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Abstract. Weinberg’s dimensional power counting for nuclei is reprised in this
primer. The role of QCD and chiral symmetry in constructing effective Lagrangians
is discussed. The two-scale hypothesis of Manohar and Georgi is combined with
power counting in amplitudes to shed light on the scales of nuclear kinetic and
potential energies, the size of strong-interaction coupling constants, the size of
meson-exchange currents, and the relative sizes of many-nucleon forces. Numerous
examples are worked out and compared to conventional nuclear models.

1 Nuclear Perspectives

What is a nucleus and what are its constituents? This question has no direct answer, or
even a unique one. Indeed, the proper answer depends on the context of the question.
Alternatively, the answer depends on the energy scale at which we are probing the
nucleus. At extremely high energies such as those of CERN or RHIC, we might suppose
that the appropriate degrees of freedom (d.o.f.) are quarks and gluons. At very low
energies (such as nuclear ground states), the more natural degrees of freedom would be
nucleons and possibly pions. After all, collisions of a nucleus with low-energy
projectiles (, tens of MeV) eject nucleons. This traditional description of a nucleus
as interacting nucleons would seem at first glance to have little direct connection with
QCD, the fundamental theory of the strong interactions. The former description in terms
of quarks and gluons obviously has such a connection, since the beautiful economy and
symmetry of the theory is manifest in terms of these d.o.f. [1, 2].

A close connection between the two descriptions must exist, but it is murky. The
traditional picture of nuclei has been very successful, provided that the complexities of
the short-range nuclear force are resolved by appeal to experiment. While this works for
the nucleon-nucleon (NN) force [3], we have as yet been nearly powerless to resolve the
three-nucleon force in this way, although substantial progress is being made [4]. The
few-nucleon systems are arguably the area of nuclear physics where the most progress
has been made on seminal problems during the previous decade or so [5]. We expect
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(and will see) that these systems do provide us with substantial information on
dynamics, assuming that we can interpret it. That is the purview of this article.
Conversely, the scheme that is outlined below has the potential to augment greatly
our understanding of nuclear dynamics, and particularly the role and appreciation of
few-nucleon systems (our testing ground) in this endeavor.

Traditional nuclear physics is the domain of large coupling constants (the interac-
tion is strong), which presupposes that perturbation theorycannotconverge. Although
we will see below that this is true in part, it is not truein toto, and this caveat makes
progress possible. Connections to QCD (at least the qualitative ones) are easy to make
and most are long known [1, 2], and follow from the chiral symmetry (CS) manifested
by QCD.

— The pion has a very small mass,mp.
— The pion is a pseudoscalar particle (Jp ¼ 0¹).
— The pion is an isovector particle.
— Chiral symmetry forbids largepN interactions.
— There is a large-mass scale,L , 1 GeV, associated with QCD.

The first four items involve the pion, are extremely important, and have been known for
decades [6]. The last item is new [1, 7, 8], and its consequences for nuclear physics are
more subtle and will shape the contents of this article. In the past, the lack of any
apparent dynamical scales in nuclear physics made progress in interpreting results
rather difficult.

The (broken) chiral symmetry referred to above is a consequence of (nearly)
massless quarks in the QCD Lagrangian. This symmetry is reflected in the Goldstone
mode by (nearly) massless pions [8]. An analogous chiral symmetry exists in QED if the
electron mass is set to zero; this symmetry produces a vanishing amplitude for
(relativistic) electrons scattering backwards from the nuclear charge distribution.
The very small pion mass plays a significant role in nuclear physics, producing
the longest-range part of the strong force. The pseudoscalar nature of the pion
guarantees a spin-dependent interaction with a nucleon, and this leads to the
tensor force, the dominant component [9] of binding in few-nucleon systems
(hVpi=hVi , 75%) and possibly in all nuclei. The existence of charged pions
guarantees them a large role in electromagnetic (EM) meson-exchange currents
[10], which we will treat later. The fourth item on the list is critical for a
tractable theory of nuclei. It guarantees that a class of many-body forces is weak
[11, 12] (we will see later that they all are weak). Item five allows us to combine
phenomenology with principle, and is the organizing element of chiral perturbation
theory (xPT) [1, 2, 13–15], which we will treat qualitatively. It is not
unreasonable to expect that this subject will become increasingly important to
nuclear physics in the next decade, and this primer was motivated by that
supposition.

As evidence for these views, Table 1 shows the (current) results of one of the most
important (set of) calculations undertaken in nuclear physics [16]. Using the best
available phenomenologicalNN force, a weak three-nucleon force (3NF), and no four-
nucleon force (4NF), the light nuclei (A # 6) were calculated with an uncertainty& 1%.
The agreement with experiment must be considered as very good. Our goal will be to
understand these results in simple terms.

J. L. Friar162

m



We summarize this discussion by stating that

— chiral symmetry (manifested in QCD) provides an organizing principle for nuclear
physics.

2 Motivation

In 1979, Weinberg [8] suggested that a convenient and simple way to reproduce the
results of current algebra (and to go beyond) was to use a nonrenormalizable,
phenomenological Lagrangian that manifests chiral symmetry. Such a scheme would
produce amplitudes of the form:T , En, whereE is the energy. This was obtained using
dimensional analysis and specifiedn to be an integer determined by the type of process
and by chiral symmetry. The constraints of CS mandate that more complicated
mechanisms necessarily have larger values ofn. Thus, provided thatE is smaller
than some intrinsic energy scale,L, one has a decreasing series (i.e., it is a series inE=L)
that is calculable. This series is organized in terms ofn rather than around unspecified
(large) coupling constants. For this to work effectivelyL must be sufficiently large, and
more complicated mechanisms must not produce smaller values ofn. That is,
amplitudes from loops and other products of higher-order perturbation theory (PT)
should not be larger than lower orders. As noted by Weinberg, the derivative structure of
his Lagrangian (which enforced CS) guarantees this. Concomitant with the nonrenor-
malizability was the appearance of more and more unknown constants at higher orders
in PT, which must be determined from experiment or calculated from QCD. This feature
clearly is a drawback, and one hopes that meaningful results can be obtained before the
number of terms becomes too large for tractability.

This seminal, but skeletal, argument was developed into a highly successful
program by the Bern group (and others) [17] who introduced fermions. A very
important addition to the counting argument was made by Manohar and Georgi [7],
which we will discuss later. Much later (in a series of papers) Weinberg [11] applied the
procedure to nuclei, which requires adapting the counting to the special features of the
nuclear environment (a nontrivial achievement). This was extended in several ways in
the thesis of van Kolck [12], which is an excellent introduction to those aspects of the
problem that we will ignore.

Our task is to reprise the derivation of Weinberg, add expository material familiar to
nuclear physicists in order to make the results concrete, and finally to extract a number
of crisp conclusions with import for nuclear physics and especially for the few-nucleon
field. It can be fairly stated that there is nothing in this primer that is not stated or
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Table 1. Calculated and experimental ground-state energies (in MeV) of few-nucleon systems, together
with (approximate) dates when they were first accurately solved for“ realistic” potentials

AXðJpÞ 2Hð1þÞ 3Hð1
2
þ
Þ 4Heð0þÞ 5Heð3

2
¹
Þ 5Heð1

2
¹
Þ 6Li ð1þÞ

Solved ,1950 1984 1987 1990 1990 1995

Expt. ¹2:22 ¹8.48 ¹28.3 ¹27.2 ¹25.8 ¹32.0
Theory ¹2:22 ¹8.47(2) ¹28.3(1) ¹26.5(2) ¹25.7(2) ¹32.4(9)
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implied in the work of Weinberg, van Kolck, and others [see, however, Eqs. (5.13) and
(8.3)]. Nevertheless, the importance of these ideas and their unfamiliarity to nuclear
physics in general and few-body physics in particular make an exposition desirable. We
shall see that many qualitative results follow from simple arguments, once the frame-
work has been constructed.

In order to satisfy the whims of the author, an older alternative form of power
counting (the“ rules of scale” [18, 19]) will also be separately presented. Although this
has been in use for decades [20], it is inappropriate for such complex mechanisms as
loops and, moreover, it has no grounding in chiral symmetry. It is, however, rather
simple-minded, easy to use, and does generate some insight into the nuclear physics that
is less visible in the more formal approach.

Finally, we shall fashion all of our arguments around Feynman diagrams, so we
assume that the reader has some familiarity with their structure [21]. Specific examples
with regularization and renormalization are relegated to Appendices B and C. The first
example illustrates a number of currently popular techniques and approaches, while the
second treats a simple two-nucleon problem. An exposition of nuclear matrix elements
in momentum space is extremely helpful in interpreting the power counting in nuclei,
and is relegated to Appendix A. Otherwise, we will attempt to motivate the physics as
we proceed.

We shall show the following results at various points in the primer:

— The kinetic energy/nucleon scales asQ2
=L, whereQ is an effective momentum in

the nucleus.
— The“ intrinsic” potential energy/pair scales as¹Q3

=fpL, wherefp is the pion-decay
constant.

— The cancellation of these two comparable energies allows nuclei to be weakly-
bound systems (hTi , ¹hVi and binding energyp mass).

— Large strong-interaction coupling constants are caused by the mismatch between
the fp andL scales.

— N-nucleon forces decrease in strength asN increases. This powerful result
authenticates decades of nuclear physics supposition and phenomenology.

— Increasingly more complicated forces contribute more weakly.
— Arbitrary processes contribute to the energy asQn, wheren ¼ 1 þ 2ðnc þ LÞ þ D,

with L the number of loops,nc a topological parameter, andD $ 0 reflects the
complexity of the interaction. This is Weinberg power counting.

3 Rules of Scale—Nuclear Methodology

A type of primitive power counting for nuclei has been in use for two decades [18–20].
The “ rules of scale” were developed as a way to control expansions that arise in
nonrelativistic treatments of meson-exchange currents. Specifically, expansions in
powers of 1=c2 were organized by noting that the velocity of a typical nucleon (with
massMN and momentump) is v ¼ p=MN, and consequentlyv=c , p=MN c. Thus,
counting powers of 1=MN in an expansion is equivalent to counting powers of 1=c. It
was noted that nuclei are weakly bound, implying that the kinetic and potential energies
satisfyhTi , ¹hVi. Hence,V should be counted as 1=MN, sinceV , T , p2

=2MN. This
scheme works well at“ tree” level (i.e., those mechanisms that do not involve loops,
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which were typically of interest in those times) and, more importantly, it works for the
current continuity equation, which is essential for EM processes. That is, consistency in
that equation demands that energies of all types be treated on the same footing.
Conversely, the scheme has no predictive power for loops.

In order to progress further, we need some indication thatv=cp 1. Otherwise, the
Schrödinger approach is meaningless. We can use the uncertainty principle and the radii
[22] of the few-nucleon systems (, 1.5–2.0 fm) to produce:pc, "c=R, 100–150
MeV , mpc2, where the last relation is a convenientmnemonic, rather than a statement
of principle, sincemp (unlike fp or L, for example) vanishes in the chiral limit. This
leads to

v=c , p=MNc , mp=MN , 10–20%; ð3:1Þ

and ðv=cÞ2 is satisfyingly small on average. In order to conform to a more standard
notation, we shall useQ ð, mpÞ rather thanp. We will see later that in processes
involving pions this is indeed a typical scale [23, 24], as noted by Weinberg [11].

There are at least three ways of organizing the interactions of pions with nucleons,
all of which are in use in nuclear physics. Parity and time-reversal-invariance arguments
allow the Lagrangian for a single pion-nucleon interaction to be either

LpNN ¼ ¹iGN̄g5t ·pN ; ð3:2Þ

or

L0
pNN ¼ ¹

f
mp

N̄g5∂/ ðt ·pÞN ; ð3:3Þ

wheref ¼ Gmp=2MN. These two forms are usually referred to as PS (pseudoscalar) and
PV (pseudovector). An alternative form is introduced by using the Goldberger-Treiman
[25] relation

G
MN

¼
gA

fp
; ð3:4Þ

whereG . 13;gA . 1:26 is the axial-vector coupling constant andfp . 92:4 MeV is the
pion-decay constant. This remarkable relationship (the author’s favorite in strong-
interaction physics) relates strong interactions on the left side to weak interactions on
the right, and is violated at the level of 2% [26] by chiral-symmetry breaking (the left
side is larger). Thus we can also rewrite Eq. (3.3) by replacingf =mp with gA=2fp,
generating the third and preferred form

L00
pNN ¼ ¹

gA

fp
N̄g5∂/ ðt ·pÞN ; ð3:5Þ

where we have writtent ¼ t=2 (a very common practice). Since the difference between
Eqs. (3.3) and (3.5) is due to CS breaking, it can easily be incorporated [14, 26] into any
effective Lagrangian scheme.

Note the very different sizes of the interactions in Eqs. (3.2) and (3.3):G , 13,
while f , 1. These two forms are equivalent on-shell, but differ dramatically off-shell.
We shall see later that the off-shell behaviour is controlled by chiral symmetry through
terms we have not explicitly written. In particular, the largeNN̄-“ pair” terms implicit in
the first form are exactly cancelled, a phenomenological result known historically as
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“ pair suppression” . These pair terms have a very large dimensionless strength,
G2mp=MN , 25, producing many-body forces that would make the tractability of
nuclear physics problematic. The great advantage of a scheme based on Eq. (3.5) is
that one can systematically implement CS in aterm-by-termmanner and not rely on
exactcancellations between sets of terms (which is difficult to do and must persist at all
levels of the dynamics [19]). We strongly argue that a scheme based on Eq. (3.5) be used
[1, 6, 11, 12, 14, 17].

The large size ofG is typical of the strong interactions, whilef is much more
modest. Even more modest is the effective coupling constant for the one-pion-exchange
potential (OPEP) shown in Fig. 1 a. This amplitude, when converted to configuration
space, generates a factor of 1=4p, whose precise form depends on the fact that we live in
three space dimensions (see Appendix B):

�

d3q

ð2pÞ3

eiq·r

q2 þ m2
p

¼
mp

4p

e¹mpr

mpr

� �

: ð3:6Þ

Rendering OPEP [9] into a dimensionless radial function ofx ¼ mpr and an overall
dimensionful factor, we have

VpðrÞ ;
m3

pg2
A

4pf 2
p

VðxÞ:

Obviously some care is required in this exercise, since 4p is dimensionless. It is,
however, a large number and we extract it. We expecthVðxÞi , 1 sinceh1i ; 1, where 1
is the unit operator (this is our normalization convention) and because correlations with
a length, 1=mp are introduced into the wave function byVðxÞ. This implies that values
of x near 1 are very important (which can be verified from Fig. 7) and our functions near
x ¼ 1 areO(1) [cf., Eq. (3.6)]. The net result is that we expect a pair of nucleons
exchanging a pion to generate an energy, m3

pg2
A=4pf 2

p , 20 MeV. Anticipating a result
from Sect. 5 and Appendix B, we note that 4pfp , 1200 MeV , L, whereL was
introduced in Sect. 1. RecallingQ , mp, we obtainhOPEPi , ðQ3

=LfpÞCV per pair,
whereCV is the product of all the dimensionless factors, 1 (by supposition). We have
already argued thathTi , ðQ2CT=LÞ per nucleon, whereCT , 1 and we have used
MN , L. For the triton,hVpi , ¹15 MeV/pair andhTi , 15 MeV/nucleon [23]. For the
a particle both energies are somewhat larger. In heavier systems, where the Pauli
principle begins to play a large role, these numbers (particularly the potential energy)
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Fig. 1. One- and two-pion-exchange contributions to the nuclear force. Solid lines are nucleons, while
dashed lines are pions
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cannot be correct. Nevertheless, the“ intrinsic” scale for these quantities is

hTi=nucleon, Q2
=L ; ð3:7Þ

hVpi=pair ,
¹m3

p

ð4pfpÞfp
,

¹Q3

Lfp
,

¹Q2

L
; ð3:8Þ

confirming that kinetic and potential energies (and quantities derived from them, such as
impulse approximation and meson-exchange EM currents) should be counted similarly
(numerically, Q , fp), in the absence of large dimensionless coefficients that
would skew the similarity. Thus, for OPEP and light nuclei we see a confirmation of
the weak-binding hypothesis that formed the basis for the rules of scale. Moreover, the
numerical results based on calculations with realistic potentials are consistent with these
scales.

Two other potentials have been calculated that can be similarly analyzed. Figs. 1 b
and 1 c show various parts of the two-pion-exchange potential (TPEP). These Feynman
graphs can be separated into two components: an intrinsic TPEP and the simple iteration
of OPEP (which happens automatically whenever the Schro¨dinger equation is solved).
The “ intrinsic” size of the former is [24]

hTPEPi ,
m5

p

ð4pfpÞ3fp
,

Q5

L3fp
,

1
2

MeV=pair: ð3:9Þ

Two-pion-exchange three-nucleon forces (2pE3NF) can be similarly analyzed [19] (see
Fig. 1 d):

h2pE3NFi ,
m6

p

MNð4pfpÞ2f 2
p

,
Q6

L3f 2
p

,
3
4

MeV=triplet : ð3:10Þ

In counting arguments of this type, we have avoided factors ofgA; 2;
1
2, etc., and hope

that they average out, 1. In most cases, they do (within an overall factor of 2). In Sects.
6, 8, and 9, we will derive a very simple formula (Weinberg’s formula) that reproduces
all of these results by power counting (inQ and 1=L) with almost no effort.

The only remaining problem is Fig. 1 b. This diagram, unlike a typical case, does not
have momenta, Q , mp flowing through every propagator. Indeed, after the first
interaction the propagator is typicallyðE ¹ TÞ¹1 , ðp2

=2MNÞ¹1 , MN=Q
2. Graphs of

this type are called“ reducible” . The small-Q or “ infrared” singularity enhances the
graph by a factor, MN=mp compared to a typical case. This singularity is also the origin
of the“ ambiguity problem” [19, 20, 24], which reflects the fact that a potential is an off-
shell amplitude, and hence is not unique.

The distinction between the properties of reducible and irreducible graphs has led
over the years [19, 20] to an obvious calculational scenario followed by all practitioners
in the field:

— Calculate irreducible graphs (where simple power counting works) and define this
as the nuclear potential.

— Solve the Schro¨dinger equation with that potential – the infrared enhancements will
happen automatically.

On the basis of several examples (this does not in any sense constitute a proof, which
will follow in Sect. 6) we find that:
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— Various nuclear energies behave asQn
=Ln¹nc¹1f nc

p for some values ofn andnc, with
more complicated mechanisms generating larger values ofn. We have used
L , 4pfp , MN in this simple counting exercise.

4 Effective Interactions

The basic idea is a simple one. Strong-interaction physics can be divided into two parts:
short-range (high-energy) parts and long-range (low-energy) parts. We hope that the
former is not dominant, but it could be. This is the most difficult domain of nuclear
physics, where phenomenology reigns supreme. The long-range physics is of two
(nonexclusive) types: (1) from pion-range physics, and (2) from iterations of the nuclear
potential, as we saw in the previous section. Even though convergence requirements
restrict us to the low-energy regime, it is essential that the pion degrees of freedom be
treated explicitly; they have a strong energy dependence even at low energy. We also
saw that the infrared singularity that results from iterating the potential plays a very
important role in nuclear physics.

The short-range regime is where all the complexity of QCD resides. Consider, for
example, the unflavoured meson spectrum below 1 GeV, plotted in Fig. 2. Only two
mesons lie below 770 MeV:p andh. In anSU(3) (rather thanSU(2)) treatment of the
chiral symmetry (i.e., strangeness is included), we would treat the (p; h;K)-meson octet
together. Although theh-meson contribution to the nuclear force is not particularly
important, in anSU(2) approach its low mass would be problematic for the formalism.
The other (heavy) mesons have masses$ 770 MeV. We can therefore imagine a
scheme where the effect in appropriate spin and isospin channels ofall single and
multiple heavy-meson exchanges, loops, . . . is“ frozen out” [15]. That is, the effects of
all possible short-range mechanisms are lumped together without regard to their origin.
This is accomplished by noting that (for low energies) a derivative expansion about the
zero-range limit is formally possible. ThusL , mr , 1 GeV is also the boundary
between the short-range and long-range physics [7, 15].

Fig. 3 illustrates this approach, where a few selected mechanisms involvingq
mesons are shown. All are subsumed in Fig. 3 d, which is the sum of various zero-range
interactions that can include derivatives. As an example, we treat Fig. 3 a, for which the
S-matrix is given by

S¼ ¹ig2
q

ðū1gmu1Þðū2g
mu2Þ

q2 ¹ m2
q

; ð4:1Þ

where we follow the conventions and metric of ref. [21]. We have dropped normalization
factors and the overall four-momentum-conserving factor,ð2pÞ4d4ðP1 þ P2 ¹ P0

1 ¹ P0
2Þ,
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Fig. 2. Unflavored meson spectrum [plusD-isobar excitation energy] below 1 GeV

m



for this two-nucleon cluster. The strong coupling of theq (with massmq) to the nucleon
is reflected by the coupling constant,gq, the nucleons (with spinorsu) have been
arbitrarily labeled“ 1” and “ 2” , andqm is the momentum transferred in the collision
(q2

< 0). We now expand the denominator for¹q2 p m2
q

1
m2

q ¹ q2 .
1

m2
q

þ
q2

m4
q

þ ···; ð4:2Þ

and define each term in the series as a neweffectiveinteraction (Lagrangian)

S. i
g2

q

m2
q

� �

ðū1gmu1Þðū2g
mu2Þ 1 þ

q2

m2
q

þ ···

� �

; ð4:3Þ

leading to [27]

Leff ¼ Lð0Þ
eff þ Lð2Þ

eff þ ···; ð4:4Þ

Lð0Þ
eff ¼

1
2

g2
q

m2
q

� �

ðN̄gmNÞ2
: ð4:5Þ

We have defined the effective Lagrangian so that the usual Feynman rules produce,
term-by-term, the sameS-matrix. We have added a superscript toL, “ D” ¼ 0; 2; 4; . . .,
that serves the same purpose as Weinberg’s“ n” that we introduced earlier. It classifies
the interaction here according to powers ofq; we shall develop the rules for this notation
later. More complicated short-range forces are possible, as indicated by the three-
nucleon force in Fig. 3 e.

We have used the fact that theq meson is sufficiently heavy that (for smallq2) it
propagates only a very short distance between emission and reabsorption (a` la the
uncertainty principle) [28]. Since we have assumed a particular mechanism, we have
developed amodelfor the strength of the zero-range interaction. Unfortunately, a vast
array of mechanisms including but not restricted to Figs. 3 a–c (viz., loops to arbitrary
order, physics not involving theq . . .) also contribute. Thus, this coefficient (and others
with D > 0) is unknown and must be determined phenomenologically or calculated
directly from QCD.

Two more aspects are important and somewhat controversial. In addition to mesons
being“ exchanged” , we also have to consider nucleon resonances. Fig. 2 shows theD-isobar
excitation energy superimposed on the meson spectrum. The low excitation energy of
the D has long stimulated the imagination of nuclear theorists, and mechanisms
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Fig. 3. q-meson contributions ina–c to short-rangeNN force ind, plus an additional 3NF ine. Solid lines
are nucleons, while wavy lines areq mesons
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proposed for almost every nuclear effect will typically include aD somewhere. The
uncertainty principle states that the virtual excitation of aD scales inversely with theD
energy (i.e., as 1=ED). Recent work suggests that in some regimes (viz., three-nucleon
forces and meson-exchange currents [29])ED behaves more asL , 1 GeV than
MD ¹ MN , 300 MeV. In other regimes (thresholdpp→ ppp0, for example [30, 31])
the opposite is more likely. In constructing effective interactions, some theorists [12]
routinely include theD in the active Hilbert space, while others do not. Care should be
taken when assuming that theD is not very important. We will, however, ignore theD in
what follows solely for reasons of simplicity.

The second aspect concerns relativity. The simple example involving theq meson
respected special relativity, including the derivative terms (, q2). More complex
mechanisms would lead to terms proportional to the overall momentumpm of a nucleon,
rather than the momentum transfer,qm. While the latter is typically not large,
pm ¼ ðE; pÞ, and E , MN , L is large. This would lead to a series of terms that
would all be the same size (recall that we have a series inE=L). The problem can be
formally eliminated by performing a 1=MN expansion (e.g., a Foldy-Wouthuysen
reduction [20, 21]), where the effect ofNN̄ “ pair” terms is projected out, and one
treats only the positive-energy spectrum. This“ freezing out” of degrees of freedom is
familiar to nuclear physicists in the Feshbach (P-Q) reaction theory [32], where the
Hilbert space is compacted from the normal to a restricted size, leading to much more
complex operators (which must reproduce the physics of the larger Hilbert space in the
smaller one). Manifest covariance is lost, but one retains an expansion inQ, rather than
introducing terms, MN at every order. This alternative formalism (the only known way
to handle this problem systematically) has been given the generic name“ heavy-
baryon” and is currently the method of choice [14, 33, 34]. This presupposes that a
nonrelativistic treatment of the nuclear physics is appropriate, which clearly holds for
the few-nucleon systems. We give an example of a model nonrelativistic loop
calculation in Appendix B, and compare it to the corresponding relativistic model.
Appendix C treats a simple nonrelativistic two-nucleon model.

We summarize this section by noting that:

— The complexities of strong-interaction physics can be divided into long-range and
short-range parts, with pion d.o.f. dominating the former and the latter condensed
into zero-range interactions of unknown size.

— Effective interactions are constructed by“ freezing out” the short-range d.o.f.
(mesons, resonances,NN̄ pairs, . . .), leading to structurally more complex interac-
tions that (hopefully) are easier to treat at low energies.

— The D isobar can be included in the active Hilbert space (with the pions) or not,
depending on the problem to be solved.

— A nonrelativistic, nonrenormalizable field theory is possible to construct and to use.

5 Dimensional Power Counting in Lagrangians

We begin by considering the dimensions of various quantities in order to assess the
scales of the strong interactions. Our approach in this section will be to motivate rather
than to attempt rigour. The interested reader should consult refs. [1, 7, 8] for a more
sophisticated approach. For notational simplicity we will formulate the arguments
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supposing a relativistic field theory. Following the discussion of the previous section,
the counting arguments also applymutatis mutandisto a nonrelativistic“ heavy-
baryon” field theory.

In order to perform dimensional analysis we denote a single power of energy by½Eÿ

(equivalent tolength¹1), and multiple powers (e.g.,m) by ½Emÿ. A Lagrangian (basically
an energy density) therefore has dimension 4 (i.e., behaves as½E4ÿ). The Lagrangian for
a system of pions and nucleons interacting through derivatives (∂m) acting on any field
can be written in the schematic form

L ¼ Lfree þ DL ; ð5:1Þ

Lfree ¼ N̄ðigm∂m ¹ MNÞN þ 1
2 ð∂mpÞ2 ¹ 1

2 m2
pp2

; ð5:2Þ

DL , a
N̄ð···ÞN

b

� �l�
p

c

�m ∂m

d

� �n

: ð5:3Þ

The combinationN̄N has dimension½E3ÿ, while p and∂m (as well asmp andMN) have
dimension½Eÿ, andDL of course has dimension½E4ÿ.

Our first assumption is that only the scalesfp andL occur ina; b; c; d and also that
DL should reproduceLfree. Clearly,c must befp, since that quantity sets the scale for the
pion field (cf., PCAC [1, 2, 6, 21]). Settingl ¼ 0 andm ¼ n ¼ 2 givesa=c2d2 , 1, while
m ¼ 0; l ¼ 1, and n ¼ 0;1 give a=b , L and a=bd , 1 (where we have substituted
MN , L). These three equations can be uniquely solved to produced , L; a , f 2

pL2,
andb , f 2

pL and thus

DL ¼ clmn
N̄ð···ÞN

f 2
pL

� �l
p

fp

� �m ∂m
;mp

L

� �n

f 2
pL2

; ð5:4Þ

whereclmn is dimensionless, and we have used the form ofLfree to incorporate the
chiral-symmetry-breaking pion-mass term into Eq. (5.4): A pion mass (either explicit or
implicit) is treated as a derivative. All Dirac matrices, nucleon isospin operators, etc.
have been ignored and are indicated by the dots.

This lovely formula has profound implications if we invoke chiral symmetry [8, 35].
No unique representation exists for incorporating chiral symmetry (cf., PS versus PV
forms), but a representation always exists in terms of covariant derivatives [1, 2, 8, 12],
which has only increasing powers of (1=L). According to Eq. (5.4), these powers have
the formð1=LÞD, where

D ¼ n þ l ¹ 2 : ð5:5Þ

The minimum value for pions is 0 from Eq. (5.2) and for nucleons is¹1 for each of the
two (largely) cancelling terms in Eq. (5.2) for free nucleons (i.e.,g0E ¹ MN). This
cancellation highlights the problem with derivatives of nucleon fields that we raised
earlier: a slowly-moving nucleon actually has a kinetic energy,

Lfree ¼ ¹N† p2

2MN
N;

or D ¼ 1. The PV (derivative-representation) Lagrangian hasD ¼ 0. These examples
motivate the rigorous result [8] that the derivative-representation chiral constraint has a
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form guaranteeing only positive powers of 1=L in Eq. (5.4):

D $ 0 : ð5:6Þ

The PS form in Eq. (3.2) hasD ¼ ¹1, which tells us that additional terms in the
Lagrangian are required in order to construct a proper representation of chiral
symmetry. Indeed, it was the neglect of the latter terms that led to thead hoc “pair
suppression” mechanism many years ago. This mechanism is automatic for chiral
models or theories, as noted in many places. The use of a chiral representation
corresponding to Eq. (3.2) requires an additional (leading-order)“ pair” -killing inter-
action of the form [19]:

DLPS ¼
G2

2MN
N̄p2N : ð5:7Þ

We strongly argue that derivative forms be used, because the chiral constraint, Eq. (5.6),
applies term-by-term.

The second assumption is that a reasonable theory should have [36]

clmn , 1 ; ð5:8Þ

or that the theory is“ natural” . This is also called naive dimensional power counting
(NDPC) [7, 35]. Clearly, if the scaling in Eq. (5.4) is a figment of our imaginations, the
values ofclmn will jump all over. Verifying naturalness validates Eq. (5.4). We also note
that if a symmetry exists,clmn could be vanishingly small, but if the scaling hypothesis
holds, very small coefficients would otherwise be just as unlikely as very large ones.

The third assumption is that vacuum fluctuations do not alter the scales that we
introduced. It is shown in refs. [1, 7] that it is necessary for loop integrals to be cut off at
energies

L & 4pfp ð5:9Þ

in order for the structure in Eq. (5.4) to be preserved, and we indeed have used 4pfp , L
interchangeably in Sect. 3 (see also Appendix B).

At this point, examples will serve us best in assessing the concept of“ natural” , and
to illustrate the use of Eq. (5.4). Evaluating that equation forl ¼ m ¼ n ¼ 1 ðD ¼ 0Þ

and comparing it to Eq. (3.5) produces

cp , gA , 1:26: ð5:10Þ

Usingt=2 instead oft would have produced the equally satisfactorygA=2.
The zero-rangeNN interaction produced by anq-meson exchange was derived

earlier (Eq. (4.5)) and can be compared to the casel ¼ 2;m ¼ n ¼ 0, yieldingcq=f
2
p and

a natural coupling constant

cq , f 2
p

g2
q

2m2
q

, 1:75; ð5:11Þ

using the numerical entries in Table A.2 of ref. [37]. A famous example is the KSFR
relation [38], which states

gr

mr

.
1
���

2
p

fp
; ð5:12Þ
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and corresponds to a zero-range Lagrangian

g2
r

2m2
r

ðN̄gmtNÞ2 ¼
1

4f 2
p

ðN̄gmtNÞ2

or cr , 0:25. In general a heavy-meson exchange with massmx and coupling constant
(to the nucleon)gx corresponds to a zero-range Lagrangian with a coefficient,

g2
x

2m2
x

,
cx

f 2
p

;

implying that

gx ,
mx

fp

�������

2cx

p

,
L

fp
, 10; ð5:13Þ

usingmx , L, and
�������

2cx

p

, 1. This illustrates why strong-interaction coupling constants
are large dimensionless numbers (,10): the scalesL andfp are very different.

The next example of this type is a caution. What if there were a mechanism such as
an NN force component of normal size mediated by the exchange of a light meson
ðmp LÞ? This would correspond to a large value ofcx, and would likely lead in
perturbation theory to a growing series whose structure violates Eq. (5.4). This is
analogous to the intruder-state problem in nuclear-structure theory [39], where a low-
energy state badly affects convergence of perturbation theory calculations. Another way
of saying the same thing is that there would be another scale in the problem, which
would violate the assumptions that led to Eq. (5.4).

We can also extend the NDPC to other forces. One isospin violation (IV)
mechanism [12] is parameterized by the up-down quark-mass differencemd ¹ mu ;
eðmd þ muÞ, wheree ¼ ðmd ¹ muÞ=ðmd þ muÞ , 0:3. The factor ofmd þ mu is propor-
tional tom2

p [8] and Eq. (5.4) can still be used, provided that we identify [26]

cIV , ec ; ð5:14Þ

wherec is O(1) andn $ 2. That is, Eq. (5.4) has theclmn replaced byeclmn, and there are
at least twoimplicit powers ofmp. Similarly, parity-violating forces havec replaced by
[40]

cPV ,
GF f 2

p
���

2
p c ; ð5:15Þ

whereGF is the Fermi constant andc is O(1).
Another application is the nuclear density, which for nuclear matter has the

“ empirical” value [41] rNM ¼ 0:153 fm¹3 . 1:5f 3
p . The generic Lagrangian contains

powers of

N̄ð···ÞN

f 2
pL

� �

;

the numerator of which is essentially the nuclear densityðN†NÞ. At nuclear-matter
density, the Lagrangian series (inl) is therefore geometric in

1:5f 3
p

f 2
pL

¼
1:5fp

L
,

1
7
;
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which is comfortingly small, so that the expansion presumably works at normal nuclear
density.

Our final example takes us outside the realm of few-nucleon systems. One might ask
whether there have been any calculations performed using a Lagrangian of zero-range
form. Although this has not been done in few-nucleon systems, there does exist one
comprehensive Dirac-Hartree calculation [42] for a set of 57 nuclei using such forms
(but without pion d.o.f.). The various terms in the Lagrangian can be represented
schematically byaðN̄NÞ2 þ bðN̄NÞ3 þ gðN̄NÞ4 þ dð∂mN̄NÞ2, where various isospin and
Dirac matrices sit between̄N andN. A total of nine coupling constants were adjusted to
fit the energies and radii of three representative nuclei. The results are among the best
ever obtained for such a comprehensive set of nuclei. If one uses Eq. (5.4) withm ¼ 0
and various values ofl andn, and compares to the expressions in refs. [42, 43], one
obtains the results in Table 2.

The unscaled coupling constants (whose subscripts refer to Dirac and isospin
matrices) span 13 orders of magnitude. Most of the scaledc’s that result are numbers
near one. The average of theg terms is also natural. The uncomfortably large difference
is possibly due to a lack of sensitivity in that quantity to the data. If the tiny value ofaTS

is not an artifact of the fitting process or of the neglect of pion-range physics (unknown
at this time), it presupposes a symmetry of some kind. Nevertheless, scaling as predicted
by Eq. (5.4) is obvious. Improvements in the quality of the many-body techniques are
not expected to alter this conclusion [43], but will alter each number. Strong support for
these counting arguments comes from ref. [44], which is organized in a very different
fashion but demonstrates scaling.

We summarize this section by noting that:

— A two-scale hypothesis (fp and L) for the dimensional factors in the effective
Lagrangian (plus chiral symmetry) suggests a convergent expansion of the
Lagrangian series for normal nuclear conditions.

— This expansion has been organized so that vacuum fluctuations do not alter the
form.

— The dimensionless coefficients in the Lagrangian are“ natural” if they areO(1),
which we illustrated by several examples.

J. L. Friar174

Table 2. Optimized coupling constants for the Lagrangian of refs. [42, 43] and corre-
sponding dimensionless coefficients and chiral expansion order

Constant Magnitude Dimension clmn Order

aS ¹4:508× 10¹4 MeV¹2 ¹1:93 L0

aTS 7:403× 10¹7 MeV¹2 0:013 L0

aV 3:427× 10¹4 MeV¹2 1:47 L0

aTV 3:257× 10¹5 MeV¹2 0:56 L0

bS 1:110× 10¹11 MeV¹5 0:27 L¹1

gS 5:735× 10¹17 MeV¹8 8:98 L¹2

gV ¹4:389× 10¹17 MeV¹8 ¹6:87 L¹2

dS ¹4:239× 10¹10 MeV¹4 ¹1:81 L¹2

dV ¹1:144× 10¹10 MeV¹4 ¹0:49 L¹2
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— Chiral symmetry guarantees that the large scale (L , 4pfp , mr . . .) does not occur
with positive powers.

6 Power Counting in Amplitudes

Power counting in amplitudes is a straightforward exercise, but somewhat tedious. It
also is dependent on the environment and on what one chooses to emphasize. The result
is worth the effort, however, since most of our previous results are subsumed by the very
simple final forms. We work with nuclei, bound states ofA nucleons. Bound states are
forever interacting, and one cannot simply separate interaction diagrams into connected
and disconnected parts and discard the latter. Eventually each nucleon interacts and
shares energy and momentum with the others. In normal (textbook) applications
disconnected diagrams do not contribute. We emphasize that the sharing of momentum
dominates the systematics in a nucleus. The momentum that one nucleon takes from the
“ bank” is not available to the others.

The basic idea is to use our knowledge of the dimensionality of propagators, phase
space factors, vertices, and delta functions to find the dimensionality of an amplitude,
after eliminating all the coupling constants. Given this and knowledge of how the other
scales (viz.,fp andL) come into the problem, the coupling constants can be put back and
a complete scheme can be constructed. We note that finding a momentum behaviour
, Qn does not necessarily imply a finalðQ=LÞn behaviour. We also choose to work in
configuration space, and this choice means that, while counting powers of momenta, the
effect ofadditionalphase space factors (besides those in loops) needed to convert to that
space must also be incorporated, and this has been done in the derivation leading to
Eq. (6.12). We will give examples later that spell out the differences, and Appendix A
documents the various factors that normally arise. Finally, we postpone dealing with
reducible (infrared-singular) diagrams until later. We first deal with the amplitudes, and
then we shall worry about the coupling constants.

Our first concern is what we should calculate and what rules apply. In general [20],
the energy shift,DE, in an interacting system is given in terms of theS-matrix (see
Appendix B) bySfi ; dfi ¹ i DE ½ð2pÞ4d4ðPf ¹ PiÞÿ. Thedfi factor forN noninteracting
particles is the product of three-momentum-conservingd-functions of each particle (see
Eq. (6.35) of ref. [21]) and behaves as½E¹3Nÿ, while the energy shift (which is also the
T-matrix) therefore behaves as½E4¹3Nÿ. For a cluster of two nucleons (N ¼ 2) this has
the dimensions½E¹2ÿ, in agreement with Eq. (4.1) (the spinors and coupling constant in
that equation are dimensionless). That form, as argued above, lacks the phase-space
factor, ½E3ÿ needed to convert to configuration space. Together these factors produce
, ½Eÿ, the correct dimension for an energy. We therefore use the same rules for an
energy shift as for anS-matrix, stripping off the four-momentum-conservingd-function
(if there is a single cluster) to produceDE. Note that if there areC separate clusters,
there will be (C ¹ 1) clusterd-functions remaining to treat.

Our second concern is that there are many possible quantities that specify how
momentum and energy flow in a given diagram. The key is to decide which ones to keep
and which to eliminate. Typically one eliminates internal variables and keeps external
ones. This is not enough for specificity and one additional choice remains. That choice
will be made in such a way that the chiral constraint, Eq. (5.6), can be implemented by
inspection. We also will calculate for fixedA, and eliminate at the end some extraneous
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factors that are dependent on our wave-function normalization scheme and depend only
on A. Finally, in keeping with common practice, we work inD space-time dimensions
ðD ; 4Þ. For simplicity we restrict ourselves to no external bosons (interacting with our
nucleus) and only calculate the energy shift.

The first set of variables specifies what happens at individual vertices or interaction
points, and we assume that there is at least one vertex. Fig. 4 contains several examples
from previous sections plus an additional one. At thei-th vertex in a Feynman diagram
we have

— bi bosons (i.e., pions in our case) entering or leaving;
— fi fermions (i.e., nucleons) entering or leaving;
— di derivatives acting at the vertex;
— Di ¼ di þ fi =2 ¹ 2 $ 0 ; (6.1)

where the last definition anticipates our final form and corresponds exactly to Eq. (5.5),
sincel ¼ fi =2 andn ¼ di . In Fig. 4 a we haveb ¼ 1; f ¼ 2. For the vertex corresponding
to Eq. (3.2),d ¼ 0 andD ¼ ¹1, while d ¼ 1 andD ¼ 0 for Eq. (3.3). Fig. 4 b has
f ¼ 2; b ¼ 2, while Eq. (5.7) hasd ¼ 0 andD ¼ ¹1, as we discussed before. Fig. 4 d is
the Weinberg four-pion interaction [8, 11] and has 2 derivatives producingf ¼ 0;
b ¼ 4; d ¼ 2, and D ¼ 0. Recall that theD ¼ ¹1 terms separately violate chiral
symmetry and cancellations must occur between them. Fig. 4 c and Eq. (4.5) havef ¼ 4
andd ¼ b ¼ D ¼ 0.

The second set of variables will completely specify the process:

— n ¼ dimensionality of the amplitude without coupling constantsðQnÞ;
— D ¼ number of space-time dimensions;
— A ¼ number of nucleons (which is conserved);
— L ¼ number of loops (i.e., internal phase-space integrals) ($ 0);
— nc ¼ number of nucleons interacting withat leastone other minus the number of

clusters withat leasttwo interacting nucleons ($ 0);
— L̄ ; nc þ L ð$ 0Þ ;
— D ;

P

i Di ð$ 0Þ (i.e., sum overall vertices). (6.2)

Fig. 5 shows a representative case with the requisite complexity. It hasA ¼ 6
nucleons propagating from some initial time to some final time (indicated by cross-
hatching for emphasis). The process can be divided into two interacting clusters and a
single noninteracting nucleon, producingnc ¼ 3. There is a closed loop on the left-most
nucleon, so thatL ¼ 1 andL̄ ¼ 4. The very important topological parameternc specifies
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Fig. 4. Elements of Lagrangian (i.e., vertices) for a system of pions and nucleons. Solid lines are nucleons,
while dashed lines are pions
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the complexity of the interaction scenario and will determine the relative importance of
N-nucleon forces.

A third set of variables is required to set up the counting, but will not appear in the
final result:

— EN ¼ number of interacting nucleons;
— XN ¼ number of noninteracting nucleons;
— C ¼ number of interacting clusters of nucleons;
— IB ¼ number of boson (pion) propagators (i.e., internal lines);
— IF ¼ number of fermion (nucleon) propagators (i.e., internal lines);
— V ¼ number of vertices (i.e.,

P

i). (6.3)

Note that a cluster must contain at least one vertex, but can have any number (including
only one) of connected nucleons. Moreover, the nucleon lines touching the cross-
hatched regions are not propagators. For the case specified by Fig. 5 we have
C ¼ 2;EN ¼ 5;XN ¼ 1;V ¼ 6; IB ¼ 4, andIF ¼ 1.

We have several obvious relationships between previously defined variables

A ¼ XN þ EN ; ð6:4Þ

nc ¼ EN ¹ C ; ð6:5Þ

V ¼
X

i

1 : ð6:6Þ

Note that Eq. (6.5) does not appear to correspond precisely to Eq. (6.2). A cluster of one
nucleon interacting only with itself will not contribute tonc, and the two definitions are
thus equivalent. Using the fact that two boson (pion) or fermion (nucleon) fields are
needed to make each boson or fermion propagator, we have

X

i

bi ¼ 2IB ; ð6:7Þ

X

i

fi ¼ 2IF þ 2EN ; ð6:8Þ
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Fig. 5. System of 6 nucleons interacting via pions. The cross-hatched (for emphasis) regions depict initial
and final times. Solid lines are nucleons, while dashed lines are pions
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where by definition only interacting nucleons connect to a vertex. The number of loops
in a diagram can be counted by noting that in constructing a diagram there is a four-
dimensional phase-space integral associated with each propagator. Feynman diagrams
conserve four-momentum at each vertex, and these constraints (V of them) eliminate the
integrals. This overcounts, however, since each cluster has an overalld-function (four-
momentum) constraint (see the discussion below Eq. (4.1)), and there areC of them.
Thus, the number of loops is

L ¼ IB þ IF ¹ V þ C ; ð6:9Þ

and associated with each loop is a four- (i.e.,D-)dimensional phase-space integral
�

dDp
ð2pÞD , ½EDÿ:

Fig. 5 has one loop, by inspection or by using Eq. (6.9). Each noninteracting
nucleon contributes a three-momentum (i.e.,D ¹ 1) d-function, ½E1¹Dÿ (see
Appendix A).

Finally, the momentum or energy dimensionality (Qn , ½Enÿ) of any diagram can be
determined by counting:

— phase-space factors, ½EDÿ in loops;
— boson (pion) propagators (, ð p2 ¹ m2

pÞ¹1 , ½E¹2ÿ);
— fermion propagators (, ð ps ¹ MNÞ¹1 or ðp0Þ

¹1 , ½E¹1ÿ);
— derivatives in vertices (pm , ½Eÿ);
— clusterd-functions, ½E¹Dÿ (C ¹ 1 of them; one has already been removed);
— d-functions, ½E1¹Dÿ for noninteracting nucleons (see above and Appendix A);
— an optional factor [in brackets below] (because it depends only onA, and not on the

process) that enforces the overall normalization of the wave function in momentum
space (see Appendix A).

In that order we have

n ¼ DL ¹ 2IB ¹ IF þ
X

i

di ¹ DðC ¹ 1Þ ¹ ðD ¹ 1ÞXN þ ½ðD ¹ 1ÞðA ¹ 1Þÿ : ð6:10Þ

There are 5 basic internal“ variables” in Eqs. (6.7)–(6.9) (together withC;EN;V)
that determinen ðIB; IF; L; bi ; fiÞ and only those 3 relations among them;IB and IF are
always eliminated. We must keep 2 of the remaining ones and chooseL andfi . The other
choices produce equivalent, though less useful, formulae (see ref. [12] for a discussion
of options). EliminatingIB; IF and

P

i bi using Eqs. (6.7)–(6.9) we find

n ¼ 1 þ ðD ¹ 2Þðnc þ LÞ þ
X

i

Di ¹ ððD ¹ 1ÞðA ¹ 1ÞÞ þ ½ðD ¹ 1ÞðA ¹ 1Þÿ

¼ 1 þ ðD ¹ 2ÞL̄ þ D : ð6:11Þ

The constant term in square brackets cancels an identical term that arises from algebraic
manipulation. Note also that the last two terms in Eq. (6.10) in effect add (D ¹ 1)
(i.e., three) powers (from phase-space factors) for eachindependent(i.e., non-centre-of-
mass) nuclear coordinate involved in an interaction. These powers (as we shall see
below in an explicit example) in effect convert from momentum to configuration space.
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Finally, for D ¼ 4 we have a very simple and elegant power-counting result:

n ¼ 1 þ 2L̄ þ D : ð6:12Þ

Except for irrelevant constant terms (depending onA), this agrees with Weinberg and
van Kolck [11, 12].

Recall thatL̄ and D are separately positive semi-definite. The caseL̄ ¼ D ¼ 0
ðn ¼ 1Þ cannot occur because this would imply a single nucleon interacting without a
loop; only the nucleon kinetic energy has this form and it corresponds toD ¼ 1, as we
found in Eq. (3.7). Thus, the minimum values ofn are 2, corresponding to the kinetic
energy, and 3, corresponding toNN forces (nc ¼ 1; L ¼ 0;D ¼ 0). See also Appendix B
for another example.

We summarize this section by noting that:

— Powers,n, of a generic energy or momentum,Q, can be counted in Feynman
diagrams by following the flow of momentum through each vertex.

— The nuclear case requires consideration ofall nucleons, since all nucleons
eventually interact in a bound state.

— The final formula forQn is exceptionally simple, and shows thatn alwaysincreases
as more complicated mechanisms are considered.

7 Electromagnetic Interactions

We can extend these results to EM interactions within strongly-interacting systems by
including the“ photon” as an extra boson [10]. This produces only one significant
change. For EM interactions:DEM

i $ ¹1, as noted by Rho [10]. This is compensated by
a factor ofe, the fundamental charge, which will reduce the size of amplitudes. For
specificity we shall illustrate the case of a single photon (virtual or otherwise) and this
will allow us to discuss nuclear EM currents (either impulse approximation or meson-
exchange),Jm

EM ; ðr; JÞ. We refer the reader to refs. [10, 26] for more complex cases.
Separating out the (assumed) single EM vertex from Eq. (6.12), we have [10]

nEM ¼ 1 þ 2L̄ þ DST þ DEM ; ð7:1Þ

whereDST is the sum over strong vertices ($ 0) andDEM refers to the single EM vertex
ð$ ¹ 1Þ and will differ for r andJ.

Various important building blocks are shown in Fig. 6. The impulse-approximation
current,Jm

imp, is shown in Fig. 6 a. The relativistic form of the four-current isN̄gmN, and
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Fig. 6. Lagrangian building blocks for EM interactions of pions and nucleons. Solid lines are nucleons,
dashed lines are pions, and wavy lines depict photons
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involves no derivatives. We know, however, that when“ odd” g-matrices are rendered
to nonrelativistic form, they are of leading orderðp=MNÞ, while “ even” ones areO(1).
Thus,DEM ¼ ¹1 for rimp (f ¼ 2;d ¼ 0), while DEM ¼ 0 for Jimp (f ¼ 2; d ¼ 1). The
pion EM current in Fig. 6 b has a single derivative [21] andDEM ¼ ¹1, while the
dominant seagull term [20, 31] shown in Fig. 6 c hasDEM ¼ ¹1 for JSG andDEM ¼ 0
for rSG. The short-range two-body three-current in Fig. 6 d hasf ¼ 4; d $ 1 and
consequentlyDEM $ 1. This suppresses the short-range contributions compared to
pion-range and impulse-approximation currents. We note that theD-isobar current
(assuming that we choose not to include theD in our active Hilbert space) and the (rpg)
current would be (higher-order in 1/L) contributions [10] of the form illustrated in
Fig. 6 c, while the (qjg) current [10] would have the form in Fig. 6 d.

We summarize this section by noting that:

— The electromagnetic current in a nucleus can be treated in a fashion similar to the
energy, and this is most conveniently done by separating the EM vertex from the
strong ones.

— Short-range MEC are suppressed compared to pion-range MEC.

8 Final Counting of Powers

Before completing the power counting, it is useful to interpret our results using a simple,
familiar example. The one-pion-exchange amplitude in Fig. 1 a has the form

VpðqÞ ¼ ¹
g2

A

f 2
p

t1·t2 j1·q j2·q
q2 þ m2

p

ð8:1Þ

in momentum space, whereq is the three-momentum transferred between nucleons“ 1”
and “ 2” . In terms of power counting,VpðqÞ , Q0

=f 2
p . As we argued in the previous

section and in Appendix A, this should be multiplied by the phase-space factor
d3q=ð2pÞ3 and the Fourier transform to configuration space completed. The phase-
space factor behaves asQ3, in agreement with Eq. (6.12) (fornc ¼ 1;L ¼ 0;D ¼ 0).
Moreover, performing the momentum integrals produces a Yukawa function multiplied
by the familiar factor of 1=4p (see Eq. (3.6)). The latter converts a singlefp in Eq. (8.1)
to aL ð4pfp , LÞ. ThusVpðrÞ , Q3

=Lfp as we found in Eq. (3.8). We expect that more
complicated diagrams with more propagatorsðnc > 1Þ [41] will generate a factor of
1=ð4pÞnc.

The interpretation of the short-range forceVSR in Fig. 3 d is somewhat different.
We again have a factor ofð1=f 2

p Þ from Eq. (5.4) and a phase-space factor that leads
to a d-function. We write the latter in the form

d3ðrÞ ¼
1

4p

dðrÞ

r2 : ð8:2Þ

The factor of 1=4p is the same as before, anddðrÞ=r2 , Q3, whereQ , mp is the inverse
correlation length that sets the scale of the correlation function. Thus, each coordinate-
spaced-function counts as, Q3

=4p [41]. This is actually reduced somewhat because of
the repulsive nature of the short-range correlations. Nevertheless, combining everything
we see thatVSR also counts asQ3

=Lfp, as predicted by Eq. (6.12) withL ¼ D ¼ 0 and
nc ¼ 1.

These concepts are illustrated nicely in Fig. 7, which shows the accrual of potential
and kinetic energy in the triton. A single pair of nucleons separated by a distancex12 is
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selected, and the expectation value ofQðx ¹ x12ÞÔ is calculated, wherêO ¼ T;V, or 1.
These values are divided by the value forx ¼ ∞, and the percentage accrual is plotted.
One sees that the major contribution is between 1 and 2 fm. Moreover, the short-range
part of the potential energy is rather modest, starting out repulsive and then yielding to
the attractive OPEP. One sees in these plots thatQ , mp , ½1:4 fmÿ¹1 is a reasonable
value.

We now put together all of the factors for power counting the energy inD ¼ 4
dimensions:Q; fp;L. The Lagrangian scale factors are given in Eq. (5.4). We also expect
a factor ofð4pÞ¹2L from loops (see Appendix B for a discussion of this and a possible
counterexample) andð4pÞ¹nc from configuration-space propagators (see above). This
gives our final result forhÊi, whereÊ is anyirreduciblecontribution to the energy, in
terms of the different scales:

hÊi ,
Q1þ2ðncþLÞþDf 2V¹f¹b

p

LDð4pÞ2Lð4pÞnc

¼ Q
Q
fp

� �nc Q
L

� �2LþncþD

; ð8:3Þ

using f þ b ;
P

iðbi þ fiÞ ¼ 2V þ 2ðnc þ LÞ obtained from Eqs. (6.5)–(6.9), and
L , 4pfp. When counting for other observables (viz., theT-matrix), the number of
external bosons explicitly enters the equations [11], and this changes the factors that set
the energy scales. Our formula reproduces all of the previous results obtained using less
sophisticated techniques. Specific applications are relegated to the next section.

We summarize this section by noting that:

— Various nuclear energies behave asQn
=Ln¹nc¹1f nc

p , with more complicated
mechanisms having larger values ofn andnc.
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Fig. 7. Percentages of accrual of kinetic energy (solid line), potential energy (short dashed line), and
probability (long dashed line) within an interparticle separation,x, for any pair of nucleons in the triton
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— This formula includes phase-space factors required for conversion to configuration
space, and incorporates momentum sharing between the nucleons.

9 Results and Discussion

The most important aspect of this work concerns the relative sizes ofN-nucleon forces.
The leading-order force connectingN nucleons will have L ¼ 0; D ¼ 0, and
nc ¼ N ¹ 1, corresponding to the simplest possible calculation (all others with
L > 0; D > 0 will be smaller). This produces

hVNNFi ,
Q2N¹1

ðfpLÞN¹1 ,
QN

LN¹1 ; ð9:1Þ

where we have usedQ , fp in order to make the final estimate. We can also interpret
additional results of ref. [16], who found that their semiphenomenological forces
produce

hVNNi , 20 MeV=pair;

hV3NFi , 1 MeV=triplet ;

hV4NFi & 0:1 MeV=quartet: ð9:2Þ

This geometric decrease of the net contribution of many-body forces is consistent with
Eq. (9.1) (see also Eq. (3.10)). Consequently, our interpretation of these results of ref.
[16] confirms the role of chiral symmetry in suppressing many-body forces in nuclei,
which becomes an important consequence of that work.

Resurrecting the old formalism of ref. [20] (applied to pions interacting in a nucleus)
also provides some insight into the structure of Eq. (8.3). That work was predicated
upon performing a nonrelativistic expansion of operators using a Foldy-Wouthuysen
procedure, constructing nuclear operators using the superposition principle, and then
performing time-dependent perturbation theory. The nucleons in such a formalism
propagate only forward in time, although mesons go forward or backward. Because the
operators refer to the entire nucleus (e.g.,J ¼

PA
i¼1 Ji for some impulse-approximation

vertex,Ji), so do the propagators. One simply constructsðE ¹ HÞ¹1, ½E¹1ÿ in terms of
the nuclear Hamiltonian,H (details can be found in refs. [19, 20]). Thus, power
counting should be exactly the same as we have already derived, although it will be
necessary to redefine the variables. Thisconfiguration-spaceformalism automatically
incorporates phase-space factors.

Typical diagrams are shown in Fig. 8, with diagrams from ref. [20] on the left
expanded as a set of diagrams on the right, where noninteracting nucleons are
suppressed for simplicity. Although the“ nucleus” diagrams subsume many distinct
mechanisms when expanded into“ nucleon” diagrams, all of the latter share the same
topology specified by the former, and this we wish to explore. The cross represents the
short-range interaction, while the double lines represent a nucleus propagator, or a
nucleus wave function, and the large dots represent the pion-nucleus vertex,J. Not all
diagrams are shown.

Fig. 8 a for a nucleus is equivalent to Fig. 8 c. Fig. 8 b can be expanded into Figs. 8 d
and 8 e. Because the vertices in the“ nucleus” formalism contain all nucleons,
expanding second-order perturbation theory leads to both pion exchanges (Fig. 8 d)
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and loops (Fig. 8 e) (only one of the loops is shown, and this is calculated in Appendix
B). Moreover, we see that all possible orderings are included, and that the“ loop-like”
appearance of the nucleus diagrams results from the forward-propagating nucleus. We
count these diagrams asn ¼ 1 þ 2L̄ þ D̄, whereL̄ is the number of“ nucleus loops” . If
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Fig. 8. Contributions to the nuclear energy from“ nucleus” diagrams on the left, broken down into the
usual “ nucleon” diagrams on the right. Single solid lines are nucleons, double solid lines represent a
nucleus, dashed lines are pions, while a cross depicts a short-range interaction in the nucleus approach
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we wish to power-count for these“ nucleus” diagrams, we must recall that increasing
the number of connected nucleons by 1 increasesn by 2. Thus, we must count the short-
range interaction as̄D ¼ 2. This is a simple rearrangement of our original form, moving
part ofnc into D. Note that if one end of a propagator in a nucleon loop (e.g., in Fig. 8 e)
is detached and reattached to another nucleon (as in Fig. 8 d), we lowerL by 1 and
increasenc by 1, keepinḡL ; nc þ L fixed, and this is why powers ofQ depend only on
the combinationðnc þ LÞ ¼ L̄. Both types count the same and are subsumed in nucleus
diagrams (e.g., Fig. 8 b). Because different integrals generate different factors ofð1=4pÞ,
the counting ofL factors (which leads to Eq. (8.3); see Appendix B) can be different. In
this example, however, both mechanisms behave asQ3

=Lfp (in leading order).
Fig. 8 f subsumes the graphs of Figs. 8 g–i, all of which haven ¼ 5, but differing

values ofL; nc;C, etc. Note that this set of diagrams includes three-nucleon forces,
vertex corrections to anNN force (only one of which is illustrated in Fig. 8 h) and a
“ recoil” graph (withC ¼ 2) in Fig. 8 i (which is a special problem treated later). The
graphs of Fig. 8 j comprise those of Figs. 8 k–n plus several others that are disconnected
ðC ¼ 2Þ, and all haven ¼ 5.

Our final example treats the“ infrared” singularities discussed in Sect. 3. A typical
case is Fig. 8 o, which subsumes Figs. 8 p–s. Nominally the graph hasL̄ ¼ 2 and thus
n ¼ 5. However, if any of the previous graphs are sliced in two by a horizontal line, the
pion lines are cut, implying a minimum energy at that time ofQ , Ep in those
propagators. This also holds for Fig. 8 o as long as the horizontal line intersects a pion
propagator. However, a very different result holds when only the nucleus propagator
(, 1=ðE ¹ HÞ , 1=ðQ2

=MNÞ , MN=Q
2, rather than 1=Q) is intersected. In that case the

energy in the propagator is much smaller. These diagrams are therefore enhanced, as we
discussed earlier, when the Schro¨dinger equation is solved. For this reason, one defines
the nuclear Hamiltonian in terms of the irreducible operators (for which normal power
counting obtains). This Hamiltonian is then incorporated into the Schro¨dinger equation,
whose solution automatically produces the enhancements. The“ reducible” diagrams
not only count differently (we must add a factor ofL=Q for each infrared propagator,
including those in loops, and adjust factors of 4p [see Appendix C]), but they also
contribute to the“ recoil graph” problem.

That problem arises because graphs of the type shown in Fig. 1 b depend on the
energy of the nucleusðE0Þ and this is contained in nuclear propagators:
ðEp þ H ¹ E0Þ

¹1. BecauseH and E0 , Q2
=L and Ep , Q, it is conventional to

expand the propagator in powers ofðE0 ¹ HÞ=Ep , Q=L. Although ðE0 ¹ HÞ acting
on an initial or final wave function vanishes, it can also kill the propagator in the middle
of Fig. 8 o, leading to anirreducible operator. Thus the special feature of reducible
diagrams leads to a“ freedom” in the form of reducible operators that we choose to
incorporate into our theoretical structure, depending on where we place parts of various
operators. Experience has shown that disconnected, but overlapping graphs, of the type
shown in Fig. 8 i can be removed (if desired) using a rearrangement, as can the leading
order of extended overlapping graphs of the type shown in Figs. 8 g and 8 l. This rather
technical subject can be reviewed in refs. [19, 20, 24]. The practitioner should beware of
any graph where a nucleon propagator is not required by kinematics to carry an energy
, Ep (as in Figs. 8 g or 8 l) or graphs that are disconnected (as in Fig. 8 i).

As an example of how rearrangement affects the power counting, it has been shown
that the nominal value ofn ¼ 5 (obtained from Eq. (8.3)) can be changed ton ¼ 6 (as
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we already saw in Eq. (3.10)) for the 3NF type in Fig. 8 l, and this also holds for the
process in Fig. 8 g. The short-range 3NF resulting from the interaction of 3 nucleons
(Fig. 3 e) hasnc ¼ 2;D ¼ 1, and hencen ¼ 6. Thus, the leading 3NF can be manipu-
lated inton ¼ 6 (rather than 5) by a suitable definition of the nuclear Hamiltonian. Note
that there is a factor of 1=L associated with the additional factor ofQ. These different
choices are neither right nor wrong; they are a theorist’schoice. One must simply be
consistent.

Our final examples treat a few of the meson-exchange currents in EM interactions.
Using the rules we developed earlier, the power counting for the fourðnc ¼ 1Þ graphs in
Fig. 9 forJMEC gives 2, 2, 4, 4, respectively, assuming that theD-isobar is treated as a
heavy particle (showing thatDEM $ 1 for Fig. 9 d is left as an exercise [10]). One can
show [10, 20] that graphs a and b contain a factor ofð4pf 2

p Þ¹1, [c and d have an
additional factor ofL¹2], so that these leading-order MEC behave asQ2

=fpL , Q=L,
and should be comparable to the impulse-approximation result, p=MN , Q=L. This
precisely conforms to the old“ rules of scale” . The isobar and heavy-meson MEC are
suppressed by an additional factor ofðQ=LÞ2. Moreover, this counting is valid on both
sides of the current-continuity equation

=· JðxÞ ¼ ¹i½H; rðxÞÿ ; ð9:3Þ

using Eq. (9.1).
The nonrelativistic charge operator isOð1Þ, and impulse-approximation relativistic

corrections areOðQ2
=L2Þ. The pion-exchange currents (see Appendix A of ref. [19]) are

OðQ3
=4pf 2

pMN , Q3
=fpL

2 , Q2
=L2Þ, consistent withDEM ¼ 0 for the seagull charge

operator. Note thatQ2
=L2 is really the same asðv=cÞ2, and this also conforms to the old

rules of scale [18, 20].
Additional special cases are worked out in the literature [11, 12, 26, 30, 31, 40].
We summarize this section by noting that:

— N-nucleon forces scale at least as fast asðQ=LÞN¹1, implying that two-nucleon forces
are stronger than three-nucleon forces are stronger than four-nucleon forces . . . .

— Results of recent few-nucleon calculations are consistent with this result, which
makes nuclear physics tractable.

— The topology of“ nucleus” (as opposed to“ nucleon” ) diagrams accounts for
important aspects of the latter.

— Infrared singularities (reducible diagrams) enhance the Schro¨dinger perturbation
series.
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Fig. 9. Meson-exchange currents of various types. Solid lines depict nucleons, dashed lines show pions,
while wavy lines illustrate the EM interaction
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— Different treatments of“ recoil-graphs” (resulting from IR singularities) can lead to
changes in power-counting rules (always making terms weaker than naive power-
counting predictions).

— Power counting for electromagnetic processes is consistent with the current-
continuity equation.

— Heavy-meson MEC are suppressed relative to one-pion-exchange terms.

10 Conclusions

We have developed systematically the power-counting rules of Weinberg, and have
added additional expository material and numerous examples. Chiral symmetry
provides order, and the QCD scaleL plays a deterministic role. We have shown that
the nuclear kinetic and potential energies (“ intrinsic” /pair) scale roughly asQ2

=L,
consistent with weakly-bound systems.N-nucleon forces are suppressed asN increases.
Increasingly complex contributions to the force progressively weaken. Short-range
meson-exchange currents are weaker than pion-range currents, which are comparable to
impulse-approximation currents. Large strong-interaction coupling constants of heavy-
mesons to nucleons result from the mismatch of the scalesfp andL.

All of these results have been stated before in one form or another using a variety of
arguments or empirical observations, but their totality rests on power counting. In the
words of S. Weinberg [45],

“ The chiral Lagrangian approach turns out to justify assumptions (such as
assuming the dominance of two-body interactions) that have been used for
many years by nuclear physicists . . .”
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Appendix A. Momentum Space to Configuration Space

We have relegated a tedious but instructive part of our derivation to this Appendix. We have chosen the
option of power counting in configuration space. A straightforward power-counting derivation in
momentum space does not involve the last two terms in Eq. (6.10), which arise from the conversion to
configuration space. These terms are vital, since they reset the baseline (for fixedA) against which we
determine the importance of various operators. As we shall see below, it amounts simply to incorporating
phase-space factors for each independent degree of freedom in a nucleus. InD ¹ 1 space dimensions, there
are ðD ¹ 1ÞðA ¹ 1Þ independent internal degrees of freedom, plusD ¹ 1 that specify the motion of the
nuclear centre of mass (CM) and do not play any role in our discussion.

We wish to calculatehWf jÔjWii in both momentum and configuration spaces (forD ¼ 4). We write

Wf ;iðfr0
igÞ ¼

�

Pi ðd
3p0

i exp½ip0
i ·r0

iÿÞ

ð2pÞ3ðA¹1Þ
d3

X

k

p0
k

 !

Wf ;iðfp0
jgÞ ; ðA:1Þ

where our notation“ f g” emphasizes that the wave function depends on thesetof internal coordinates
fr0

jg ¼ ðr0
1; r

0
2; . . .Þ or momentafp0

jg, and we have removed the CM coordinates (
P

j r0
j ; 0 and

P

j p0
j ; 0).

It is a convenience to treat the coordinatesr0
j as independent and use ad-function as the constraint. As a
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check, we evaluate the normalization integral:

hWf jWii ;
�

Pi ðd
3r 0

i Þ d3
X

k

r0
k=A

 !

W†
f fr0

jg
ÿ �

Wiðfr0
jgÞ

¼

�

Piðd
3p0

iÞ

ð2pÞ3ðA¹1Þ
d3

X

k

p0
k

 !

W†
f ðfp0

jgÞ Wiðfp0
jgÞ ¼ dfi : ðA:2Þ

The factor ofA in the r0
k d-function is conventional. Thus, in order to obtain the expectation value of an

operator in configuration space,hÔi, we need to: (1) look at the operator in momentum space and (2)
multiply by the requisite number of independent phase-space factors as given in Eq. (A.2). This adds
½ðD ¹ 1ÞðA ¹ 1Þÿ momentum factors ton (accounting for the last term in Eq. (6.10)) and resets the baseline
for each diagram or process. Note that if we evaluatehWf jTjWii, whereT is the kinetic energy, we
simply insert

P

j p0 2
j =2MN between the wave functions in the second form of Eq. (A.2), which is an obvious

result.
If we take the expectation value of a two-body operator,Vij ðrij Þ, then a somewhat different form results

hV12i ¼

�

Piðd
3q0

iÞ

ð2pÞ3ðA¹1Þ
d3

X

k

q0
k

 !

�

d3p

ð2pÞ3 W†
f ðp þ q0

1;¹p þ q0
2; . . .Þ V12ðpÞ Wiðq

0
1;q

0
2; . . .Þ : ðA:3Þ

In addition to the conventional offsetððD ¹ 1ÞðA ¹ 1ÞÞ, the two-body potential inherits a phase-space
factor: d3p=ð2pÞ3. This is already included in Eq. (6.11) because of momentum sharing. The phase-space
factors above serve to kill all thed-functions from non-interacting nucleons, leaving phase-space factors (in
effect) only for interacting nucleons. This accounts for thed3p=ð2pÞ3 in Eq. (A.3). Thus by including
momentum sharing with“ non-interacting” nucleons and a full set of phase-space factors, we have reset the
baseline so that our power counting works in the same fashion for any nucleus and any operator. Our final
results do not depend onA. Naive power counting of the potential in momentum space producesQ0 for
OPEP; the phase space factor makes thisQ3, as we derived earlierðnc ¼ 1;D ¼ L ¼ 0 → n ¼ 3Þ. Three-
nucleon operators pick up an additional phase-space factor, and so on. This completes the interpretation of
various factors in the power counting.

We summarize this Appendix by noting that:

— Inclusion of Fourier-transform phase-space factors resets the baseline for all diagrams.
— This generates a diagram-independent offset½ðD ¹ 1ÞðA ¹ 1Þÿ that makes our final power-counting

formula independent ofA.

Appendix B

A wide variety of concepts can be illustrated by working out a simple examplein toto. Fig. 10 a illustrates
the self-energy of a nucleon arising from pionic vacuum fluctuations. We perform a nonrelativistic
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Fig. 10. A single nucleon interacting with pions.
Solid lines are nucleons, dashed lines are pions, and
the cross depicts a mass counter term
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calculation of the S-matrix, noting that the nucleon self-energySN is traditionally defined by
S¼ ¹iSN½ð2pÞ4d4ðPf ¹ PiÞÿ, where

SN ¼ i
gA

fp

� �2� d4k

ð2pÞ4

ðj ·kÞ2 t2

ðk2
0 ¹ E2

p þ ieÞ ¹k0 þ E ¹
ðp þ kÞ2

2MN
þ ie

� �

; ðB:1Þ

using the Feynman rulesðgA=fpÞtaj ·k for creating a pion with isospin componenta, momentumkm, and
spinj, which corresponds toD ¼ 0. We have included (for now) the complete nucleon propagator (energy
E ¼ p2

=2MN, momentump), and have defined the pion energy byE2
p ¼ k2 þ m2

p. Usingðj ·kÞ2 ¼ k2
; t2 ¼ 3

4,
and noting that there is a single pole in the lowerk0-plane we obtain

SN ¼ ¹
3
8

gA

fp

� �2� d3k

ð2pÞ3

k2

Ep Ep þ
ðp þ kÞ2 ¹ p2

2MN

� �

: ðB:2Þ

To leading order in 1=MN, we can ignore the kinetic-energy terms, 1=MN. We also note that the pion
energy sets the scale in both of the propagators. Much of the power counting that we did earlier depends
explicitly on this fact. Thus to leading order inð1=MNÞ, we obtain the cubically divergent result

SN ¼ ¹
3
8

gA

fp

� �2� d3k

ð2pÞ3

k2

ðk2 þ m2
pÞ

: ðB:3Þ

Interpreting this result requires further work. First, we must regularize the integral and render it
finite. Then we must renormalize. The method of choice is dimensional regularization. We convert the
3-dimensional integral ton “ space” dimensions (

�

dnk=ð2pÞn, with n not necessarily an integer), and
evaluate it for somen whereSN is finite, renormalize the result, and analytically continue this finite value to
n ¼ 3. The angular integrals plus factors of 2p give [46]

�

dQn

ð2pÞn ¼
2

Gðn=2Þð4pÞn=2 ; ðB:4Þ

and we see the origin of factors of 4p. The remaining integral is [47]

�∞

0

dk knþ1

ðk2 þ m2
pÞ

¼ ¹
mn

p

2
·

p

sin
np

2

� �

:

ðB:5Þ

For n < 0 these integrals are finite, and their extension ton ¼ 3 (or any odd dimension) is also finite.
Combining Eqs. (B.4) and (B.5) forn ¼ 3 producesm3

p=4p.
At first sight this is a very strange procedure, and the reader is referred to ref. [15] for more expert

justification. We note that by adding and subtractingm2
p in the numerator of the integrand in Eq. (B.3) we

obtain
�

d3k=ð2pÞ3, which has no length or energy scale and therefore has no obvious physics associated
with it (so we drop it), plus another term. This process can be repeated, producing another scaleless
integrand (¹m2

p

�

d3k=ð2pÞ3k2) plus½m3
p=4p

�

, the last part of which we obtained previously using Eqs. (B.4)
and (B.5). Thus, we finally obtain a well-known result (see Eq. (3.54) of ref. [14])

SN ¼ ¹
3g2

Am3
p

32pf 2
p

¼ ¹
3g2

Am3
p

8fpð4pfpÞ
,

m3
p

fpL
: ðB:6Þ

Manipulations of the type used here to interpret our results shouldneverbe performed when they introduce
singularities atk ¼ 0 (ours were finite there).

What is the interpretation of our procedure, and why did we keep a single term and argue away the rest?
Fig. 10 b also occurs as a part ofSN. This term is simplyM0

N, the“ bare” nucleon rest mass. The divergent
(but scaleless) integrals can be viewed as contributions toM0

N. Since we did not knowM0
N anyway, adding
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terms to it does not introduce a complication. The same is true forSN above, but its properties are special.
Our original methodology was to divide the physics into soft (long-range) and hard (short-range) parts. The
scaleless terms are hard (divergent), butSN is soft. It is proportional tom3

p , Q3 in accord with our
counting rulesðL ¼ 1; nc ¼ 0;D ¼ 0Þ and isnonanalyticin m2

p. That is, it has the form
������

m6
p

p

¼ m2
p

������

m2
p

p

.
Because pion masses must appear in the Lagrangian as powers ofm2

p, the square root is special. Nonanalytic
terms are usually logarithms, but not always. It is a common practice [26, 34] to separate out all nonanalytic
(soft) terms and lump all analytic terms (even finite ones) with the so-called“ counter” terms (hard terms
such asM0

N). Nevertheless, because the nonanalytic terms have a special form (and are often large), we
make the separation:MN ; M0

N þ SN. Note thatMN , L, but SN , m3
p=fpL , m2

p=L and is significantly
smaller, as we expect on the basis of power counting (L ¼ 1; nc ¼ 0;D ¼ 0 → n ¼ 3).

Finally, we note that a single factor of 1=4p arose in Eq. (B.6). This is somewhat unusual, as normally
loop integrals generate 1=ð4pÞ2 or something similar. A singleð1=4pÞ arises in nonrelativistic cases
corresponding to odd-dimensional (forn ¼ 3) integrals, such as Eq. (B.3). In each case the nonanalytic term
is an odd polynomial. In the usual case such as Fig. 10 c one obtains 1=ð4pÞ2 and a logarithm. A useful and
instructive exercise is to calculate Fig. 10 a covariantly, using Eq. (3.5) as the model vertex. One finds that,
indeed, all terms generate an explicit factor of 1=ð4pÞ2. If one expands that result for smallmp=MN, one finds

Srel
N ¼

a M3
N þ b MNm2

p þ c m4
p=MN

ð4pfpÞ2 þ SN ¹
3g2

Am4
p logðmp=MNÞ

2MNð4pfpÞ2 þ ···; ðB:7Þ

wherea, b, and c are dimensionless, anda and b are divergent. Thea–c terms are analytic functions
(polynomials) ofm2

p and can be incorporated directly into counter terms, as we discussed above. The two
scaleless integrals that we found above contribute toa andb, respectively. The logarithmic term is unique in
the expansion. One can also verify that the nonrelativistic effective Lagrangian of ref. [19] (based on Eq.
(3.5)) also reproduces Eq. (B.7).

In performing the expansion in Eq. (B.7) that producesSN (Eq. (B.6)), a factor ofp=2 is generated,
leading to a single residual factor ofp in the denominator of Eq. (B.6). The logarithmic term has a
dimensionless coefficient of 3g2

A=2 , 2:4 and a factor of 1=ð4pÞ2, which wasassumedin our derivation of
Eq. (8.3) that leads toSN , Q3

=L2. If we force Eq. (B.6) into this form a very large dimensionless
coefficient of¹3pg2

A=2 , ¹7:5 results. Occasionally this happens.
Our nonrelativistic calculation reproduced the leading-order nonanalytic parts of the covariant

calculation (and was much easier). Although the analytic parts of the two calculations are different, they
are not required to be the same and this cannot affect the final results, since we do nota priori know M0

N.
We summarize this Appendix with the following observations:

— Sensible nonrelativistic field-theory calculations are possible.
— Dimensional regularization is an easy way to make integrals finite.
— Loops can be rendered into analytic (typically“ hard” ) parts that are incorporated into coupling

constants and nonanalytic (“ soft” ) parts, which are kept separate.
— Power counting works for loops.
— The pion mass controls the scale of loop propagators.
— Factors of 1=ð4pÞ2 (and occasionallyð1=4pÞ) arise from loops.
— SinceL , 4pfp andQ , fp, counting powers ofQ=L is not very different from counting powers of

(1=4p).

Appendix C. Zero-Range Model

Another excellent example is the zero-range force [11]. We write the Lagrangian for two identical
nonrelativistic nucleons [48] interacting via a zero-range force as

L ¼ N†ðx; tÞ i
∂
∂t

þ
=2

2MN

� �

Nðx; tÞ ¹ lðN†ðx; tÞNðx; tÞÞ2
: ðC:1Þ
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The form of the scattering amplitude generated by this Lagrangian is a series of loop diagrams, each order
(in l) being a product of loops involving the two nucleons. Performing thek0 integral (part of thed4k=ð2pÞ4

phase-space factor in each loop) leads directly to the Schro¨dinger equation corresponding to an energy
E ¼ k2

=2m and the nuclear (CM) Hamiltonianp2
=2m þ 2ld3ðrÞ, wherer is the separation of the nucleons and

m is the reduced mass. We have combined the kinetic energies of the two nucleons so thatMN is twicem;
note the combinatorial factor (of two) in front of the potential. That equation can be written in the form [48]
(note thatG0ðrÞ ¼ ¹ð2m=4pÞðeikr

=rÞ):

WðrÞ ¼ W0ðrÞ þ

�

d3r 0 G0ðr ¹ r0Þ Vðr0Þ Wðr0Þ ; ðC:2Þ

whereVðr0Þ is the (d-function) potential,W0ðrÞ is a plane wave, andG0ðr ¹ r0Þ is the Green’s function
corresponding toðE ¹ H þ ieÞ¹1. Performing the integral, we obtain

WðrÞ ¼ W0ðrÞ þ 2l G0ðrÞ Wð0Þ ; ðC:3Þ

the “ zero-range” solution; settingr to 0 produces an algebraic equation

Wð0Þ ¼
W0ð0Þ

1 ¹ 2l G0ð0Þ
; ðC:4Þ

from which we obtain theT-matrix [48] (unitarity implies ImðTÞ ¼ ¹2mkjTj2=4p):

T ¼
2l

1 ¹ 2l G0ð0Þ
: ðC:5Þ

The Green’s function at the origin is (of course) linearly divergent, but we can apply the regularization
techniques of Appendix B:

G0ð0Þ ¼ 2m

�

d3p

ð2pÞ3

1
ðk2 ¹ p2 þ ieÞ

→ ¹kmi
2p

; ðC:6Þ

where again the“n -dimensional” integral is finite (and is left as an exercise, being only slightly different
from Eq. (B.5)). This produces

T ¼
2l

1 þ
kmli
p

; ðC:7Þ

which corresponds to a scattering length,a ¼ ml=p, anS-matrix,S¼ ð1 ¹ ikaÞ=ð1 þ ikaÞ, and an effective-
range function (the inverse of theK-matrix), k cotðdÞ ¼ ¹1=a.

We know that poles in theT-matrix indicate special states. A single pole always exists in this model for

k ¼
pi
ml

; ik

and

E ¼
¹k2

2m
, 1=l2

: ðC:8Þ

This corresponds to a bound state ifl > 0 and to a“ virtual” state ifl < 0.
This is a most peculiar result, since we started with a potential that isrepulsiveif l > 0, and asl → 0 the

bound state gets deeper! One must remember that the original problem (interpreted as a quantum mechanics
problem) has no solution at all. We have generated a solution by changing the problem, redefiningG0ð0Þ

and making it finite, and the peculiar properties of (C.8) are a reflection of the original (insoluble) problem.
This redefinition is equivalent to defining how loops (vacuum fluctuations) contribute. Thus,l is really the
renormalizedcoupling constant (of arbitrary sign after renormalization), and not the“ bare” one in Eq.
(C.1). How one might interpret and treat these peculiarities is discussed in ref. [49].

What aboutl → 0? This will not happen in general, since applying Eq. (5.4) leads to the equivalence

l ;
cl

f 2
p

; ðC:9Þ
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with jclj , 1, and using 2m ¼ MN , L , 4pfp, we find

k ¼
ð4pfpÞfp
ð2mÞ2cl

,
fp

2cl

, Q ; ðC:10Þ

as well asE , ¹f 2
p =4c2

lL and a , 2cl=fp. A bound state with binding energy, 2.5 MeV and a
corresponding scattering length, 4:3 fm is generated forcl , 1. The casecl , ¹1 produces a scattering
length, ¹ 4:3 fm. We note that an anomalously smallcl is very improbable.

The unitarity of theT-matrix in lowest-order PT relates the first- and second-order amplitudes with a
single factor of 1=ð4pÞ. The (second-order PT) loop integral must therefore be of the type that generates a
single factor, rather than the usual 1=ð4pÞ2.
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Rev.C49, 2932 (1994); Ordo´ñez, C., Ray, L., van Kolck, U.: Phys. Rev.C53, 2086 (1996)

13. Donoghue, J. F.: In: Medium-Energy Antiprotons and the Quark-Gluon Structure of Hadrons (Landau,
R., Richard, J. M., Klapisch, R., eds.), p. 39. New York: Plenum 1991; Donoghue, J. F.: In: Proceedings
of the Workshop on Effective Field Theories of the Standard Model, Dobogo´kö, Hungary, 1991
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