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Abstract The growing interest in the physics of unstable nuclei, along with their manifestations in laboratory
experiments and astrophysical observations, highlights the existence of features in decay processes within
complex quantum systems that are not yet fully understood. This paper considers examples of such phenomena,
including two-step decay processes, resonance effects, threshold peculiarities, and the interactions between
bound and continuum states, as well as the related dynamics.

1 Introduction

Among many-body quantum processes, the spontaneous decay of unstable systems occupies a special place
being one of the most fundamental phenomena of quantum dynamics. An active area of current research targets
the physics of unstable nuclei observed in the laboratory and in astrophysical data. In the simplest standard
description, the decay probability is characterized by the exponential time behavior with the mean life time τ
of the initial system or equivalently by the complex energy E − (i/2)�, where � = h̄/τ defines the width of
the energy distribution in the non-stationary initial quantum state. Earlier we have discussed non-exponential
effects in quantum decays [1] which are hard to observe experimentally [2].

Experimental studies of various decay processes such as sequential and multi-nucleon decays, as presented
in Refs. [3–6], pose significant challenges to theoretical understanding of nuclear dynamics at the brink of
stability. Combining the complex many-body nuclear structure with the mechanisms of decay and dynamics
in the contnuum proves to be a formidable endeavor. Recent attempts to bridge these aspects are documented
in References [7–10].

In this paper, we explore some fundamental characteristics of the decay processes, the intricate relationships
between nuclear structure and reaction dynamics, the sequential decay mechanisms, and the nuances of the
three-body breakup phenomena.
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2 Decay and Resonances

The partial decay width for the transition 1
ε→ 2, associated with the corresponding amplitude A(ε), is

determined by the Fermi Golden Rule,

d�1,2(ε) = 2π
∣
∣A1,2(ε)

∣
∣
2
δ(E1 − E2 − ε) dε; (1)

the partial decay width, d�1,2(ε), is proportional to the square of the amplitude A1,2(ε), under condition of
the energy conservation given by the delta function δ(E1 − E2 − ε). This leads to the decay width expressed
as a function of the energy difference ε = E1 − E2,

�1,2(ε) = 2π
∣
∣A1,2(ε)

∣
∣2

. (2)

The convenient way to a consistent description of the decay processes in terms of the amplitudes A1,2
coupling the internal dynamics with continuum channels can be based on the Feshbach projection formal-
ism [11,12]. The detailed introduction to the Feshbach projection formalism and its various applications,
including the processes of the quantum signal propagation through periodic structures, can be found in the
recent book Mesoscopic Nuclear Physics [13]. Further select applications of this formalism can be found in
Refs. [8,14–16].

The amplitude for a sequential two-body decay process, where an initial state 1 decays through an inter-

mediate state 2 to a final state 3, denoted as 1
ε1→ 2

ε2→ 3, can be expressed as:

A1,2,3(ε1, ε2) = A1(ε1)A2(ε2)

ε2 − (

E2 − i
2�2,3(ε2)

) . (3)

In this expression, we adopt an on-shell condition formulated as E1 = ε1 + ε2 + E3 and assume that the decay

width of the intermediate state, �2,3(ε2), is governed exclusively by the decay 2
ε2→ 3.

According to the Fermi Golden Rule, the partial decay width distribution for this sequential decay mech-
anism is given by:

d�(E)

dε1dε2
= 2πδ(E − ε1 − ε2) |AT (ε1, ε2)|2 . (4)

Here, the total amplitude AT in eq. (4) encompasses contributions from all possible intermediate states; it
must be appropriately (anti)symmetrized to account for identical particles in the final states. In Fig. 1 we
illustrate eq. (4) by the integrated result expressing the decay width �1,2,3 of the initial state 1 that is subject
to a sequential decay process, namely the intermediate product state 2 further decays into 3, and compare it
with the case of a single-step decay width �1,2 where final state 2 is completely stationary. The energy scale
here is picked so that E1 = 1 and we set the threshold E3 = 0. The decay widths are shown as a function of
the intermediate state energy E2. The figure also assumes that both decays are governed by a power law phase
space scaling ε5/2 which represents d-wave decay of a neutral particle. When E2 < 1, the direct decay 1 → 2
is open and the instability of the intermediate state 2 does not play much role, note that the plot is logarithmic.
The sequential nature of the process is only relevant near threshold when the width of the state 2 is large
and overlaps with threshold at E2 = 1 (shown by the dashed vertical line). Above threshold, E2 > 1, only
virtual decay is possible, the width becomes exponentially small. The decays of this virtual nature, however,
are extremely important in many situations including such as the two-neutron decay in 26O [17], 16Be [3],
13Li [18], exotic proton emitters such as 9N [19], 6Be [20], double beta decays, and many more. As nuclei with
significant proton-neutron imbalance are discovered and studied the beta-delayed particle and multi-particle
decays are becoming of interest and we discuss one of those cases, 11Be, later in this work.

The behavior seen in Fig. 1 is generally the same in all cases with exception of the s-wave when the state
is virtual, see also Ref. [21]. Assuming for brevity one-body channels identified by momentum, the situation
is best addressed by reviewing the scattering problem in the complex momentum plane as illustrated in Fig. 2,
see pedagogical discussions in Refs. [22–24]. In Fig. 2, the points show various types of singularities that
could be encountered in the complex momentum plane (disregarding symmetries): 1 - bound state, 2 - narrow
resonance, 3 - broad resonance, 4 - virtual state, and 5 - we refer to as background scattering features. The
effect of these singularities on the time evolution of a state is illustrated in Ref. [1]. Integration over the real
momentum scattering states k > 0 can be replaced through Cauchy’s integral formula considering a contour
integral shown in figure with the red dashed line, resulting in the pole contributions (2 and 3) that result in the
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Fig. 1 The decay width (inverse mean lifetime) of the state 1 as a function of the position of the intermediate state 2 relative to
the state 3 taken to be at zero energy. The unit of energy is defined so that E1 = 1 and E3 = 0. The two curves compare direct
decay, where an intermediate state 2 is considered as stationary, and sequential decay where an intermediate state is a resonance

Fig. 2 Types of singularities in the complex momentum plane

exponential decay and “background” provided by the integral along a 45◦ line. Assuming in simplified units
energy ε = k2, the “background” integral over the evolution operator e−iεt is real and of Gaussian type. This
highlights an important destination of virtual states (4) and other scattering features (5) as they never produce
an exponentially decaying state. Nevertheless, scattering features because of near-threshold kinematics can
result in resonant-like peaks.

The phase space volume plays a major role in determining decay rates, particularly at low energies where it
leads to the energy-dependent power law �(ε) ∝ εβ , as discussed in Refs. [8,10]. From the above discussion
β = 1 represents a critical case when real and imaginary parts of the complex momentum are proportional
and can follow the 45◦ line above or below.

Below we comment on the scaling parameter β across various processes concentrating on the s-wave
three-body breakup with neutral particles. For a one-body phase space, the scaling parameter β assumes a
value of 1/2 in the case of the s-wave (symmetric) decay. Following the known description [25],

�1(ε) = 2h̄2

μ1R1
k, (5)

where R1 is the channel radius parameter for the decay from the resonance 1, the decay width for the s-wave
process is proportional to

√
ε, and the leading term in the denominator is of the form of the scattering amplitude

(3) in the effective range expansion,

ε2 −
(

E2 − i

2
�2(ε2)

)

≈ h̄2

μ2R2

(
1

a2
+ ik2

)

. (6)



43 Page 4 of 12 A. Volya, V. Zelevinsky

This behavior is described by the scattering length a2 of an intermediate state 2 or, equivalently, by the energy
parameter ε2,

a2 = �2(ε)

2kE2
= h̄2

μ2R2E2
, ε2 ≡ h̄2

2μ2a2
2

. (7)

Expression (6) shows that β = 1/2 leads to a virtual state or bound state, depending on the sign of the scattering
length, since the singularity emerges for a pure imaginary momentum.

Addressing the sequential decay with distinguishable particles, we obtain

d�1,2,3(ε1, ε2)

dε2
= 2λ

π

√
(E1 − ε2)ε2

ε2 + ε2
, (8)

where

λ = R2

R1

√
μ2

μ1
(9)

is a dimensionless parameter expected to be close to unity. The integrated decay width as a function of the
resonance energy E1 is

�1,2,3(E1) = λ
[

2ε2 + E1 − 2
√

ε2(E1 + ε2)
]

. (10)

In contrast, the two-body phase space exhibits a quadratic scaling with energy, β = 2, attributable to the
energy dependence of the integral

∫

d3k1 d
3k2δ(E − ε1 − ε2) ∝ E2. (11)

This is evident at very low energies, where E1 � ε2, leading to the approximation

�1,2,3(E1) 	 λ
E2

1

4ε2
. (12)

In the opposite regime, when E1 
 ε2, or at higher energies, the decay width simplifies to �1,2,3(E1) 	 λ E1,
setting β = 1. This distinct scaling behavior underscores the departure from sequential decay processes
characterized by a scaling parameter of β = 1/2.

For identical particles, the total amplitude is given by A±
T (ε1, ε2) = [

A1,2,3(ε1, ε2) ± A1,2,3(ε2, ε1)
]

/
√

2.
In the high energy limit, E1 
 ε2, similarly to the non-identical case, we find β = 1:

�±
1,2,3(E1) 	 π ± 2

π
λE1. (13)

At low energies, E1 � ε2, the symmetric amplitude again leads to β = 2:

�+
1,2,3(E1) 	 λ

E2
1

2ε2
. (14)

However, for the antisymmetric amplitude, destructive interference effects result in β = 3 in the low-energy
limit, E1 � ε2:

�−
1,2,3(E1) 	 3π − 8

24π
λ
E3

1

ε2
2

. (15)

Figure 3 depicts the decay width �1,2,3(E1) as a function of E1 for these scenarios, including the one-body
decay width �12(E1) to emphasize the relative longevity of configurations involving two s-wave neutrons. This
observation supports arguments in Ref. [26]: the s-wave two-body decay width in the experimentally relevant
energy range is close to the simple law � 	 E . The variations in the phase-space energy scaling discussed herein
arise from the quantum evolution through an intermediate state. Earlier discussions on similar phenomena are
available in Refs. [3,26–28] (Figs. 3 and 4).

The two-nucleon decay is clearly a very rich subject where many types of behaviors are possible that
offer a lot of experimental roads for studying the quantum evolution of wave functions; some possibilities are
discussed in Ref. [2].
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Fig. 3 This figure illustrates the energy dependence of decay widths, plotting �±
1,2,3(E1) for identical particles (denoted as

�(+) for symmetric and �(−) for antisymmetric combinations) alongside �1,2,3(E1) for distinguishable particles (represented
as �), against the total decay energy E1. Additionally, the one-body decay width �1,2(E1) as a function of energy is shown for
comparison. The parameter ε2, indicating the energy levels of interest, is specified for each curve

3 Near-Threshold Physics

The near-threshold physics has a long history [29–35]. The interaction with continuum introduces an additional
effective Hamiltonian H ′ in the internal space Q as described by the following integral expression [8,15]:

H ′(ε) =
∞∫

0

dε′ |A(ε′)|2
ε − ε′ + i0

. (16)

In this context, we adopt an on-shell approximation applicable under the assumption that the internal and
continuum spaces are orthogonal. The comprehensive formulation and its derivation were detailed in Refs. [8,
15].

For simplicity, in a single-channel scenario, we omit the subscripts using A1,2 ≡ A and reference all
energies from the channel threshold denoted by E = ε. The interaction term in eq. (16) reflects the second-
order effect resulting from excitations in the continuum. Unlike perturbation theory, the Feshbach projection
formalism provides an exact solution. The precise eigenvalues in the full space are determined from the energy-
dependent Hamiltonian H(E) = HQQ + H ′(E) employing a nonlinear variant of the Schrödinger equation,

H(E)|I 〉 = E |I 〉. (17)

Typically, both H ′ and H appear as non-Hermitian operators.
When a decay channel satisfies ε > 0, the integration in eq. (16) encounters a pole, necessitating the

division of the integral into a Hermitian principal value component, 
(ε), representing the self-energy, and a
non-Hermitian segment, �(ε), indicating the decay width,

H ′(ε) = 
(ε) − i

2
�(ε), (18)


(ε) = P
∫

dε′ |A(ε′)|2
ε − ε′ , (19)

�(ε) = 2π |A(ε)|2. (20)

Here, P denotes the Cauchy principal value of the integral, ensuring the separation of Hermitian and non-
Hermitian contributions to the effective Hamiltonian.
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The significance of the non-Hermitian component � within the context of the nuclear many-body problem
is thoroughly examined in Refs. [8,15]. This term is distinguished by its factorized structure that is instrumental
in preserving the unitarity of the scattering matrix. The inherent factorization of � facilitates a dynamical phase
transition often referred to as superradiance, a phenomenon that is discussed in Refs. [14,16,36] and further
elaborated in Sect. 5.

Additionally, the Hermitian correction attributed to virtual excitations into continuum and denoted by

(ε), plays a crucial role in adjusting the positions of both bound and resonant states in proximity of decay
thresholds. These adjustments can lead to pronounced variations in spectroscopic observables as systems
approach their decay thresholds, a topic that has been explored in detail in Ref. [37]. Such studies reveal the
intricate interplay between the Hermitian and non-Hermitian components in shaping the nuclear landscape,
particularly in regions near decay thresholds where quantum phenomena such as superradiance and phase
transitions become prominent.

4 Exotic Decay of 11Be

Here we discuss an example of 11Be sequential decay, which is not fully understood yet but clearly highlights
some important physics related to decay and threshold phenomena discussed in this work. The persistent
discrepancy in neutron lifetime measurements observed through two different experimental approaches, as
highlighted in Ref. [38], has sparked a range of speculative theories. Among these, especially intriguing is
the hypothesis that this variance might stem from an unaccounted neutron decay into unobserved dark matter
particles. This possibility was scrutinized in Ref. [39] that also explores the feasibility of investigating such a
decay channel via alternative nuclear beta decays.

In this context, the nucleus 11Be emerges as a prime candidate for further studies. Characterized by its
composition of four protons and seven neutrons, 11Be is distinguished as a neutron halo nucleus. Its structural
peculiarities are noteworthy: while six neutrons fill the lowest 0s1/2 and 0p3/2 levels within the mean-field
potential, an additional halo neutron occupies the 1s1/2 level positioned merely 320 keV below the 0p1/2
state. This deviation from the conventional shell structure, a threshold effect, is attributed to the pronounced
coupling between the s-orbit and the continuum, as argued in Refs. [21,40,41]. Such coupling, being facilitated
by virtual excitations, eq. (19), is believed to lower the energy level of the s-orbit, thereby altering the expected
shell configuration.

The beta decay width as a function of decay energy is given by the combination of Fermi and Gamow-Teller
transitions,

γβ(ε) = ln 2

t
= f (ε) h̄ ln 2

T
(

B(F) + λ2
AB(GT )

)

, (21)

here t is half-life, T and λA are constants, B(F) and B(GT ) are nuclear matrix elements. The energy depen-
dence is given by the phase space volume f (ε) that typically increases rapidly with energy often following a
power law as discussed earlier. This rapid increase means that the decay rates are highly sensitive to the decay
energies, the Q-values.

For the beta decay of 11Be,
11Be →11 B + e− + ν̄e, (22)

an energy release of 11.5092 MeV is observed; it is large primarily because a proton is strongly bound within
11B. This significant release of energy leads to a notably shorter half-life for 11Be, estimated as tBe = 13.6±0.07
seconds. In contrast, the Q-value for potential decay into dark matter is reduced by the neutron separation
energy. Through a phase space analysis, it is possible to infer a lower limit for the half-life associated with the
dark matter decay from 11Be, as tBe→X > 105 seconds [39].

For a conventional explanation, the authors of Ref. [42] propose the presence of a resonance in 11B, located
196 keV above the proton decay threshold. Analyzing the experimental distribution of proton energies, they
deduce the proton resonance width to be � = 12(5) keV. Furthermore, they propose a log10( f t) value of
4.8(4) for the beta decay transition into this specific resonance. This resonance has been recently confirmed
experimentally [43,44]. The notable positioning of a strong resonance just near threshold, which seems “con-
venient,” may not be coincidental. Instead, it is likely a consequence of the resonant attraction phenomena
explored in Sect. 3, as further detailed in [45].

The assessment of the beta decay strength is conventionally performed using the f t value, as

f t = T
B(F) + λ2

AB(GT )
. (23)
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Fig. 4 Schematic figure showing the level scheme of 11Be along with all of the relevant thresholds. The position of the newly
observed resonance is highlighted in red

Setting E1 = 0 and defining Q as the negative of E3, we can analogously express the integrated width for
sequential decay, following our discussion in Sect. 2, through a similar formula,

F t = T
B(F) + λ2B(GT )

, (24)

that incorporates an effective energy-dependent function

F(Q) =
Q∫

0

dε

2π

f (ε)�2(Q − ε)

(ε + E2)2 + �2
2(Q − ε)/2

. (25)

In scenarios where the intermediate state E2 is below zero indicating an open sequential decay channel, the
integral in eq. (25) encounters a pole. In cases where �2 is negligibly small, F(Q) simplifies to f (Q), thus
reverting to the classical limit, just as was illustrated in Fig. 1.

For the purpose of analyzing eq. (24), and following [46], we adopt t ≡ tBe→βp = 1 × 106 s, as suggested
by experimental data. The analysis in Fig. 5 explores the variation of log10(F t) focusing on the influence of
the intermediate proton resonance position E2. We remind that Q = 0.2807 MeV and energy of the initial
state E1 = 0, so for E2 > 0 the decay is virtual. We take the decay width on an intermediate resonance �2(ε)
as a sum of the proton decay width γp(ε) and a constant alpha decay width γα:

�2(ε) = γp(ε) + γα, (26)

with γα presumed to be constant because alpha decay threshold is far away. We employ a potential model to
obtain the energy dependent proton decay width. We estimate the alpha decay width to be in the range from
1 keV to 200 keV [46]. For a reference, the 3/2+

2 state at 9.873 MeV excitation is known to possess an alpha
decay width of 109 keV, Ref. [46,47].

Figure 5 can be viewed as describing conditions needed to explain the t ≡ tBe→βp = 1 × 106 second
half-life, one is the position of an intermediate proton resonance (x-axis) and the second one is the strength of
the initial beta decay described by the Gamow-Teller matrix element log10( f t) on the y-axis. The presence of
an open alpha decay channel is making the observed half-life more difficult to explain as a significant fraction
of decays is expected to proceed along the alpha channel (beta-delayed alpha decay) and not lead to a final
10Be. Thus curves (c) and (d) in Fig. 5 show lower log10( f t). Figure 5 shows that given the experimentally
observed position of the resonance the data would be explained if log10( f t) is between 2 and 3.
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Fig. 5 The log10(F t) value for fixed t ≡ tBe→βp = 1 × 106 is shown as a function of E2 which is the energy of the proton
resonance in 11B, relative to the beta decay threshold. The figure includes the following curves: a Classical beta decay log10( f t)
for 11Be decaying to 11B. b Effective log10(F t) for beta-delayed proton emission going through a resonant state in 11B, eq. (24),
with SFp = 0.23 and γα = 0. c Same as b but with γα = 1 keV. d Same as b and c but with γα = 10 keV. The position of the
state and its width suggested by the experimental data are shown by the shaded area

Table 1 Theoretical and experimental data for 1/2+ states that can serve as potential intermediate states in the beta-delayed
proton decay process

Jπ
i Theory Experiment

E(MeV) log(ft) SF(p) E(MeV) SF(p)

1/2+
1 5.709 5.5 0.262 6.792

1/2+
2 10.545 3.4 0.117 9.820

1/2+
3 11.952 3.5 0.134 11.44 0.27(6)

1/2+
4 T=3/2 12.181 0.274 12.554

1/2+
5 12.827 4.0 0.028

1/2+
6 14.105 5.4 0.001

The shell model analysis with the FSU Hamiltonian [48] is presented in Table 1 along with available
experimental data, only states 1/2+ are included which are relevant here. The table includes the log10( f t).
All states have log10( f t) above 3.5 which is rather typical indicating about a factor of 10 discrepancy with
analysis in Fig. 5. Note that log10( f t) ≈ 4.8 was suggested in Ref. [42].

Currently, a substantial amount of theoretical research exists [49–52] that provides insight into the “conve-
nient” positioning of the resonance and its proton strength. In particular, the reasons behind the position of the
proton resonance, its attraction to the threshold, lack of alpha decay and strong proton decay may follow from
the near-threshold physics discussed in Sect. 3. On the other hand, it is unclear why, despite the low Q-value,
the beta decay rate surpasses the predictions of conventional theories.

The double beta decay, is another related process [53] (we do not even go here into the discussion of
the neutrinoless one) which is of the second order virtual type with typical halflifes of 1019 years or longer,
exceeding the age the universe by many orders of magnitude [54,55]. These decays probe the extreme tail of
the virtual process Fig. 1 with power-law phase-space scaling parameter β being approximately between 9 and
11. The physics of the process and even the systematics of the lifetimes is far from being fully understood.

5 Decay and Overlapping Resonances

This presentation would not be complete without mentioning the decay process with interference of resonances.
There physics can be described using the non-Hermitian effective Hamiltonian approach mentioned in Sect. 3
that leads to a number of remarkable phenomena, such as superradiance [56] recently observed in alpha
decays [57], interference of resonances such as those in 13C, near-threshold effects [58], statistical properties
of the decay width distribution [59], interplay with giant resonances [60] and emergence of the pygmy dipole
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strength [61], bound states in the continuum [62], transport phenomena, etc. [13]. The simplest two-level model
provides a very nice and minimal picture highlighting the phenomena [63].

Consider two quantum states (1 and 2) with energies ε1 and ε2. Their independent decay amplitudes A1
and A2 define their decay widths following eq. (2); for brevity we take γ = A2, where the amplitudes are real.
The states interact through the Hermitian operator, resulting in an off-diagonal matrix element V . This brings
us to the simplest model characterized by the 2×2 effective non-Hermitian Hamiltonian,

H =
(

ε1 − (i/2)A2
1 V − (i/2)A1A2

V − (i/2)A1A2 ε2 − (i/2)A2
2

)

. (27)

The diagonalization of this Hamiltonian provides two decaying states with complex energies

E± = Ē ± 1

2

√
X − iY , (28)

where

Ē = 1

2
[ε1 + ε2 − (i/2)(γ1 + γ2)], (29)

and

X = (ε1 − ε2)
2 + 4V 2 − 1

4
(γ1 + γ2)

2, (30)

Y = (ε1 − ε2)(γ1 − γ2) + 4V A1A2. (31)

Separating real and imaginary parts

E± = E± − i

2
�±, (32)

we get the resonance energies and widths.
Unlike the situation with stationary states, partial level crossing is possible when Y = 0, then depending

on the sign of X we have either crossing of real energies or widths, a full crossing is also possible when both X
and Y are zero, see the discussion in [63] and references therein. The stationary state in the continuum emerges
when

V (γ1 − γ2) = A1A2(ε1 − ε2). (33)

When real part of the effective hamiltonian is large and we can neglect the terms of the second order in γ1,2 in
eq. (30) resulting in the standard Wigner repulsion for bound states

E± = 1

2
[ε1 + ε2 ±

√

(ε1 − ε2)2 + 4V 2], (34)

and

�± = 1

2

(

γ1 + γ2 ± (ε1 − ε2)(γ1 − γ2) + 4V A1A2
√

(ε1 − ε2)2 + 4V 2

)

. (35)

For the large level separation or small V , we come to the trivial result with the widths �± being reduced to
γ1,2, with the exception of an interesting competing limit γ1 = γ2 in which case the decay drives the mixing
of the states. Another interesting limit is when ε1 ≈ ε2, while V remains large, then �± = 1

2 (A1 ± A2)
2 that

displays the separation of widths into large and small ones.
In Fig. 6 we show typical dynamics of complex poles in the complex plane as coupling to the continuum

increases. Here we increase A1 keeping all other parameters fixed. The picture is quite generic: one state
always returns to the real axis becoming effectively bound, while the other state absorbs the entire width and
becomes superradiant. This superradiance mechanism is central for many remarkable phenomena providing a
potential explanation for the presence and structure of the proton resonant state in 11Be discussed earlier.
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Fig. 6 Dynamics of two complex resonances (poles in the scattering matrix) for a two state model (27). The parameter choice
here is: ε1 = 0.2, ε2 = 0, A2 = −0.099, and V = 1; the A1 is varied

6 Conclusion

In this brief presentation we went through few remarkable examples and puzzles of the quantum dynamics for
nuclear systems displaying the complex interplay of internal fermionic dynamics, continuum effects, radioac-
tive decays, relaxation of many-body states, quantum resonances of various nature, threshold phenomena,
superradiance, effects of quantum complexity and peculiarities of specific quantum states. This is a broad
area of studies with broad applications not only in the nuclear physics but also for astrophysics and general
many-body quantum physics.
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