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Abstract Theoretically, in (1 + 1) dimensions, one can have Klein–Fock–Gordon–Majorana (KFGM) parti-
cles. More precisely, these are one-dimensional (1D) Klein–Fock–Gordon (KFG) and Majorana particles at
the same time. In principle, the wave equations considered to describe such first-quantized particles are the
standard 1D KFG equation and/or the 1D Feshbach–Villars (FV) equation, each with a real Lorentz scalar
potential and some kind of Majorana condition. The aim of this paper is to analyze the latter assumption fully
and systematically; additionally, we introduce specific equations and boundary conditions to characterize these
particles when they lie within an interval (or on a line with a tiny hole at a point). In fact, we write first-order
equations in the time derivative that do not have a Hamiltonian form. We may refer to these equations as
first-order 1D Majorana equations for 1D KFGM particles. Moreover, each of them leads to a second-order
equation in time that becomes the standard 1D KFG equation when the scalar potential is independent of time.
Additionally, we examine the nonrelativistic limit of one of the first-order 1D Majorana equations.

1 Introduction

In (3 + 1) dimensions, there is the possibility that a spin-0 particle is its own antiparticle. A typical example of
this is the neutral pion (or neutral pi meson) �0 (although it is not exactly an elementary particle) [1,2]. We
may refer to these particles as three-dimensional (3D) Klein–Fock–Gordon–Majorana (KFGM) particles. We
recall that, in general, a Majorana particle is its own antiparticle, i.e., it is a strictly neutral particle [3], and the
wavefunction that characterizes it is invariant under the respective charge-conjugation operation [4–6] (this is,
in principle, within a phase factor). The latter specific fact is what defines a Majorana particle and is called the
Majorana condition. Among the known spin- 1

2 particles, only neutrinos could be of a Majorana nature, i.e., only
neutrinos could be Majorana fermions [7]. Similarly, because photons (spin-1) and gravitons (spin-2) are also
strictly neutral particles, we may say that they are also of a Majorana nature [7,8]. Incidentally, completely
different types of Majorana particles can even be found in certain condensed-matter systems described in
the second quantization formalism. These particles emerge as quasiparticles excitations that are their own
antiparticles and whose statistics is not fermionic [7,9–12]. Incidentally, these excitations have been called
Majorinos [13,14].

Thus, in the first quantization, we may say that the primordial wave equation intended to describe a strictly
neutral 3D KFG spin-0 particle, i.e., a 3D KFGM spin-0 particle, is the 3D Klein–Fock–Gordon (KFG) equation
in its standard form with a real-valued Lorentz scalar interaction (or potential) [1,2,15–17], but in addition,
together with some Majorana conditions. Likewise, the 3D Feshbach–Villars (FV) equation with the scalar
potential and the respective Majorana condition may also be used [18]. Naturally, this way of characterizing
a 3D KFGM particle can also be implemented to describe a 1D KFGM particle (the latter is a KFGM particle
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living in one space and one time dimension). Thus, in this case, we may also use the 1D KFG equation in its
standard form and/or the 1D FV equation, both with a real-valued scalar potential together with their respective
Majorana condition.

The subject of neutral 3D KFG particles in the first quantization (as well as in the second quantization)
is generally mentioned in books on relativistic quantum mechanics [1–3,19]. Additionally, a neutral 3D KFG
particle may not be equal to its antiparticle, for example, a neutral K0 meson (or neutral kaon) is different

from its antiparticle K
0
. In this case, these two particles carry different internal attributes (in fact, different

hypercharges) and can be described by (classical) complex fields or complex solutions of the standard 3D
KFG equation [1,20]. However, if a neutral 3D KFG particle is equal to its antiparticle, then there are no
internal attributes that distinguish them; consequently, they must be described by (classical) real fields or real
solutions of the standard 3D KFG equation, as usual [1,3,7]. Incidentally, we have also seen some references
that roughly question the use of real solutions to describe a strictly neutral 3D KFG particle (see, for example,
Refs. [19,21–23]).

Actually, there is a well-known connection between the complexity of any solution of the standard 3D
KFG equation (which is a Lorentz scalar) and the internal attribute electric charge. That is, if a solution, i.e., ψ ,
describes the particle, then its complex conjugate ψ∗ describes the antiparticle [20]. In fact, the usual densities
� = �(r, t) = (ih̄/2mc2)(ψ∗ ∂tψ−ψ ∂tψ

∗)−(V/mc2)ψ∗ψ and j = j(r, t) = −(ih̄/2m)(ψ∗ ∇ψ−ψ ∇ψ∗),
which satisfy a continuity equation (i.e., ∂t� + ∇ · j = 0), change sign when the replacements ψ → ψ∗,
ψ∗ → ψ and V → −V are made (V is a real potential). Incidentally, the latter result is also valid when
there is additionally a (real) Lorentz scalar potential (because � and j do not depend on this type of potential).
Consequently, it is clear that for real solutions, ψ = ψ∗ (with V = 0), � and j vanish, i.e., there is no place for
a conserved current density four-vector for the strictly neutral 3D KFG particle [3,19]. This conclusion seems
to be a general property of other strictly neutral (bosonic) particles [3].

The following is the path that our study follows. We consider the (1+1)-dimensional case only. In the
first part of Section 2, we begin by discussing the conditions that must be imposed on the electric and scalar
potentials such that the one-component solutions ψ of the standard 1D KFG wave equation can be written as
real solutions. We also analyze the existence of complex solutions for this equation, i.e., complex but not pure
imaginary solutions. Then, we introduce the 1D KFG wave equation in Hamiltonian form, i.e., the 1D FV
wave equation (its solutions � are two-component wavefunctions and the Hamiltonian operator ĥ is a 2 × 2
matrix), and again, we only include the electric potential and the Lorentz scalar potential. We show that this
equation cannot have real solutions regardless of the real or complex nature of the potentials. We also introduce
the charge-conjugate wavefunction and the respective Hamiltonian operator for this wavefunction. We show
that if � describes a 1D KFG particle in the presence of the potentials V and S, then �c (its charge-conjugate
wavefunction) describes a 1D KFG particle in the potentials −V ∗ and S∗. We then introduce a first Majorana
condition that defines a 1D KFGM particle, namely, � = �c, which suggests that the two components of � are
no longer independent. Furthermore, this condition also implies that V must be a purely imaginary potential,
i.e., V = −V ∗ (consequently, V must be zero if it can be considered real), and S must be real. We also obtain
the reality condition ψ = ψ∗ as a consequence of imposing this Majorana condition. A second Majorana
condition that defines a 1D KFGM particle is given by � = −�c, and it imposes the same restrictions on the
potentials as the first Majorana condition; however, this time, we have that ψ satisfies the relation ψ = −ψ∗,
i.e., ψ is purely imaginary but can obviously be written as real by writing (ψ −ψ∗)/2i = ψ/i. Thus, due to the
Majorana conditions, the components of the wavefunction � are always related to each other, which allows
us to write equations for only one component and to obtain the other component algebraically. However, these
equations are not of the Hamiltonian type, i.e., they do not have the form (ih̄ ∂t − Ĥ)φ = 0.

In the second part of Section 2, we show that the further imposition of the formal pseudohermiticity
condition on the Hamiltonian ĥ implies that the electric potential satisfies the relation V = V ∗. The latter
formula together with the condition V = −V ∗ gives us V = 0. In fact, if we place a 1D KFGM particle in the
interior of an interval, for example, � = [a, b], the operator ĥ with V = 0 and a scalar potential S ∈ R is a
pseudo self-adjoint operator. We show that as a consequence of the latter property, the respective solutions �
of the 1D FV wave equation must satisfy any boundary condition that is included in a general set of boundary
conditions that depends on three real parameters. Similarly, the respective solutions ψ of the standard 1D KFG
equation must satisfy any boundary condition that is included in its own real three-parameter general family
of boundary conditions. This is because the solutions ψ must be written as real if they are to describe a 1D
KFGM particle. It is worth mentioning that these general sets of boundary conditions are the same for both
types of Majorana conditions and the most general for a 1D KFGM particle that is within an interval. In fact,



Characterizing Klein–Fock–Gordon–Majorana Page 3 of 16 11

the most general sets of boundary conditions for a 1D KFG particle in an interval were obtained in Ref. [24],
and the general sets of boundary conditions for a 1D KFGM particle presented here arise precisely from those.
Here, we obtain the most general sets of boundary conditions for each component of the FV wavefunction
(these results depend on the type of Majorana condition one chooses). Certainly, each component satisfies its
own differential equation, i.e., its own first-order 1D Majorana equation in the time derivative (which we also
present here). Additionally, the (complex) solutions of these equations have the following characteristic: If the
Majorana condition is given by � = �c (� = −�c), then the real (imaginary) parts of the solutions satisfy
the real second-order 1D KFG equation in time, and the imaginary (real) parts are simply the time derivatives
of the real (imaginary) parts. In Section 3, we present a summary and our conclusions. Additionally, in the
Appendix A, we show that each component of the 1D FV equation also satisfies its own second-order 1D
Majorana differential equation in time; however, these equations become the standard 1D KFG equation when
the scalar potential is independent of time. Finally, in the Appendix B, we examine the nonrelativistic limit of
one of the first-order 1D Majorana equations.

2 Characterizing a 1D KFGM Particle

2.1 Preliminaries

Let us begin by writing the 1D KFG wave equation in its standard form or the second order in time KFG
equation in one spatial dimension,

[
(Ê − V )2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ψ = 0, (1)

where ψ = ψ(x, t) is a one-component wavefunction, Ê = ih̄ ∂/∂t is the energy operator, p̂ = −ih̄ ∂/∂x is
the momentum operator, V = V (x) is the electric potential (energy), and S = S(x, t) ∈ R is a real-valued
Lorentz scalar potential (energy). Thus, the latter equation can also be written as follows:

[
−h̄2 ∂2

∂t2 − 2V ih̄
∂

∂t
+ V 2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

]
ψ = 0. (2)

Clearly, the differential operator acting on ψ in Eq. (2) is real when the potential V is purely imaginary (this
is somewhat trivial but unexpected). Additionally, this operator is real when V = 0, i.e., when there is only
a (real) scalar potential (throughout the article, we consider S to be a real potential, unless explicitly stated
otherwise). Consequently, in these two cases, the solutions of the time-dependent 1D KFG equation in (2)
can always be chosen to be real, i.e., this equation can have solutions à la Majorana. In these two cases, the
solutions of Eq. (2) need not be real, i.e., complex solutions can also be written (naturally, we refer to complex
solutions, i.e., we are not thinking of pure imaginary solutions, unless that is explicitly stated). In fact, if L̂
is a real operator, then ψ and ψ∗ are solutions of the differential equation L̂ψ = 0, and its real solutions
are given by (ψ + ψ∗)/2 and (ψ − ψ∗)/2i (the superscript ∗ denotes the complex conjugate). Certainly, it
is also important to note that whether the electric potential V ∈ R is not zero and S ∈ R exists (or not), the
differential operator acting on ψ in Eq. (2) is complex, and therefore, the solutions of the time-dependent 1D
KFG equation in (2) are necessarily complex.

Now, let us introduce the following functions [18]:

ϕ + χ = ψ (3)

and

ϕ − χ = 1

mc2 (Ê − V )ψ. (4)

By using Eqs. (3), (4) and (1), we obtain a system of coupled differential equations for ϕ and χ , namely,

Ê ϕ =
(

p̂2

2m
+ S

)
(ϕ + χ) + (mc2 + V )ϕ, (5)

Ê χ = −
(

p̂2

2m
+ S

)
(ϕ + χ) − (mc2 − V )χ. (6)
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The latter system can be written in matrix form, namely,

Ê 1̂2� = ĥ�, (7)

where

ĥ = p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2) (8)

is the Hamiltonian operator, � = �(x, t) = [ ϕ χ ]T = [ ϕ(x, t) χ(x, t) ]T is the two-component column
state vector (the symbol T represents the transpose of a matrix), τ̂3 = σ̂z and τ̂2 = σ̂y are Pauli matrices,
and 1̂2 is the 2 × 2 identity matrix. The equation in (7), with ĥ given in Eq. (8), is the 1D FV wave equation
with an electric potential and a scalar potential (and is also called the 1D KFG equation in Hamiltonian form)
[18]. Although this equation has not received sufficient attention when addressing problems within the 1D
KFG theory in (1+1) dimensions, a few papers in which it is considered can be found in Refs. [25–27]. By
using Eqs. (3) and (4), we can explicitly write the relation between the one-component wavefunction ψ and
the two-component column state vector (or wavefunction) �, namely,

� =
[

ϕ
χ

]
= 1

2

[
ψ + 1

mc2 (Ê − V )ψ

ψ − 1
mc2 (Ê − V )ψ

]
. (9)

Certainly, in this last expression, the scalar potential does not appear. We note that even if ψ is a real function,
the components of �, ϕ and χ , are always complex, i.e., � is inexorably complex. In fact, if one has a wave
equation of the form (Ê − Ĥ)
 = 0, then one also has that (Ê − Ĥ)∗
 = 0 if iĤ = (iĤ)∗, i.e., if iĤ is a real
operator. This result tells us that the time-dependent 1D FV wave equation cannot have real solutions. Clearly,
the same goes for the time-dependent Schrödinger equation. That is, these time-dependent wave equations
cannot have real solutions.

The charge conjugate of �,

�c ≡ τ̂1�
∗, (10)

where τ̂1 = σ̂x is a Pauli matrix, satisfies the following equation:

Ê 1̂2�c = ĥc�c, (11)

where the respective Hamiltonian operator is given by

ĥc ≡ p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + Vc 1̂2 + Sc (τ̂3 + iτ̂2). (12)

Taking the complex conjugate of Eq. (7), with ĥ given in Eq. (8), also using the results Ê∗ = −Ê and
(p̂2)∗ = p̂2, and the facts that (τ̂3 + iτ̂2)

∗ = (τ̂3 + iτ̂2), (τ̂3)
∗ = τ̂3, and τ̂1τ̂3 = −τ̂3τ̂1, τ̂1τ̂2 = −τ̂2τ̂1

(⇒ (τ̂3 + iτ̂2)τ̂1 = −τ̂1(τ̂3 + iτ̂2)), and τ̂ 2
1 = 1̂2, and finally, using the definition of �c in Eq. (10), we obtain

the same Eq. (11), but ĥc is given by

ĥc = p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 − V ∗ 1̂2 + S (τ̂3 + iτ̂2). (13)

Comparing the latter operator with the operator given in Eq. (12), we obtain the following two relations:

Vc = −V ∗ , Sc = S. (14)

If we had considered placing a complex scalar potential in the Hamiltonian ĥ given in Eq. (8), then the
Hamiltonian ĥc would be the one given in Eq. (13) but with the replacement S → S∗, and therefore, the
corresponding relation in Eq. (14) would be Sc = S∗.

Equation (7) describes via � a 1D KFG particle in the presence of the potentials V and S. Likewise, Eq.
(11) describes via �c a 1D KFG particle in the presence of the potentials −V ∗ and S. For example, if one sets
V ∈ R and S ∈ R, then one has that Ê 1̂2� = ĥ(V )� (see Eq. 8) and Ê 1̂2�c = ĥc(V )�c = ĥ(−V )�c (see
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Eq. 13), i.e., � describes a 1D KFG particle with one sign of electric charge, and �c describes the 1D KFG
particle with the opposite sign of electric charge (i.e., its antiparticle).

Now, let us explore the possibility that a 1D KFG particle is its own antiparticle; therefore, it must be an
electrically and strictly neutral particle. The condition that defines a particle of this type is customarily given
by

� = �c. (15)

We refer to this relation as the standard Majorana condition. The latter condition imposes the following relation
between the components of �: ϕ = ϕc = χ∗ (⇔ χ = χc = ϕ∗). Hence, � = [

χ∗ χ
]T (⇔ � = [

ϕ ϕ∗ ]T),
i.e., ϕ and χ are not independent. Then, comparing the 1D FV wave equations for � (see Eqs. 7 and 8) and
�c (= �) (see Eqs. 11 and 12), and by using the relations in Eq. (14), we obtain

V = −V ∗. (16)

That is, the complex potential V must be purely imaginary, but if V had been chosen as real, then V must be
zero (because V = −V ). We already know that the potential S is real valued, but if from the beginning we had
decided to place a complex potential S, then, in addition to the relation given in Eq. (16), we can obtain S = S∗
(because Sc = S∗ and we also used the Majorana condition). That is, the Majorana condition imposes that S
be a real scalar potential (see the comment following Eq. (14)). Thus, in principle, the 1D FV wave equation
describing a 1D KFG particle that is also a one-dimensional Majorana particle, i.e., a 1D KFGM particle, can
be written as follows:

Ê 1̂2� = ĥ� =
[

p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V 1̂2 + S (τ̂3 + iτ̂2)

]
�, (17)

where if V ∈ C, then it must be imaginary; and if V ∈ R, then it must be zero. Likewise, the Lorentz
scalar potential S must be real. Additionally, the wavefunction � must have the form � = [

χ∗ χ
]T or

� = [
ϕ ϕ∗ ]T.

Equivalently, it should be noted that the 1D FV wave equation given in Eqs. (7) and (8), or better, the
coupled system of equations given in Eqs. (5) and (6), is invariant under the following substitution:

� = [ ϕ χ ]T → �c = [
χ∗ ϕ∗ ]T

, (18)

but the conditions V = −V ∗ and S = S∗ must be satisfied. In other words, if the latter conditions are satisfied,
then � and �c satisfy the same equation (the latter is the equation for the 1D KFGM particle, namely, Eq. 17).

Now, let us study the consequences of imposing the Majorana condition given in Eq. (15) on the two-
component column vector � given in Eq. (9). Because Ê∗ = −Ê, and V ∗ = −V for the 1D KFGM particle
(see Eq. 16), it follows that

� = 1

2

[
ψ + 1

mc2 (Ê − V )ψ

ψ − 1
mc2 (Ê − V )ψ

]
=

[
0 1
1 0

]
1

2

[
ψ∗ − 1

mc2 (Ê − V )ψ∗

ψ∗ + 1
mc2 (Ê − V )ψ∗

]
= τ̂1�

∗ = �c,

from which one immediately obtains the result

ψ = ψ∗, (19)

which is the reality condition for the wavefunction ψ and can be considered the standard Majorana condition
for these solutions, i.e., ψ = ψ∗ ≡ ψc, where ψc is the charge conjugate of ψ [28]. The latter relation also
arises immediately when using Eq. (3) and the Majorana condition in terms of the components of � (i.e.,
ϕ = χ∗), namely, ψ = ϕ + χ = χ∗ + ϕ∗ = (χ + ϕ)∗ = ψ∗. Thus, if the solutions of the standard 1D KGF
wave equation given in Eq. (2) describe a 1D KFGM particle; then, they must be real. However, V must be
an imaginary potential (see Eq. 16), or zero (if V ∈ R), and S must be a real potential. Consistently, when
the latter conditions on the potentials are imposed on the operator acting on ψ in Eq. (2), the operator is real,
and the solutions ψ can be written real. Obviously, the solutions of the time-dependent 1D FV wave equation
(17), �, do not have to be real to describe a 1D KFGM particle; as we know, these solutions are not real even
when ψ = ψ∗ (see the comment that follows Eq. (9)). The latter is a situation somewhat similar to that which
occurs in Dirac theory in (1+1) dimensions. Indeed, only in the Majorana representation can the solutions of
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the Dirac equation describing a 1D Dirac-Majorana particle be real valued, but in any other representation,
the solutions of the Dirac equation describing this particle are complex valued. Certainly, all these solutions
satisfy the Majorana condition [29].

Similarly, the 1D FV wave equation is invariant under the substitution

� = [ ϕ χ ]T → −�c = [ −χ∗ − ϕ∗ ]T
, (20)

and again, the conditions V = −V ∗ and S = S∗ must be satisfied. That is, � and −�c satisfy the same
equation, but this time, we obtain the result ψ = −ψ∗ (to prove this, one can use the same procedure that led
us to Eq. (19)). Thus, in this case, the solutions ψ are imaginary, but they can be written as real simply by writing
(ψ − ψ∗)/2i = ψ/i. In conclusion, the Majorana condition, which relates the two-component wavefunction
� to its charge-conjugate state �c (or �c to its charge-conjugate state �), appears here in two forms, one
standard form, � = �c, and, say, one nonstandard form, � = −�c. In both cases, the one-component solution
ψ can (and must) be written real, but additionally, the potentials must satisfy the conditions V = −V ∗ and
S = S∗. Thus, the Majorana condition � = −�c imposes the following relation between the components
of �: ϕ = −ϕc = −χ∗ (⇔ χ = −χc = −ϕ∗); hence, � = [ −χ∗ χ

]T (⇔ � = [
ϕ − ϕ∗ ]T). Using

the relation ϕ = −χ∗ and Eq. (3), the condition ψ = −ψ∗ can also be obtained, namely, ψ = ϕ + χ =
−χ∗ − ϕ∗ = −(χ + ϕ)∗ = −ψ∗. In principle, the existence of two Majorana conditions defines two specific
and different types of 1D KFGM particles (this is the case for 3D KFGM particles). When � = �c, we have
+� = �c = τ̂1�

∗ ≡ Ĉ�, i.e., Ĉ� = +�, and when −� = �c, we have −� = �c = τ̂1�
∗ ≡ Ĉ�, i.e.,

Ĉ� = −�. Then, for one of these particles, its respective wavefunction is an eigenfunction of the charge
conjugation transformation (or operator) Ĉ with the eigenvalue +1, and for the other particle, its wavefunction
is an eigenfunction of Ĉ with the eigenvalue −1 [2,18]. For example, the wavefunction corresponding to the
3D KFGM neutral pion �0 is an eigenfunction of Ĉ with eigenvalue +1, i.e., the so-called C-parity of this
particle is +1 [18].

Thus far, the wave equation that we have considered to describe a 1D KFGM particle is Eq. (17). Because
the components ϕ and χ of � are not independent, one can write an equation for only one of these components
and can obtain the other component algebraically. In effect, Eq. (17) is the system of equations given in Eqs.
(5) and (6) with V = −V ∗ and S = S∗. Then, if we take Eq. (5) and use the Majorana condition � = �c,
namely, χ = ϕ∗, we obtain the following wave equation for the 1D KFGM particle:

Ê ϕ =
(

p̂2

2m
+ S

)
(ϕ + ϕ∗) + (mc2 + V )ϕ. (21)

From the solution ϕ of the latter equation, the two-component wavefunction � can be written immediately,
namely, � = [ ϕ χ ]T = [

ϕ ϕ∗ ]T = �c. Alternatively, if we take Eq. (6) and use the Majorana condition
ϕ = χ∗, we obtain an equation for the one-component wavefunction χ , namely,

Ê χ = −
(

p̂2

2m
+ S

)
(χ + χ∗) − (mc2 − V )χ, (22)

and from the solution χ of the latter equation, we can write � = [ ϕ χ ]T = [
χ∗ χ

]T = �c. Certainly, it is
sufficient to solve at least one of these one-component equations because χ and ϕ are algebraically related.
Thus, it can be said that Eq. (21) alone, or Eq. (22) alone, describe this kind of 1D KFGM particle. Similarly,
if we now use the Majorana condition � = −�c, i.e., ϕ = −χ∗ (or χ = −ϕ∗), we can write the following
wave equation for this 1D KFGM particle:

Ê ϕ =
(

p̂2

2m
+ S

)
(ϕ − ϕ∗) + (mc2 + V )ϕ, (23)

in which case the respective wavefunction � is given by � = [ ϕ χ ]T = [
ϕ − ϕ∗ ]T = −�c. Alternatively,

we can write the following wave equation:

Ê χ = −
(

p̂2

2m
+ S

)
(χ − χ∗) − (mc2 − V )χ, (24)

in which case the respective wavefunction � is given by � = [ ϕ χ ]T = [ −χ∗ χ
]T = −�c. Certainly, any

of these last two equations models the 1D KFGM particle which is characterized by the condition � = −�c.
Incidentally, we note that none of these last four equations for the 1D KFGM particle is of the form (Ê−Ĥ)φ = 0.
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2.2 A 1D KFGM Particle in an Interval

It is important to mention that up to this point, we have not imposed any particular or specific condition on
the Hamiltonian ĥ, for example, we have not yet imposed on ĥ the condition of formal pseudohermiticity,
i.e., ĥadj ≡ τ̂3 ĥ† τ̂3 = ĥ (the symbol † denotes the usual Hermitian conjugate of a matrix and an operator).
Effectively, the generalized Hermitian conjugate, or the formal generalized adjoint of ĥ, that is, ĥadj, is defined
as

ĥadj ≡ τ̂3 ĥ† τ̂3, (25)

and is given by

ĥadj = p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + V ∗ 1̂2 + S (τ̂3 + iτ̂2). (26)

In fact, we introduce the following pseudo inner product [1]:

〈〈�, 
〉〉 ≡
∫

�

dx �†τ̂3
, (27)

where � = [a, b] (an interval), and � = [ ϕ χ ]T and 
 = [ ζ ξ ]T, we can verify that the definition given in
Eq. (25) can also be formally written as follows:

〈〈ĥadj�, 
〉〉 = 〈〈�, ĥ
〉〉. (28)

Specifically, this last relation requires only the definitions of ĥadj (see Eq. 25) and the scalar product given
in Eq. (27). Actually, the relation in Eq. (28) defines the generalized Hermitian conjugate, or the generalized
adjoint ĥadj on an indefinite inner product space. Then, the Hamiltonian operator in Eq. (17) is formally
pseudo-Hermitian or formally generalized Hermitian because it satisfies the following formal relation:

ĥadj = ĥ. (29)

Consequently, the potential V must be real (compare ĥ in Eq. (17) with ĥadj in Eq. (26)), i.e., V = V ∗, and
because we want to characterize a 1D KFGM particle (then V = −V ∗), V must be zero. Indeed, a real or
complex electric interaction does not seem to affect a particle that is strictly neutral.

Thus, the 1D FV wave equation that describes a 1D KFGM particle is given by Eq. (17) with V = 0 and
S ∈ R, namely,

Ê 1̂2� = ĥ� =
[

p̂2

2m
(τ̂3 + iτ̂2) + mc2τ̂3 + S (τ̂3 + iτ̂2)

]
�, (30)

where � = [
ϕ ϕ∗ ]T or � = [

χ∗ χ
]T (with � = �c being the Majorana condition); equivalently, Eq. (21),

or Eq. (22), with V = 0 and S ∈ R, also describes this 1D KFGM particle. Equally, Eq. (30) describes a 1D
KFGM particle with � = [

ϕ − ϕ∗ ]T or � = [ −χ∗ χ
]T (where � = −�c is the Majorana condition);

equivalently, Eq. (23), or Eq. (24), with V = 0 and S ∈ R, also describes this 1D KFGM particle.
By virtue of two integrations by parts, the Hamiltonian operator ĥ in Eq. (30) and its formal generalized

adjoint ĥadj (which acts as the operator ĥ) satisfy the following relation:

〈〈ĥadj�, 
〉〉 = 〈〈�, ĥ
〉〉 − h̄2

2m

1

2

[ (
(τ̂3 + iτ̂2)�x

)†
(τ̂3 + iτ̂2)
 − (

(τ̂3 + iτ̂2)�
)†

(τ̂3 + iτ̂2)
x

]∣∣∣
b

a
,

(31)

where [ g ]|ba ≡ g(b, t) − g(a, t), and �x ≡ ∂�/∂x , etc. It is worth mentioning that the latter relation is also
valid if the Hamiltonians ĥ and ĥadj contain, in addition to a real scalar potential S, a real electric potential
V . Certainly, in this specific case, we are not using the Majorana condition, i.e., we are not considering a 1D
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KFGM particle inside an interval (because the latter case requires that V = 0), but only a 1D KFG particle in
an interval [24].

Then, if the boundary conditions imposed on � and 
 at the ends of interval � lead to the vanishing of
the boundary term in Eq. (31), the Hamiltonian ĥ, formally satisfying Eq. (29) (i.e., ĥadj = ĥ), is effectively
pseudo-Hermitian (or generalized Hermitian). The most general family of boundary conditions leading to the
cancellation of the boundary term in Eq. (31) was obtained in Ref. [24]. For all the boundary conditions inside
this family, ĥ is a pseudo-Hermitian operator, but it is also a pseudo self-adjoint operator [24], that is, ĥ satisfies
the relation

〈〈ĥ�, 
〉〉 = 〈〈�, ĥ
〉〉. (32)

Thus, the functions belonging to the domains of ĥ and ĥadj obey the same boundary conditions, and ĥadj = ĥ
(in this case, the latter is not just a formal equality). Then, the most general set of pseudo self-adjoint boundary
conditions for the Hamiltonian ĥ is given by (for clarity, we omit the variable t in the boundary conditions
hereinafter)

[
(τ̂3 + iτ̂2)(� − iλ�x )(b)
(τ̂3 + iτ̂2)(� + iλ�x )(a)

]
= Û(4×4)

[
(τ̂3 + iτ̂2)(� + iλ�x )(b)
(τ̂3 + iτ̂2)(� − iλ�x )(a)

]
, (33)

where Û(4×4) is a 4 × 4 unitary matrix which can be written as follows:

Û(4×4) = Ŝ†
[

Û(2×2) 0̂
0̂ Û(2×2)

]
Ŝ, (34)

with

Ŝ =
⎡
⎢⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

⎤
⎥⎦ (35)

(Ŝ† = Ŝ−1), and as we will see immediately, Û(2×2) is a 2 × 2 unitary matrix that depends on three real
parameters.

The boundary term in Eq. (31) can also be written in terms of the one-component wavefunctions corre-
sponding to the two-component column vectors � = [ ϕ χ ]T and 
 = [ ζ ξ ]T, namely, ψ = ϕ + χ and
φ = ζ + ξ (see Eq. 3), evaluated at the endpoints of the interval �. Certainly, the relation given in Eq. (31)
can be written as follows:

〈〈ĥadj�, 
〉〉 = 〈〈�, ĥ
〉〉 − h̄2

2m

[
ψ∗
x φ − ψ∗φx

]∣∣b
a . (36)

The boundary term in the latter relation is proportional to the total derivative with respect to time of the pseudo
scalar product given in Eq. (27), where � and 
 are solutions of the 1D FV wave equation, that is,

− h̄2

2m

[
ψ∗
x φ − ψ∗φx

]∣∣b
a = h̄

i

d

dt
〈〈�, 
〉〉. (37)

It is also important to note that the pseudo inner product 〈〈�, 
〉〉 in Eq. (37) does not depend on the Lorentz
scalar potential S, but it depends on the electric potential V (here, we have V = 0). However, its time derivative
is independent of the two potentials (provided they are real valued). Then, because ĥ is a pseudo self-adjoint
operator, the boundary term in Eq. (36) is zero. The most general family of pseudo self-adjoint boundary
conditions for ĥ, which is similar for the operator ĥadj (because ĥadj is equal to ĥ, i.e., their actions and domains
are equal) and consistent with the cancellation of the boundary term in Eq. (36), is given by

[
ψ(b) − iλψx (b)
ψ(a) + iλψx (a)

]
= Û(2×2)

[
ψ(b) + iλψx (b)
ψ(a) − iλψx (a)

]
, (38)

where Û(2×2) is precisely the 2 × 2 unitary matrix that appears in Eq. (34) [24]. Let us note that if Û(2×2) is
known, by using Eqs. (34) and (35), the matrix Û(4×4) can be calculated immediately. Thus, the pseudo inner
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product 〈〈�, 
〉〉 in Eq. (37) is constant, i.e., for all the corresponding solutions ψ and φ of the standard 1D
KFG wave equation that satisfy any of the boundary conditions included in Eq. (38) (see Eqs. 36 and 37).

Naturally, the standard 1D KFG wave equation also describes a 1D KFGM particle when V = 0 and
S ∈ R, namely,

[
−h̄2 ∂2

∂t2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

]
ψ = 0 (39)

(see Eq. 2), where ψ = ψ∗ (� = �c is the Majorana condition). That is, the solutions of Eq. (39) must be
written as real. Furthermore, we can impose the Majorana condition � = −�c, and therefore, ψ = −ψ∗;
however, these purely imaginary solutions can and should also be written as real. Consequently, when the
Majorana condition is given by � = �c, it follows that both ψ and ψ∗ satisfy the general boundary condition
in Eq. (38), and when the Majorana condition is � = −�c, it follows that both ψ and −ψ∗ satisfy it. In these
two cases, the matrix Û(2×2) satisfies the following condition:

ÛT
(2×2) = Û(2×2), (40)

that is, Û(2×2) must additionally be a (complex) symmetric matrix. If we choose the following general expres-
sion for Û(2×2):

Û(2×2) = ei μ
[

m0 − i m3 −m2 − i m1
m2 − i m1 m0 + i m3

]
, (41)

where μ ∈ [0, π), and the real quantities mk (k = 0, 1, 2, 3) satisfy (m0)
2 + (m1)

2 + (m2)
2 + (m3)

3 = 1, and
impose on it the condition given in Eq. (40), we obtain the result m2 = 0. Thus, the most general set of pseudo
self-adjoint boundary conditions for a 1D KFGM particle, or for the ultimately real solutions of the 1D KFG
wave equation in Eq. (39), is given by

[
ψ(b) − iλψx (b)
ψ(a) + iλψx (a)

]
= ei μ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
ψ(b) + iλψx (b)
ψ(a) − iλψx (a)

]
, (42)

and depends on three real parameters. Indeed, the square matrix Û(2×2) in Eq. (42) is the one that determines
the matrix Û(4×4) that appears in the more general set of pseudo self-adjoint boundary conditions for the 1D
KFGM particle (see Eqs. 33 and 34). The latter general family of boundary conditions is for the solutions of
the 1D FV wave equation in Eq. (30), which can also describe a 1D KFGM particle. Incidentally, because the
matrix Ŝ in Eq. (35) is real, one has that Ŝ† = ŜT, but in addition, Û(2×2) satisfies Eq. (40), consequently, the
matrix Û(4×4) in Eq. (34) is also a (complex) symmetric matrix, i.e., ÛT

(4×4) = Û(4×4). Actually, if Û(2×2) is

the matrix given in Eq. (41) with m2 = 0, then Û(4×4) is given by

Û(4×4) = ei μ
[

(m0 − i m3)1̂2 −i m11̂2

−i m11̂2 (m0 + i m3)1̂2

]
. (43)

Some of the boundary conditions included in the general set of pseudo self-adjoint boundary conditions
for a 1D particle KFGM given in Eq. (42) are the following: (i) ψ(a) = ψ(b) = 0 (m0 = +1, m1 = m3 = 0
and μ = π); (ii) ψx (a) = ψx (b) = 0 (m0 = +1, m1 = m3 = 0 and μ = 0); (iii) ψ(a) − λψx (a) = 0
and ψ(b) + λψx (b) = 0 (m0 = +1, m1 = m3 = 0 and μ = π/2); (iv) ψ(a) = ψ(b) and ψx (a) = ψx (b)
(m0 = m3 = 0, m1 = +1 and μ = π/2); (v) ψ(a) = −ψ(b) and ψx (a) = −ψx (b) (m0 = m3 = 0,
m1 = −1 and μ = π/2). In this short list, we have distinguished boundary conditions: (i) is the Dirichlet
boundary condition, (ii) is the Neumann condition, (iii) is a kind of Robin boundary condition, (iv) is the
periodic condition and (v) is the antiperiodic condition. As discussed above, a 1D KFGM particle supports
only those boundary conditions arising from the unitary matrix Û(2×2) in Eq. (41) with m2 = 0. For example,
some boundary conditions that are not suitable for a 1D KFGM particle but are suitable for a 1D KFG particle
(m2 �= 0) are the following: (vi) ψ(a) = ±iψ(b) and ψx (a) = ±iψx (b) (m0 = m1 = m3 = 0, m2 = ±1 and
μ = π/2); (vii) ψ(a) = ±iλψx (b) and ψ(b) = ±iλψx (a) (m0 = m1 = m3 = 0, m2 = ±1 and μ = 0).
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Due to the Majorana condition, the components of the wave function � in Eq. (30) are not independent.
When this condition is given by � = �c, then χ = ϕ∗, and therefore, ψ = ϕ + χ = ϕ + ϕ∗ = 2 Re(ϕ) and
ψx = 2 (Re(ϕ))x . Thus, the equation in (21) with V = 0 and S ∈ R, namely,

Ê ϕ =
(

p̂2

2m
+ S

)
(ϕ + ϕ∗) + mc2ϕ, (44)

describes a 1D KFGM particle (the one for which � = �c), and its solutions must satisfy any of the boundary
conditions included in the general set of boundary conditions given in Eq. (42) but written only in terms of ϕ,
namely,

[
(Re(ϕ))(b) − iλ(Re(ϕ))x (b)
(Re(ϕ))(a) + iλ(Re(ϕ))x (a)

]
= ei μ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Re(ϕ))(b) + iλ(Re(ϕ))x (b)
(Re(ϕ))(a) − iλ(Re(ϕ))x (a)

]
. (45)

Let us note the simultaneous presence of ϕ and ϕ∗ in Eq. (44); however, from this equation, it follows that the
real part of ϕ satisfies the 1D KFG equation, namely,

[
−h̄2 ∂2

∂t2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

]
Re(ϕ) = 0, (46)

and the imaginary part of ϕ can be obtained by taking the time derivative of the real part, namely,

Im(ϕ) = h̄

mc2

∂

∂t
Re(ϕ). (47)

Clearly, if the scalar potential depends explicitly on time, the imaginary part of ϕ does not satisfy Eq. (46) (see
Appendix A). Finally, the solutions of Eq. (44) are simply given by ϕ = Re(ϕ)+ i Im(ϕ) (and the component χ
of � is obtained from the Majorana condition, i.e., χ = ϕ∗). As discussed above, in this same case (� = �c),
the equation in (22) can alternatively be used with V = 0 and S ∈ R, namely,

Ê χ = −
(

p̂2

2m
+ S

)
(χ + χ∗) − mc2χ. (48)

However, in addition, in Eq. (42), the relations ψ = ϕ + χ = χ∗ + χ = 2 Re(χ) and ψx = 2 (Re(χ))x must
be used, namely,

[
(Re(χ))(b) − iλ(Re(χ))x (b)
(Re(χ))(a) + iλ(Re(χ))x (a)

]
= ei μ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Re(χ))(b) + iλ(Re(χ))x (b)
(Re(χ))(a) − iλ(Re(χ))x (a)

]
. (49)

In this case, it can be shown that Re(χ) satisfies the same Eq. (46) and any of the boundary conditions in Eq.
(49). The imaginary part of χ is obtained from the following relation:

Im(χ) = − h̄

mc2

∂

∂t
Re(χ). (50)

Thus, the solutions of Eq. (48) are simply given by χ = Re(χ) + i Im(χ) (and the component ϕ of � is
obtained from the Majorana condition, i.e., ϕ = χ∗).

Similarly, when the Majorana condition is given by � = −�c, χ = −ϕ∗, and therefore, ψ = ϕ + χ =
ϕ − ϕ∗ = 2i Im(ϕ) and ψx = 2i (Im(ϕ))x . Thus, the equation in (23) with V = 0 and S ∈ R, namely,

Ê ϕ =
(

p̂2

2m
+ S

)
(ϕ − ϕ∗) + mc2ϕ, (51)

characterizes a 1D KFGM particle (the one for which � = −�c) and its solutions must satisfy some of the
boundary conditions given in Eq. (42), but the latter equation written in terms of ϕ only, specifically,

[
(Im(ϕ))(b) − iλ(Im(ϕ))x (b)
(Im(ϕ))(a) + iλ(Im(ϕ))x (a)

]
= ei μ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Im(ϕ))(b) + iλ(Im(ϕ))x (b)
(Im(ϕ))(a) − iλ(Im(ϕ))x (a)

]
. (52)
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From Eq. (51), the imaginary part of ϕ satisfies the 1D KFG equation, as expected, that is,
[

−h̄2 ∂2

∂t2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

]
Im(ϕ) = 0, (53)

with the boundary conditions given in Eq. (52). The real part of ϕ is obtained from the relation

Re(ϕ) = − h̄

mc2

∂

∂t
Im(ϕ). (54)

Finally, ϕ = Re(ϕ) + i Im(ϕ) is the solution of Eq. (51) (and the component χ of � is obtained from the
Majorana condition, i.e., χ = −ϕ∗). Equivalently (because � = −�c is still valid), the equation in (24) can
also be used with V = 0 and S ∈ R, namely,

Ê χ = −
(

p̂2

2m
+ S

)
(χ − χ∗) − mc2χ. (55)

However, now, in Eq. (42), the relations ψ = ϕ + χ = −χ∗ + χ = 2i Im(χ) and ψx = 2i (Im(χ))x must be
used. Then, we can write

[
(Im(χ))(b) − iλ(Im(χ))x (b)
(Im(χ))(a) + iλ(Im(χ))x (a)

]
= ei μ

[
m0 − i m3 −i m1

−i m1 m0 + i m3

] [
(Im(χ))(b) + iλ(Im(χ))x (b)
(Im(χ))(a) − iλ(Im(χ))x (a)

]
. (56)

The latter boundary conditions are for the solutions of the wave equation in (55), which can also describe the
1D KFGM particle for which � = −�c. In this case, it can be shown that Im(χ) also satisfies Eq. (53) and
any of the boundary conditions in Eq. (56) (which are certainly the same boundary conditions that are satisfied
by Im(ϕ)), and the real part of χ is obtained from the relation

Re(χ) = h̄

mc2

∂

∂t
Im(χ). (57)

Finally, the solutions of Eq. (55) are obtained from χ = Re(χ) + i Im(χ) (and the component ϕ of � is
obtained from the Majorana condition, i.e., ϕ = −χ∗).

We may refer to Eqs. (44), (48), (51) and (55) as the first-order (non-Hamiltonian) 1D Majorana equations
in time for the 1D KFGM particle, and their solutions are complex. On the other hand, all the examples of
the boundary conditions we presented above for the wavefunction ψ have identical counterparts for Re(ϕ)
and Re(χ), and Im(ϕ) and Im(χ). This is because the families of boundary conditions given in Eqs. (45),
(49), and (52), (56), are similar in form. Incidentally, each of the first-order 1D Majorana equations leads to a
second-order 1D Majorana equation. None of the latter equations is the standard 1D KFG equation; however,
when the scalar potential does not explicitly depend on time, each equation becomes the standard 1D KFG
equation. This is exhibited in the Appendix A.

Last, if we set � = 
 in Eq. (36), and therefore, ψ = φ, we obtain

〈〈ĥadj�, �〉〉 = 〈〈�, ĥ�〉〉 − h̄

i
[ j ]|ba , (58)

where

j = j (x, t) = ih̄

2m

(
ψ∗
x ψ − ψ∗ψx

) = h̄

m
Im

(
ψ∗ψx

)
(59)

is the 1D KFG “probability” current density (although it is certainly not correct to interpret it as a quantity
representing a probability). Similarly, because the pseudo inner product 〈〈�, 
〉〉 in Eq. (37) is independent
of time, 〈〈�, �〉〉 ≡ ∫

�
dx �†τ̂3� = ∫

�
dx � is also a constant quantity, where

� = �(x, t) = �†τ̂3� = |ϕ|2 − |χ |2 = 1

2mc2

[
ψ∗(Êψ) − (Êψ∗) ψ

]
(60)

is the 1D KFG “probability” density, but we also have that [ j ]|ba = 0. Therefore, j (b, t) = j (a, t) (see Eq.
37). These two quantities, j = j (x, t) and � = �(x, t), also satisfy the continuity equation in this situation
where a real scalar potential exists, namely, ∂�/∂t = −∂ j/∂x (certainly, the latter equation is valid for the
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solutions of the 1D KFG equation with a scalar potential, for example, the solutions ψ of Eq. (39)). Let us
note that if � and j are nonzero, the continuity equation can be integrated in x , which leads to the expected
result d

dt

∫
�

dx � = − [ j ]|ba . Then, because [ j ]|ba = 0, we have that
∫
�

dx � = const.
Clearly, when the solutions of Eq. (39) are definitely real-valued functions, the 1D KFGM current density

j and density � cease to exist. That is, when ψ = ψ∗, the expressions for j and � given in Eqs. (59) and (60)
are identically zero; however, when ψ = −ψ∗, the result is the same, namely,

j = j (x, t) = 0 and � = �(x, t) = 0. (61)

Thus, ultimately, the reality condition for the wavefunction ψ also automatically leads to the so-called impen-
etrability condition at the extremes of the interval �, i.e., j (b, t) = j (a, t) = 0. This situation contrasts with
the case of the 1D Dirac wave equation in the Majorana representation (by considering the Dirac theory as
a single-particle theory). There, the Majorana condition is given by �D = �∗

D, so that only real solutions
describe the 1D Dirac-Majorana particle; however, the corresponding probability current density is not auto-
matically zero [30]. In conclusion, regardless of which boundary condition one takes from the general set in
Eq. (42), which is satisfied by a real solution ψ , this solution does, by necessity, always verify the mathematical
condition of impenetrability at the walls of the interval.

In any case, it is important to remember that for a 1D KFG particle moving in a finite interval (see Eq. (2),
whereV and S are real-valued potentials, and therefore, their solutionsψ are always complex-valued functions),
we can recognize impenetrability boundary conditions (or confining boundary conditions) and nonconfining
boundary conditions [24]. In general, the confining boundary conditions satisfy j (b, t) = j (a, t) = 0, and
nonconfining boundary conditions simply satisfy j (b, t) = j (a, t) (for which it is certainly necessary that
the solutions ψ are complex). However, when the solutions of Eq. (2) are real-valued functions (which can
occur when V = 0); that is, when the solutions of the equation describing a 1D KFGM particle are real (see
Eq. 39), the distinction between confining and nonconfining boundary conditions is not feasible, at least if
the current density j is considered. Certainly, the characterization of these two types of boundary conditions
would require the use of some other current density. We hope to study this issue in a forthcoming paper.

3 Summary and Conclusions

In the first quantization, the wave equations considered to describe a strictly neutral 1D KFGM particle are
the standard 1D KFG equation and/or the 1D FV equation, both with a real Lorentz scalar potential plus
their respective Majorana conditions. Unexpectedly, one finds that the Majorana condition appears here in
two specific forms, say, one standard and one nonstandard. Specifically, we showed that the imposition of the
standard (nonstandard) Majorana condition on the solutions of the 1D FV equation implies that the solutions
of the second order 1D KFG equation in the time must be real (imaginary; however, they can also be written
real, as expected). Additionally, both Majorana conditions determine that the scalar potential must be real. In
any case, we found that the solutions of the time-dependent 1D FV equation cannot be real. We also showed
that the additional imposition of the formal pseudohermiticity condition on the Hamiltonian that is present
in this equation together with a Majorana condition determines that the electric potential must be zero. In
addition, if we place a 1D KFGM particle in a finite interval, then the corresponding Hamiltonian is a pseudo
self-adjoint operator. As a consequence of this property, one has a three-parameter general set of boundary
conditions for the solutions of the 1D FV equation and another for the respective real solutions of the standard
1D KFG equation. We found that these two general sets of boundary conditions are the same for the two types
of Majorana conditions. Because of the Majorana condition, the components of the wavefunction for the 1D
FV equation are not independent; hence, we wrote first-order equations in time for each of these components
and obtained the general sets of pseudo self-adjoint boundary conditions that they must obey. Incidentally,
these equations do not have a Hamiltonian form, but any of them alone can model a 1D KFGM particle (in fact,
if one of the complex components of the solution of the 1D FV equation is known, the other component can
be obtained algebraically via the Majorana condition). Thus, we refer to these equations as the first-order 1D
Majorana equations for the 1D KFGM particle. Additionally, we wrote second-order 1D Majorana equations
in time for each of the components of the 1D FV equation. These equations become the standard 1D KFG
equation when the scalar potential does not explicitly depend on time (see Appendix A).

As shown in Appendix B, the nonrelativistic limit of the first-order 1D Majorana equation given in Eq. (44)
yields the partial differential equation given in Eq. (B11). The latter equation is not the Schrödinger equation
because the term enclosed in the bracket does not have to be zero. Having said that, if it is assumed that the
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solution of this nonrelativistic equation ϕNR and its complex conjugate ϕ∗
NR can be treated as independent

solutions, then ϕNR satisfies the Schrödinger equation and ϕ∗
NR satisfies the equation which is the complex

conjugate of the Schrödinger equation. A similar situation arises when studying the nonrelativistic limit of
certain real scalar field theories (see, for example, Refs. [31–35]). There, the (classical) relativistic field is real,
i.e., ψ = ψ∗, but the nonrelativistic ψNR is complex; thus, in that case, by taking the nonrelativistic limit, the
typical ansatz we used in Appendix B must be modified. Apropos of this, the first-order Majorana equations
we introduce here describe strictly neutral particles, and their solutions are always complex; thus, the ansatz
can be the usual one. Finally, in each of those field theories (and only in certain cases), the nonrelativistic
Schrödinger equation and its respective complex conjugate equation could be obtained if the solutions of these
two equations are assumed to be independent. Incidentally, the latter assumption has been questioned (see,
for example, Ref. [31]). In closing, our results can also be extended to the problem of a 1D KFGM particle
in a real line with a tiny hole at a point, for example, at x = 0 (i.e., � = R − {0}). Indeed, the general sets
of pseudo self-adjoint boundary conditions for this problem can be obtained from those corresponding to the
particle within the interval � = [a, b] by identifying the ends of the interval with the two sides of the hole,
namely, x = a → 0+ and x = b → 0−.
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Appendix A

As we have seen, we can write 2 + 2 = 4 first-order (non-Hamiltonian) 1D Majorana equations in time for the
1D KFGM particles, namely, Eqs. (44) and (48) (by using the standard Majorana condition), and (51) and (55)
(by using the nonstandard Majorana condition). Likewise, we can also write four second-order 1D Majorana
equations in time for these particles, i.e., four second-order equations for the components ϕ and χ of �. In
effect, applying the operator Ê to both sides of Eq. (44), and using the relation Ê∗ = −Ê, gives the following
equation:

[
Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ϕ = (Ê S)(ϕ + ϕ∗). (A1)

Similarly, from Eq. (48), the following equation is obtained:
[

Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S
]
χ = −(Ê S)(χ + χ∗). (A2)

These two equations correspond to the Majorana condition � = �c, that is, ψ = ψ∗. If we add Eqs. (A1) and
(A2) and use the relations given in Eqs. (3) and (4) (the latter with V = 0), it is confirmed that ψ = ϕ + χ
satisfies the 1D KFG equation (i.e., Eq. 39), namely,

[
Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ψ = 0, (A3)

as expected. Note that only when the scalar potential does not explicitly depend on time, the complex compo-
nents ϕ and χ of � also satisfy this equation. If this is not the case, only the functions Re(ϕ) and Re(χ) can
satisfy the 1D KFG equation (see the discussion following Eq. (45) through Eq. (50)).
Similarly, applying the operator Ê to both sides of Eq. (51), and using the relation Ê∗ = −Ê, gives the equation

[
Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S

]
ϕ = (Ê S)(ϕ − ϕ∗). (A4)

In the same manner, applying Ê to Eq. (55) gives the following equation:
[

Ê2 − (c p̂)2 − (mc2)2 − 2 mc2S
]
χ = −(Ê S)(χ − χ∗). (A5)
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The latter two equations correspond to the Majorana condition � = −�c, that is, ψ = −ψ∗. If we add Eqs.
(A4) and (A5) and use the relations given in Eqs. (3) and (4) (the latter with V = 0), it is again found that
ψ = ϕ + χ satisfies the 1D KFG equation (i.e., Eq. A3), as expected. Clearly, if (Ê S) = 0, then ϕ and χ also
satisfy the 1D KFG equation. If (Ê S) �= 0, then only the functions Im(ϕ) and Im(χ) can satisfy this equation
(see the discussion following Eq. (53) through Eq. (57)).

Appendix B

Let us examine the nonrelativistic approximation of one of the first-order 1D Majorana equations in time, for
example, Eq. (44). As we know, the latter equation for ϕ ∈ C is completely equivalent to Eq. (46), namely,

[
−h̄2 ∂2

∂t2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

]
Re(ϕ) = 0, (B1)

plus the relation given in Eq. (47), namely,

Im(ϕ) = h̄

mc2

∂

∂t
Re(ϕ). (B2)

Let us note that Eq. (B1) can also be written as follows:

Re

[ (
−h̄2 ∂2

∂t2 + h̄2c2 ∂2

∂x2 − (mc2)2 − 2 mc2S

)
ϕ

]
= 0. (B3)

Now, we choose the typical ansatz that connects ϕ to its nonrelativistic approximation ϕNR, namely,

ϕ = ϕNR e−i mc2
h̄ t , (B4)

and therefore,

ϕt =
[
(ϕNR)t − i

mc2

h̄
ϕNR

]
e−i mc2

h̄ t (B5)

and

ϕt t =
[
(ϕNR)t t − i

2mc2

h̄
(ϕNR)t − (mc2)2

h̄2 ϕNR

]
e−i mc2

h̄ t . (B6)

In the nonrelativistic approximation, we have that

| ih̄ (ϕNR)t | � mc2 | ϕNR | ⇒ | (ϕNR)t | � mc2

h̄
| ϕNR | (B7)

and

| ih̄ (ϕNR)t t | � mc2 | (ϕNR)t | ⇒ | (ϕNR)t t | � mc2

h̄
| (ϕNR)t | . (B8)

Consequently, in this regime, the relations given in Eqs. (B5) and (B6) can be written as follows:

ϕt = −i
mc2

h̄
ϕNR e−i mc2

h̄ t (B9)

and

ϕt t =
[
−i

2mc2

h̄
(ϕNR)t − (mc2)2

h̄2 ϕNR

]
e−i mc2

h̄ t . (B10)



Characterizing Klein–Fock–Gordon–Majorana Page 15 of 16 11

Substituting the latter expression into Eq. (B3), we obtain the following result:

Re

[
e−i mc2

h̄ t
(

−Ê + p̂2

2m
+ S

)
ϕNR

]
= 0. (B11)

Clearly, this is not the Schrödinger equation with the scalar interaction, i.e., ϕNR in Eq. (B11) does not
necessarily obey this equation.
Similarly, the relation that gives the imaginary part of ϕ (Eq. B2) can also be written as follows:

Im(ϕ) = Re

(
h̄

mc2 ϕt

)
. (B12)

Substituting Eqs. (B4) and (B9) into Eq. (B12), we obtain the result

Im

(
ϕNR e−i mc2

h̄ t
)

= Re

(
−i ϕNR e−i mc2

h̄ t
)

, (B13)

which is always true because Im(z) = Re(−iz), for all z ∈ C. Thus, nothing new is obtained from Eq. (B2)
and the nonrelativistic limit of Eq. (44) reduces to Eq. (B11). Finally, ϕNR is obtained from Eq. (B11), (ϕ is
given in Eq. (B4) and χ = ϕ∗).
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