaged quantity

T̄l ;
1
cl

�1

¹1
dx PlðxÞTðq0;q0; x;EÞðE ¹ EpolðlÞÞ:

As demonstrated in Table 2, we approach the poles from both sides and the numbers
closest to the poles agree very well with the corresponding residues calculated directly
from the partial-wave-projected problem.
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Table 2. Determination of̄Tl ; 1=cl

R 1
¹1 dx PlðxÞTðq0; q0; x;EÞðE ¹ EpolðlÞÞ as function

of E close to thel ¼ 1 andl ¼ 0 poles. The values for the constants arec0 ¼ 2 and
c1 ¼ 2

3. The entry p.w. indicates the value determined from the partial-wave-projected
problem

E [MeV] T̂1ðEÞ [MeV fm2] E [MeV] T̂0ðEÞ [MeV fm2]

¹14:60 1.08424 ¹189:8 4.37911
¹14:61 1.08513 ¹189:9 4.37847
¹14:62 1.08597 ¹190:0 4.37772
¹14:63 1.08588 ¹190:1 4.37722
¹14:64 1.08778 ¹190:2 4.37693
¹14:65 1.08857 ¹190:3 4.37608

p.w. 1.08684 p.w. 4.37685
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The angular dependence ofTðq0;q0; x;EÞ with q0 ¼
����������
mjEj

p
for energies close to the

two poles is displayed in Fig. 7. Both parts of the figure show that near and at the pole
the T-matrix exhibits the characteristic behaviour of the Legendre function associated
with the angular-momentum quantum number of the corresponding bound state. In
Fig. 8 we show the angular dependence ofTðq0;q0; x;EÞ in the whole energy range
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Fig. 7. Angular dependence ofðE ¹ EsÞðE ¹ EpÞTðq0; q0; x;EÞ for energiesE around thep-wave pole (a)
and thes-wave pole (b)
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around and in between the bound-state poles. In order to include both poles we consider
ðE ¹ EsÞðE ¹ EpÞTðq0;q0; x;EÞ in Figs. 7 and 8. Starting from very small values ofjEj,
the angular dependence is first ofs-wave character, then turns to ap-wave shape at and
near thep-wave pole, and then develops the forward peak known from corresponding
positive energies. Note that due to the multiplicative factors, the peak turns upward in
the two figures. WhenjEj reaches thes-wave pole,T turns back to the pures-wave
behaviour and then finally flips back into a strong forward peak.

The fact that the angular dependence at negative energies is reminiscent of that at
the corresponding positive energies, except for the characteristic behaviour near the
poles, leads us to suspect that the real parts ofT might be quite similar to each other at
energies of equal magnitude. This turns out to be the case, as demonstrated in Fig. 9,
where we display ReTðq0;q0; x;EÞ for the potentialVðIÞ for different valuesjEj. A
similar result was found in ref. [10] for the partial-wave amplitudes of the off-shellK-
matrix. It should be noted that the equality of ReTðq0; q0; x;EÞ for positive and negative
energies is not the trivial consequence of ReT < V, which does not hold. In order to
demonstrate thatV is significantly different from ReT, we also displayV in Fig. 9.
Comparing ReTðq0; q0; x;EÞ at the different energies, we have to conclude that the
rescattering terms, ReT ¹ V, for the same absolute values of the energy become more
and more similar to each other when the absolute value of the energy increases.
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Fig. 8. Angular dependence ofðE ¹ EsÞðE ¹ EpÞTðq0; q0; x;EÞ as function of the energy from
E ¼ ¹200 MeV to E ¼ ¹1 MeV. Note the characteristic angular behaviour around thep- and s-wave
poles as well as the strong forward peak between the two poles and below thes-wave pole
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Finally, in Fig. 10 we display the real part of the fully off-shellT-matrix
ReTðq;q0

; x;EÞ as function ofq and x for fixed energyE ¼ 200 MeV and fixed
momentaq0 ¼ 250 MeV/c and q0 ¼ 1000 MeV/c. As in Figs. 5 and 6 for positive
energies, ReT is most strongly peaked atq ¼ q0, what can be expected once the
information of Figs. 5 and 6 is known.
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Fig. 9. Angular dependence of the real part of the on-shellT-matrix ReTðq0; q0; x;EÞ for jEj ¼ 200, 400,
and 800 MeV. For comparison, the angular dependence of the driving term,VI , is also shown as dash-dotted
line
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4 The Off-Shell T-Matrix in the Second Energy Sheet

Two-bodyT-matrices might exhibit a resonant behaviour at positive energies or show a
strong energy dependence nearE ¼ 0 due to a virtual state. This latter case is realized,
for instance, in theNNsystem for the partial-wave state1S0. Our goal is to locate those
resonances in the second energy sheet and investigate the characteristic angular
dependence connected with the resonance or virtual state.
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Fig. 10. Angular dependence of the
real part of the off-shell T-matrix
ReTðq;q 0

; x;E ¼ 200 MeVÞ for q 0 ¼

250 MeV/c (a) and for q0 ¼ 1000
MeV/c (b)
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The transition to the second energy sheet requires an analytic continuation of the
Lippmann-Schwinger equation, Eq. (2.2), into the second energy sheet, which we
briefly describe here [9]. For a complex energyz located in the upper half-plane, we
modify the integration path as indicated in Fig. 11. The contribution along the closed
path II gives a residue and we find

Tðq0
;q; zÞ ¼ Vðq0

; qÞ ¹ ipmqz

�
dq̂00 Vðq0

; q̂00qzÞTðq̂00qz; q; zÞ

þ

�
∩

d3q00 Vðq0
;q00Þ

1

z¹
q002

m

Tðq00
;q; zÞ: ð4:1Þ

Here, qz ¼
������
mz

p
is the magnitude of the complex momentum vectorq̂ 00qz, and the

symbol at the second integral indicates the deformed integration path I. Since we
deformed the integration path such that it is located above the energyz, we are able to
take z into the lower half of the complex plane without hitting a singularity in the
propagator. Once the energyz is located in the lower half-plane, we can return with the
integration path I to the real axis and have instead of Eq. (4.1)

Tðq 0
;q; zÞ ¼ Vðq 0

; qÞ ¹ ipmqz

�
dq̂00 Vðq0

; q̂ 00qzÞTðq̂00qz;q; zÞ

þ

�
d3q00 Vðq 0

; q 00Þ
1

z¹
q002

m

Tðq 00
;q; zÞ: ð4:2Þ

This equation is valid on the second energy sheet, which is reached from the upper rim
of the cut along the positive real-energy axis in the physical sheet. Due to the additional
imaginary term, Eq. (4.2) has to be supplemented by another equation, which we obtain
by choosingq 0 ¼ q̂qz,

Tðq̂0qz; q; zÞ ¼ Vðq̂00qz; qÞ ¹ ipmqz

�
dq̂00 Vðq̂ 0qz; q̂

00qzÞTðq̂ 00qz; q; zÞ

þ

�
d3q00 Vðq̂0qz; q

00Þ
1

z¹
q002

m

Tðq00
;q; zÞ: ð4:3Þ
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Fig. 11. Modified integration path in
the complexq plane for the analytic
continuation of the Lippmann-
Schwinger equation into the second
energy sheet as described in the text
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Similar to the bound state, which induces a nontrivial solution for the homogeneous
equation related to Eq. (2.1), the homogeneous set of equations related to Eqs. (4.2) and
(4.3) has a nontrivial solution at discrete values ofz. These discrete values either
correspond to resonances with Rez> 0 and Imz< 0 or to virtual states with Rez< 0
and Imz ¼ 0. The fact that this homogeneous set of equations has a nontrivial solution
together with the compactness property of the integral kernel means thatTðzÞ has a pole
at those energiesz. We are interested not only in determining the positions of those
poles but also in understanding the residues and their angular dependence.

As it is obvious from Eq. (4.3), the driving term singles out the first entry as complex
number. In order to simplify the formal steps leading to a determination of the residue, it
is convenient to supplement the set of equations given in Eqs. (4.2) and (4.3) by another
set in which the driving term has a complex entry in the second argument. The two sets
can then be combined using the following matrix notation

Tðq0
;q; zÞ Tðq0

; q̂0qz; zÞ

Tðq̂0qz;q; zÞ Tðq̂0qz; q̂qz; zÞ

� �

¼
Vðq0

;qÞ Vðq0
; q̂0qzÞ

Vðq̂0qz; qÞ Vðq̂0qz; q̂qzÞ

� �
þ

R
d3q00 Vðq0

; q00Þ q3
z

R
dq̂00 Vðq0

; q̂00qzÞR
d3q00 Vðq̂0qz; q

00Þ q3
z

R
dq̂00 Vðq̂0qz; q̂

00qzÞ

 !

×
1=½z¹ ðq002

=mÞÿ 0

0 ¹ipðm=q2
zÞ

 !
Tðq00

; q; zÞ Tðq00
; q̂qz; zÞ

Tðq̂00qz;q; zÞ Tðq̂00qz; q̂qz; zÞ

� �
: ð4:4Þ

Introducing the appropriate matrices, we write Eq. (4.4) as

T̃ ¼ Ṽ þ ṼG̃T̃: ð4:5Þ

We also need to study the corresponding homogeneous problem, which we want to
write in the following form

lðzÞx̃ ¼ ṼG̃x̃: ð4:6Þ

In this form the eigenvalue islðzÞ and the energyz is a parameter. SincẽVG̃ is a
compact operator, there is a discrete set of eigenvalues, which accumulate atlðzÞ ¼ 0
[11]. The physical resonances occur at those valuesz; Eres, for whichlðEresÞ ¼ 1. In
the following we choosez ¼ Eres. Then we have

x̃ ¼ ṼG̃x̃: ð4:7Þ

Since the kernel is nonsymmetric, we also have to consider the left-hand eigenvalue
problem

Q̃T ¼ Q̃TṼG̃: ð4:8Þ

Defining

F̃T ; Q̃TṼ ð4:9Þ

we deduce

F̃T ¼ F̃TG̃Ṽ ð4:10Þ

or
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F̃ ¼ ṼTG̃F̃: ð4:11Þ

SinceṼT ¼ Ṽ, we obtainF̃ ¼ x̃.
In the immediate neighborhood ofz ¼ Eres and as a consequence of

T̃ðzÞ ¼ ð1 ¹ ṼG̃Þ¹1Ṽ ð4:12Þ

one has

T̃ðzÞ −−−−−→z→Eres
x̃ð1 ¹ lðzÞÞ¹1 1

N
Q̃TṼ; ð4:13Þ

whereN is a normalization factor. In the neighborhood ofz ¼ Eres we can put

lðzÞ < 1 þ l0ðzÞ |z¼Eres
ðz¹ EresÞ ð4:14Þ

and obtain

T̃ðzÞ −−−−−→z→Eres
x̃

1
z¹ Eres

¹1
l0ðzÞ|z¼Eres

1
N

x̃T
: ð4:15Þ

For the case of a bound-state pole it is easy to prove that

¹1
l0ðzÞ|z¼Eres

1
N

¼ 1

for a normalized bound statejfbi andjxi ¼ Vjfbi. If we consider the right-hand side of
Eq. (4.15) as function of an auxiliary strength factor to the potential, we can adopt the
normalization of the bound state and define

T̃ðzÞ −−−−−→z→Eres
x̃

1
z¹ Eres

x̃T
: ð4:16Þ

The final remark concerns the scalar nature ofT̃ðq0
;q; zÞ. Since a resonant state has a

unique angular momentuml, the functionxðqÞ will have the form

xðqÞ ¼ xlðqÞYlmðq̂Þ; ð4:17Þ

and we have to conclude that

T̃ðq0
; q; zÞ −−−−−→z→Eres 2l þ 1

4p
xlðq

0Þ
1

z¹ Eres
xlðqÞPlðq̂

0·q̂Þ: ð4:18Þ

If Re Ep > 0 and if Im Ep < 0 is sufficiently small, theT-matrix will feel the nearby pole
also for real, positive energiesz, and a resonance will occur in the differential cross
section. In the case of a virtual state, like for1S0 in NNscattering, the pole is located at
Re Ep < 0 and ImEp ¼ 0. For sufficiently small values ofjReEpj theT-matrix will be
strongly enhanced near and atz ¼ 0.

For our numerical realization we rewrite Eqs. (4.2) and (4.3) analogously to Eq. (2.8)
as

Tðq0
; q; x0Þ ¼

1
2p

vðq0
;q; x;1Þ

þ

�∞

0
dq00 q002

�1

¹1
dx00 vðq0

; q00
; x0

; x00Þ
1

z¹
q002

m

Tðq00
;q; x00Þ
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¹ipmqz

�1

¹1
dx00 vðq0

;qz; x
0
; x00ÞTðqz;q; x

00Þ ð4:19Þ

and

Tðqz; q; x
0Þ ¼

1
2p

vðqz; q; x; 1Þ

þ

�∞

0
dq00 q002

�1

¹1
dx00 vðqz;q

00
; x0

; x00Þ
1

z¹
q002

m

Tðq00
; q; x00Þ

¹ ipmqz

�1

¹1
dx00 vðqz;qz; x

0
; x00ÞTðqz;q; x

00Þ: ð4:20Þ

Herez; E ¼ jEjeif with f < 0 andqz ¼
�������
mE

p
¼

����������
mjEj

p
eif=2. The nontrivial solution

to the homogeneous system of Eq. (4.7) has a fixed angular momentum. When
employing Eq. (4.17), we obtain

xlðqÞ ¼

�∞

0
dq0 q02vlðq;q

0Þ
1

z¹
q02

m

xlðq
0Þ ¹ ipmqzvlðq;qzÞxlðqzÞ ð4:21Þ

and

xlðqzÞ ¼

�∞

0
dq0 q02vlðqz;q

0Þ
1

z¹
q02

m

xlðq
0Þ ¹ ipmqzvlðqz;qzÞxlðqzÞ: ð4:22Þ

We used the above equations (4.21) and (4.22) to determine the location of the
resonances in the second energy sheet. Fors-waves they are usually called virtual states
and are located on the negative-energy axis. For partial waves withl ¼ 1 or higher, the
energy eigenvalues have a positive real part and a negative imaginary part. For varying
potential strength, they move along trajectories in the complex energy plane. In the
following, we numerically study two different cases, namely as-wave virtual state
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Table 3. Pole trajectories in the complex energy plane as function of the strength
parameterVA for the potentialsVðIII Þ (p-wave pole trajectory) andVðIV Þ (s-wave virtual-
state trajectory)

VA ðVðIII ÞÞ Eresðl ¼ 1Þ [MeV] VA ðVðIV ÞÞ Eresðl ¼ 0Þ [MeV]

5.4 0.9267¹i 0:1821 2.6047 ¹0:06663
5.3 2.1972¹i 0:7101 2.6 ¹0:07380
5.2 3.3254¹i 1:4134 2.5 ¹0:31004
5.1 4.3177¹i 2:2386 2.4 ¹0:69870
5.0 5.1801¹i 3:1552 2.3 ¹1:22970
4.9 5.9178¹i 4:1413 2.2 ¹1:89300
4.8 6.5358¹i 5:1806 2.1 ¹2:67878
4.7 7.0388¹i 6:2597 2.0 ¹3:57733
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supported by potential modelVðIV Þ of Table 1 and ap-wave resonance of potential
modelVðIII Þ of Table 1. The corresponding trajectories are listed in Table 3.

For the case of thes-wave virtual state we started from potential modelVðIV Þ of
Table 1. Thes-wave phase shift of this potential has an effective-range expansion with a
scattering lengthas ¼ ¹23:5818 fm and an effective rangers ¼ 2:8789 fm. Using these
values, the pole position for theS-matrix can be estimated via the effective-range
expansion as

qa
v ¼ i

1
rs

¹

��������������������
2

rsjasj
þ

1
r2
s

s" #
; ð4:23Þ

which leads in our specific case to a position of the virtual state

Ea
qv

¼ ¹
ðqa

vÞ
2

m
¼ ¹0:06738 MeV;

where we usedm ¼ 938:9 MeV. This number is very close to the exactly calculated
value given asEpðl ¼ 0Þ ¼ ¹0:06663 MeV, quoted in Table 3. In the same table we
quantify thes-wave trajectory as a function of the strength parameterVA of potential
VðIV Þ.

For obtaining ap-wave resonance state, we start from potentialVðII Þ of Table 1,
which supports ap-wave bound state, and decrease the attraction by decreasing the
strength parameterVA until the bound state turns into a resonance state. Selected values
for the so obtained trajectory for thep-wave resonance are listed in Table 3. Of course,
this model does not correspond to the reality of anNN force, even for the lowest value of
VA ¼ 4:7 given in Table 3, the binding energy of thes-wave bound state is still
Es ¼ ¹52:52 MeV. Nevertheless, this example illustrates in a simple manner, what can
be expected for other cases like an effective nucleon-nucleus interaction, which
supports low-energy resonances for certain angular-momentum states. Qualitatively
the same picture would emerge.

We would like to mention that we solved the homogeneous set of Eqs. (4.21) and
(4.22) by the very efficient power method [7, 9]. Regarding the notation of Eq. (4.7), one
has to determine the eigenvaluelðzÞ and vary the energy such thatlðzÞ ¼ 1. For the
potentials used here, the largest eigenvalue in magnitude was always an unphysical one
with a negative real part generated by the repulsive short-range piece of the force. Once
the largest eigenvalue is determined, we introduce a new integral kernel, consisting of
the old one minus that specific eigenvalue. The new kernel defined in this way has then
the physical eigenvalue as the largest one in magnitude.

Next we investigate the solution of theT-matrix in the second energy sheet as given
by Eqs. (4.19) and (4.20). We are interested in verifying the location of the pole as
well as the angular dependence of the residue at the pole as given in Eq. (4.18).
We illustrate our findings for the potentialVðIII Þ of Table 1, which has ap-wave
resonant state atEresðl ¼ 1Þ ¼ ð4:3177¹ i2:2386Þ MeV, and for the potentialVðIV Þ of
Table 1, which has a virtuals-wave state atEresðl ¼ 0Þ ¼ ¹0:06663 MeV. For the
p-wave resonance we show in Figs. 12 and 13 the angular dependence of
Re½ðE ¹ Eresðl ¼ 1ÞÞTðqE;q0; x;EÞÿ as function of the complex energyE located
along two straight lines going through the pole position. In Fig. 12 we start on the
real axis atE ¼ 4:3 MeV and successively increase the imaginary part ofE. For
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Fig. 12. Angular dependence of the real part ofðE ¹ EresÞTðqE; q0; x;EÞ as function of the complex energy
E around thep-wave resonance of potential modelVðIII Þ. The off-shell momentumq0 is fixed at 100 MeV/c

Fig. 13. Same as Fig. 12, but for a different path of the complex energyE

m



E ¼ ð4:3 ¹ i2:4Þ MeV we clearly see an angular dependence characteristic of ap-wave
residue. Since the width of the resonance is relatively small, thep-wave behaviour is
present along the whole vertical energy line including the point on the real axis. For our
second choice of energy line (Fig. 13), a declined line starting from zero energy, begins
with a behaviour being a mixture ofs- andp-wave, but still relatively flat. Approaching
the resonance, the shape becomes predominantly the one of aP1ðxÞ given by thep-wave
residue.

A corresponding study based on the potential modelVðIV Þ is shown in Fig. 14 for
the negative real axis in the second sheet, where the neighborhood of the virtual-
pole position is considered. In the vicinity of the virtual state, the residue exhibits
perfects-wave characteristics.

Finally, we would like to demonstrate the structure of theT-matrix as given
in Eq. (4.18) in a numerical example. First, we verify numerically that
limz→Eres

ðz¹ EresÞTðq0
;q; x; zÞ behaves likeP1ðzÞ. Then we determinex1ðqÞ by com-

paring the numerically calculated quantityðz¹ EresÞTðq0
; q; x; zÞ to the form given in

Eq. (4.18). Instead of dividing byP1ðxÞ we use

x̄1ðqÞ ¼ lim
z→Eres

����������������������������������������������������������������������
2p

�1

¹1
dx P1ðxÞðz¹ EresÞTðq;q; x; zÞ

s
: ð4:24Þ

The values of ¯x1ðqÞ for z approachingEres are shown for a few arbitrarily selected
momentum pointsq in Table 4. They stabilize forz approaching the pole position
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Fig. 14. Angular dependence ofðE ¹ EresÞTðqE; q0; x;EÞ as function of the negative energyE in the second
energy sheet around thes-wave virtual state of potential modelVðIV Þ. The off-shell momentumq0 is fixed at
100 MeV/c
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Eres ¼ ð4:318¹ i2:239Þ MeV. The last row in Table 4 shows the values obtained from the
solution of the homogeneous set of Eqs. (4.21) and (4.22). They have been normalized at
oneq point to thex1ðqÞ extracted fromTðq;q; x; z→ EresÞ. The agreement is perfect.

Finally, we directly verified the separable structure ofTðq0
;q; x; z→ EresÞ as given in

Eq. (4.18) by evaluating

T̃ ¼ 2p

�1

¹1
dx P1ðxÞðE ¹ EresÞTðq0

;q; x;EÞ

very close toE ¼ Eres for differentq0 Þ q and comparing them to the values obtained
via Table 4. The agreement is again perfect and the values for a selected set of
momentum pointsq0 andq are given in Table 5.

5 Summary

Two-nucleon scattering at intermediate energies of a few hundred MeV requires quite a
few angular-momentum states in order to achieve convergence of, e.g., scattering
observables. This is even more true for the scattering of three or more nucleons on
each other. An alternative approach to the conventional one, which is based on
angular-momentum decomposition, is to work directly with momentum vectors,
specifically with the magnitudes of the momenta and the angles between them. We
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Table 4. Determination of ¯x1ðqÞ in the vicinity of the p-wave resonance of potential modelVðIII Þ as
function of the complex energyE

x̄1 x̄1 x̄1 x̄1

E [MeV] ðq ¼ 94:89 MeV=cÞ ðq ¼ 292:73 MeV=cÞ ðq ¼ 527:50 MeV=cÞ ðq ¼ 758:09MeV=cÞ

4:32¹ i 2:0 1:105¹ i 0:400 1:856¹ i 0:729 1:149¹ i 0:473 0:491¹ i 0:212
4:32¹ i 2:10 1:103¹ i 0:400 1:851¹ i 0:729 1:144¹ i 0:471 0:488¹ i 0:207
4:32¹ i 2:20 1:101¹ i 0:400 1:846¹ i 0:729 1:139¹ i 0:468 0:484¹ i 0:202
4:32¹ i 2:23 1:101¹ i 0:400 1:844¹ i 0:729 1:138¹ i 0:467 0:483¹ i 0:201
4:32¹ i 2:4 1:098¹ i 0:400 1:835¹ i 0:729 1:129¹ i 0:461 0:477¹ i 0:192
4:32¹ i 2:5 1:096¹ i 0:400 1:830¹ i 0:729 1:124¹ i 0:459 0:473¹ i 0:187

p.w. 1:102¹ i 0:400 1:844¹ i 0:729 1:138¹ i 0:468 0:482¹ i 0:200

Table 5. Comparison ofT̄ ¼ 2p
R 1

¹1 dx P1ðxÞðE ¹ EresÞTðq; q0
; x;EÞ with x̄1ðqÞx̄1ðq

0Þ for a
fixed valueq0 and different values ofq at thep-wave resonance of potential modelVðIII Þ. The
energyE for calculatingT̄ was fixed atE ¼ ð4:32¹ i2:23Þ MeV

q [MeV/c] q0 [MeV/c] T̄ [MeV fm2] x̄1ðqÞx̄1ðq
0Þ [MeV fm2]

292.73 94.89 1:7398¹ i 1:5395 1:7397¹ i 1:5398
527.50 94.89 1:0668¹ i 0:9683 1:0667¹ i 0:9689
758.09 94.89 0:4522¹ i 0:4134 0:4521¹ i 0:4140
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formulated and numerically illustrated this alternative approach for the case of two-
body scattering, bound states, and resonances. The angular dependence of the two-
body T-matrix is directly determined from the Lippmann-Schwinger equation, which
now is a two-dimensional integral equation in contrast to the one-dimensional one for
a fixed angular momentum in a partial-wave formulation. This two-dimensional
integral equation is quite easily tractable numerically. We determined the angular
dependence of the on-shell, half-off-shell and fully off-shellT-matrices as functions
of the scattering energy and different choices of momenta. As two-body force we
concentrated on a superposition of an attractive and repulsive Yukawa interaction,
which is typical for nuclear physics. We neglected spin degrees of freedom in all our
studies.

The on-shellT-matrix develops a strong forward peak as the energy increases, which
is more and more difficult to build up in a calculation based on angular-momentum
decomposition, but relatively simple accessible in our approach using momentum
vectors. The angular dependence of the half-off-shellT-matrix is strong only around
the on-shell momentum and rather mild otherwise. For a fully off-shellT-matrix
Tðq;q0

; x;EÞ a strong angular dependence occurs for momentaq ¼ q0, which do
not necessarily have to coincide with the on-shell momentum. At negative energies
theT-matrix has poles located at the bound-state energies, if those exist. As example we
investigateds- andp-wave bound states. The numerically determinedT-matrix turned
out to be very well under control even quite close to the bound-state poles, where the
homogeneous version of the Lippmann-Schwinger equation has a nontrivial solution.
We determined the angular dependence of theT-matrix at the two poles, at energies
between them, and at energies way below the deepest bound state. Directly at the poles
the angular behaviour displays the characteristics of the Legendre polynomial of the
same angular momentuml as the bound state. Between the poles as well as for energies
below the last bound state theT-matrix exhibits the same forward peaking as visible at
positive energies. This latter result is interesting by itself. The angular dependence at
positive and negative energies is very similar. More quantitatively, we found that the
real parts of theT-matrix are extremely close to each other at positive and negative
energies of equal magnitude long before this statement becomes trivial due to the
validity of the zeroth order Born approximationT ¼ V.

Finally we studied the analytical continuation of the Lippmann-Schwinger equation
into the second energy sheet, which is reached through the cut along the positive
real axis of the physical sheet. In the lower half-plane possible resonance poles of
theT-matrix are located, which are, of course, of interest only if they are close to the real
axis. As example we studied ap-wave resonance and mapped out its pole trajectory
by varying the potential strength. At the pole, theT-matrix assumes a separable form,
which we verified numerically. We also found the characteristic angular dependence of
theT-matrix close to the resonance, which corresponds to the Legendre polynomial of
degreel of the angular-momentum state of the resonance. For negative energies in the
second sheet we investigated the pole trajectory of a virtuals-wave state, which is of
interest in theNN system for the quantum number1S0.

Summarizing we can state that the two-dimensional Lippmann-Schwinger equation
can be handled quite easily in a manner very reliable numerically. In this approach one
determines directly the angular dependence of theT-matrix for arbitrary momenta and
energies. Once supplemented by spin degrees of freedom this approach will be of
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interest in theNN system. In addition, this approach will be generalizable to systems
with three particles, like three nucleons or two nucleons and a meson. In the case of
three nucleons, Faddeev calculations at an energy of, e.g., 150 MeV and higher are
getting quite tedious because of the very many orbital-angular-momentum states
involved [8] and a direct, three-dimensional approach appears to be preferable. First
steps in this direction are under way.
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