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Abstract Nucleon form factors at large momentum transfer are important for understanding the transition
from nonperturbative to perturbative QCD and have been the focus of experiment and phenomenology. We
calculate proton and neutron electromagnetic form factors G g, m(Q?) from first principles using nonpertur-
bative methods of lattice QCD. We have accumulated large Monte Carlo statistics to study form factors up to
momentum transfer 0% < 8 GeV? with a range of lattice spacings as well as quark masses that approach the
physical point. In this paper, results of initial analyses are presented and compared to experiment, and potential
sources of systematic uncertainty are discussed.

1 Introduction

Behavior of nucleon electromagnetic form factors Ggp n, G Mp,,,(Qz) at high momentum transfer 0% ~
5...10GeV? have implications for understanding and improving models of nucleon structure. Models involv-
ing vector meson dominance, chiral solitons, a pion cloud, and relativistic constituent quarks have been
employed to predict form factor behavior at large Q2. Generally, while some models may describe data for the
four nucleon form factors, their predictions differ in the region where data are unavailable (see, e.g., Ref. [1]
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Fig. 1 Lattice ensembles and statistics accumulated for each value of @ and m . The circle areas are proportional to the number
of samples. Lighter pion-mass calculations (D5) require significantly more statistics

for a review). Studies of nucleon form factors using Dyson-Schwinger and Faddeev equations have demon-
strated the significance of diquark correlations for the nucleon electromagnetic structure at high momentum
transfer [2]. In particular, the zero crossing in the electric Sachs form factors depend on quark correlations in
Faddeev’s amplitude of the nucleon, thus data from experiment or nonperturbative lattice QCD calculations
can be used to determine their magnitude. The experimental program to determine nucleon form factors up to
0?% ~ 18 GeV? is well underway [3—7], and the first results have been published for the proton magnetic form
factor G M,,(QZ) for Q2 up to ~ 16 GeV? [8]. This calls for ab-initio theoretical calculations of nucleon form
factors with rigorous control of systematic effects, which is possible using modern lattice QCD methods.

Until recently, studies of nucleon form factors on a lattice have been limited by Q% < 1...2GeV2.
One notable exception is the calculation of the Gg), /Gy ratio using Feynman-Hellman method [9]. Lattice
calculations involving hadrons with large momentum |p| > my are challenging for several reasons. First,
Monte Carlo fluctuations of lattice hadron correlators are governed by the energy of the state [10]. The signal-
to-noise ratio for the nucleon is expected to decrease exp[ — (En(p) — %mn)r] with Euclidean time
7, making high-momentum calculations especially “noisy”. At the same time, excited states of the nucleon,
which are expected to introduce large systematic uncertainties, are less suppressed by Euclidean time evolution
o exp[ — AEN(ﬁ)r] as the energy gap AE(p) = En.exc(p) — En(p) shrinks with increasing relativistic
nucleon momentum |p|. Both these challenges are best adressed by choosing the Breit frame on a lattice, so
that the initial and final momenta of the nucleon are equal to | p\)| = %\/@ . For example, momentum transfer

Q% ~ 10 GeV? requires nucleon momentum p; > 1.6 GeV, which reduces the energy gap A Ey (0) =~ 0.5 GeV
to Enx(p1) =~ 0.3 GeV. Therefore, very large Monte Carlo statistics combined with rigorous analysis of excited
states contaminations become absolutely necessary to obtain credible results.

Such large-statistics calculations have been pursued for a few years, with results previously reported in
Refs. [11,12]. These calculations have been performed with Ny = 2 + 1 (light and strange) dynamical quarks
with the clover-improved Wilson fermion action with lattice spacing a ~ 0.09 fm. Two values of the pion
masses m, ~ 280 and 170 MeV used in the calculations allowed to check for light quark mass dependence of
the results. Recently, we have extended our work to a finer lattice spacinga =~ 0.073 fm (“E5” ensemble), which
is absolutely essential to understand discretization effects, a likely source of systematic errors in calculations
involving large momenta. In this paper, we report results obtained on these finer lattices, as well as those from
previous coarser lattices but with substantially increased statistics. Our current results rely on multi-state fits
to to assess systematic effects from excited states.

2 Methods

We have performed large-statistics calculations on four ensembles of lattice gauge fields. The summary of our
accumulated statistics is shown in Fig. 1 and Table 1.
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Table 1 Summary of ensembles, kinematics, and statistics

max 2
ens lat a [fm] my [MeV] Nconf stat [% [;fﬁl gem‘sz
Cc13 323 x 96 0.127 285 210 20,160 6...10 1.14 8.3
D5 323 x 64 0.094 278 1346 86,144 6...12 1.13 10.9
D6 483 x 96 0.091 166 2040 261,120 6...12 1.09 8.0
E5 483 x 128 0.073 272 2080 266,240 7...14 1.02 8.0
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Fig. 3 Dependence of nucleon ground-state energies on momentum computed on ensembles E5 (left) and D6 (right)

In order to obtain nucleon form factors, we calculate nucleon matrix elements of the quark vector current
with large-momentum nucleons in the in- and out-states,

Covvp i (B @ tseps ting) = ) ¢ PV HIAN G, tiep) (77712 1 N(O)) 1)

y.Z

where N = e??¢[iT Cysd®ii¢ is the nucleon interpolating field on a lattice constructed with “momentum-
smeared” quark fields g to improve their overlap with the ground state of the boosted nucleon [13]. Nucleon
matrix elements are extracted from nucleon-current three-point correlation functions using well-established
methods of lattice QCD (see, e.g. Ref. [14]). Wick contractions of lattice quark fields generate two types of
diagrams: quark-connected and quark-disconnected. The latter have lattice quark “loops” that are connected
to the valence quark lines only by the gluons and are more difficult to compute. Their contributions to nucleon
form factors at 0% < 1.2 GeV? were found small (< 1%) [15], but remain to be explored at higher momenta;
these contributions are omitted in the current work.

The nucleon correlators become dominated with the ground state C(t) = (N () ... N(0)) o e EN? as the
Euclidean time 7 is inscreased. As expected, there are substantial contributions from nucleon excited states.
Although more than one excited state is expected to contribute, the data are not precise enough to constrain
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Fig. 4 Fits to the nucleon three-point functions (3) for the D5 ensemble. The colored bands show fits to Eq. (3), the dark-gray
bands are the ground-state values .Aq( from these fits, and the light-gray bands are overdetermined fits of these matrix elements

to the form factors F; 1,2(Q2)
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Fig. 5 Comparison of lattice results for Dirac Fj (left) and Pauli F> (right) form factors of the proton (top) and the neutron
(bottom) to phenomenological fits of experimental data [16] (dashed curves). Disconnected quark contractions are neglected

more than one, especially at large momenta. Therefore, we impose a simple two-state model on lattice data

(N(p, )N(0)) ~ Ce Enot 4 Cfe=EN1T )
(NP, 1) (G, TN (0) ~ AyoCy Coe ™ Enot=D=ENT L A 10CyiCoe™ Emi (=T~ Enot
+ AO/] Co/CleiE;VO(tir)iENlr + A]/] C]/CleiE;\’l(tit)fENlr (3)

to extract ground-state nucleon energies Ez(\;)o and momentum-dependent matrix elements of nucleon opera-
tors Coo) = (vac|N|N(p")) and vector current density Ayo = (N(p')|J|N(p)). The fits and the ground-
state energies from the former are shown in Fig. 2, together with effective-energy estimators Ele\}cf(t) =

% log [C ®)/C(t + a)]. The dispersion relation on a lattice £ 2( pz) shown in Fig. 3 indicates that discretiza-
tion effects in the spectrum of moving nucleons are under control. A representative set of fits of Eq. 3 to
three-point proton nucleon-current correlator data from the D5 ensemble is shown in Fig. 4. The ground-state
matrix elements 4y from fits (3) are decomposed into form factors F f{ , separately for each flavor g. The data
points in Fig. 4 show correlator ratios estimating nucleon matrix elements for + — 00, and the bands of the
respective color bands show fits to Egs. (3). The dark-gray bands show ground-state matrix elements A, and
the light-gray bands show the overdetermined fits of these matrix elements to the form factor values F; (Q?).

3 Results

Individual proton and neutron form factors are shown in Fig. 5, similarly compared to phenomenological fits.
Although the lattice results have qualitatively similar Q2 behavior, they overshoot the phenomenological fits
by a factor of (2...2.5). This substantial difference may be due to discretization effects. Without a calculation
on a smaller lattice spacing, these effects are difficult to assess. A detailed study of O (a)-improved current
operators and calculations at different lattice spacings are required to control this source of systematic effects.

In Fig. 6, the ratio of proton Pauli and Dirac form factors is shown. In perturbative QCD calculations, this

2:02 2
ratio is expected to scale as F,/Fy, ~ log(g# [17]. The lattice data are compared with the phenomeno-

logical fits [16] based on proton experimental data available at Q% < 8.5 GeV? (shown with black symbols).
Although the general trend in the data is compatible with the logarithmic growth, the current precision is
insufficient to validate it.

The ratios of Sachs electric and magnetic form factors for the proton and the neutron are shown in Figs. 7,
and again compared to the phenomenological fits [16] and experimental data, as well as calculations using
quark+diquark Faddeev equations [2]. The agreement between lattice data and experiment (phenomenology)
for the ratios in the proton case is reassuring, although better precision is certainly required in light of upcoming
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Fig. 6 Ratio of proton Pauli and Dirac form factors Q2F2 p(Qz) /F p(Qz), compared to phenomenological fits of experimental
data [16] (dashed curves). Disconnected quark contractions are neglected
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Fig.7 Ratio of proton (left) and neutron (right) Sachs form factors .G g / G i, compared to phenomenological fits of experimental
data [16] and quark+diquark Faddeev equation calculations [2]. Disconnected quark contractions are neglected

new experiments at JLab. In the case of the neutron, the G, /Gy, ratio is below the experimental values,
although it demonstrates qualitative agreement in its Q> behavior. Since the neutron is neutral, its electric
form factor may be much more sensitive to the systematic effects in this calculation, in particular the omission
of disconnected quark contractions and unphysical heavy pion masses. We observe, however, that at high
momenta where the results should depend less on the masses of the light quarks, the lattice data agrees with
extrapolations from phenomenological fits. Better motivated comparisons will be possible with future neutron
form factor data with extended Q range.

Finally, in Fig.8 we show contributions to nucleon form factors from u and d quarks separately. For
comparison, these contributions are shown rescaled in the fashion similar to Ref. [18]. In experiment, this can
be studied by combining proton and neutron data and relying on SU(2) y symmetry, which is exact in our
lattice QCD calculations. Since both the neutron and the proton data are required, the fit can only be relied
upon for 02 < 3.4GeV?. Similarly to the nucleon form factors, lattice results for their flavor consituents
overshoot experimental fits by a large factor. Still, it is reassuring that their Q% behavior and the relative u and
d quark contributions are in qualitative agreement.
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Fig. 8 Contributions of u and d quarks to Dirac Fj (left) and Pauli F; (right) nucleon form factors, scaled by Q4. The scales
are adjusted for comparison to figures in Ref. [18]. Disconnected quark contractions are neglected. The phenomenological fits to
experimental data (dashed curves) are limited to 02 < 3.4GeV? in the neutron case [16]

4 Conclusions

To summarize, results of these initial lattice QCD calculations of nucleon form factors are overestimating the
results of experiment by a large factor. However, the ratios of these form factors are in much better agreement
with experiment and phenomenology. Calculations with smaller lattice spacings, which are underway, will
lead to better understanding of this disagreement, validate lattice QCD methods for high-momentum nucleon
states on a lattice, and shed light on nucleon structure in the important region of transition from nonperturbative
to perturbative quark-gluon dynamics.
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