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Abstract In this work, we present recent lattice-QCD results for the one-particle irreducible three-gluon
vertex in general kinematics, i.e. beyond the typical symmetric and soft-gluon cases. These results have been
obtained through high-statistics quenched lattice simulations, considering a tensorial basis owing to which
the three-gluon form factors can be naturally cast in terms of Bose-symmetric momentum variables. The data
show the dominance of the tree-level tensor component. This is phenomenologically relevant, as it allows the
vertex to be approximated by its tree-level contribution. Moreover, the tree-level-tensor form factor depends
almost exclusively on a particular symmetric combination of the three momenta involved: the so-called “planar
degeneracy”. The combination of both findings allows for a relatively simple description of the three-gluon
vertex.

1 Introduction

The three-gluon vertex plays a central role in the infrared dynamics of Quantum Chromodynamics (QCD) [1–3]
and is intimately linked to gluons self-interactions, namely to the non-abelian nature of QCD. The appearance
of a three-gluon vertex in the QCD Lagrangian lies at the origin of both asymptotic freedom and confinement
in QCD. The study of the non-perturbative features of the three-gluon vertex has attracted attention for the last
decades in both Dyson-Schwinger and lattice simulations [4–29].

The three-gluon vertex depends on the incoming momenta, q , r and p, with the kinematical constraint
q + r + p = 0. Most lattice studies focus on the symmetric (q2 = r2 = p2) and soft-gluon (p = 0,
and thus q2 = r2) cases, where there is only a single momentum scale [19–21]. In both kinematics, the
dominant component of the vertex exhibits an infrared zero-crossing at low momentum, motivated by a negative
singularity in the vanishing momentum limit which can be understood as the consequence of massless ghost
and massive gluons generating the full expansion of the vertex in continuum Schwinger-function methods
(CSM) [30]. The phenomenon of the dynamical generation of a gluon mass has reached a great consensus
from both lattice and CSM (see Ref. [31] for a very recent review, and references therein).

Being its study of paramount theoretical relevance by itself, the three-gluon vertex is also a central compo-
nent in a great variety of phenomenological studies in the continuum. The infrared suppression displayed by
its main form factors is a distinctive feature that plays a crucial role in generating bound states with specific
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physical properties. The search for such bound states is an ongoing endeavor that relies on the productive syn-
ergy between lattice simulations and CSM. This joint effort has resulted in a deeper insight into the intricate
patterns underlying the rich dynamics of QCD, establishing remarkable connections with the emergence of a
mass scale in the gauge sector of the theory [30,32–47]

2 Transversely Projected Three-Gluon Vertex

From the lattice gauge fields in momentum-space, ˜Aa
μ(q), one begins by evaluating the basic ingredients,

namely the gluon propagator

�ab
μν(q) = 〈˜Aa

μ(q)˜Ab
ν(−q)〉 = �(q2)δab Pμν(q), (1)

and the three-gluon Green function,

Gαμν(q, r, p) = 1

24
fabc〈˜Aa

α(q)˜Ab
μ(r)˜Ac

ν(p)〉; (2)

both specialized in Landau gauge, with Pμν(q) = δμν − qμqν/q2 for the transverse projector. Note that, in
the definition of Gαμν(q, r, p), there is an explicit projection over fabc, the fully anti-symmetric color tensor
of SU(3), and we are thus not considering any possible contribution to the symmetric one, dabc. This lattice
Green function Gαμν(q, r, p) can be expressed as

Gαμν(q, r, p) = g�̄αμν(q, r, p)�(q2)�(r2)�(p2), (3)

in terms of the transversely projected vertex function �̄αμν(q, r, p) which, in its turn, can be related to the full
one-particle irreducible (1PI) vertex function �α′μ′ν′(q, r, p),

�̄αμν(q, r, p) = �α′μ′ν′(q, r, p)Pα′
α (q)Pμ′

μ (r)Pν′
ν (p), (4)

with the use of the transverse projectors defined above.
The full 1PI tensor can be written as a combination of both longitudinal and transverse contributions,

�αμν(q, r, p) = �L
αμν(q, r, p) + �T

αμν(q, r, p). Ten out of the fourteen 1PI three-gluon vertex linearly
independent tensors are longitudinal, �

αμν
1 , · · · , �

αμν
10 , while only four are transverse, tαμν

1 , · · · , tαμν
4 , using

the widely used Ball-Chiu decomposition [2,48]. However, as explicitly shown in Refs. [20], the transverse
projection in Eq. (4) results in a rearranging of the longitudinal and transverse components of the former
decomposition, mixing them up in four particular combinations. These four combinations correspond to com-
ponents of a direct decomposition of the transversely projected three-gluon vertex, which are the form factors
that can be accessed from Landau-gauge lattice simulations. Indeed, using the Ball-Chiu decomposition, the
transversely projected three-gluon vertex can be expanded in terms of the four tensors ti ’s. However, we have
switched to a different basis,

λ
αμν
1 = Pα

α′(q)Pμ

μ′(r)Pν
ν′(p)

[

�
α′μ′ν′
1 + �

α′μ′ν′
4 + �

α′μ′ν′
7

]

, (5a)

λ
αμν
2 = 3

2s2 (q − r)ν
′
(r − p)α

′
(p − q)μ

′
Pα

α′(q)Pμ

μ′(r)Pν
ν′(p) , (5b)

λ
αμν
3 = 3

2s2 P
α
α′(q)Pμ

μ′(r)Pν
ν′(p)

[

�
α′μ′ν′
3 + �

α′μ′ν′
6 + �

α′μ′ν′
9

]

, (5c)

λ
αμν
4 =

(

3

2s2

)2
[

tαμν
1 + tαμν

2 + tαμν
3

]

, (5d)

where the four tensors are anti-symmetric under exchange of any pair of gluon momenta and indices. Further-
more, (5a) corresponds to the the tree-level tensor, making thus possible an easier comparison with existing
results in the literature for some particular kinematics. Therefore, one is left with

�̄αμν(q, r, p) = �̄1λ
αμν
1 + �̄2λ

αμν
2 + �̄3λ

αμν
3 + �̄4λ

αμν
4 ; (6)
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Fig. 1 Schematic representation of the three-gluon vertex. Momentum conservation imposes that the sum of the three incoming
momenta q , r and p is zero

where, as the definition of Gαμν(q, r, p) implies a contraction with the anti-symmetric color tensor fabc, Bose
symmetry ensures that the scalar form factors �i depend only on Bose-symmetric combinations of the three
momenta.

The form factors will be extracted projecting the lattice-evaluated three-point Green function over the
chosen tensors for the basis:

�αμν(q, r, p) · λ
αμν
j (q, r, p)

︸ ︷︷ ︸

b j

=
∑

i

�i (q
2, r2, p2) λiαμν(q, r, p)λαμν

j (q, r, p)
︸ ︷︷ ︸

Mi j

(7)

or, calling Pαμν
i = M−1

i j λ
αμν
j (q, r, p) the projector over each element of the basis:

�i (q
2, r2, p2) = Pαμν

i �αμν(q, r, p). (8)

We will use this general scheme to extract the scalar form factors �i from the lattice evaluation of the
three-gluon Green function G.

3 Kinematics of the Three-Gluon Vertex

The three-gluon vertex in its most general form is only restricted by the momentum conservation, i.e.q+r+p =
0, being q , r and p the momenta of the three corresponding gluons. (see Fig. 1).

For some kinematical configurations (i.e. some choices of the three momenta q , r and p), the four tensors
in Eqs.(5a) to (5d) are no longer linearly independent, and a careful analysis of the dependence of these tensors
on the kinematics is in order. Indeed, the matrix M in Eq.(8) will only be rank 4 in the general case, while
in the symmetric configuration (q2 = r2 = p2) its rank is reduced to 2 (with our choice only the symmetric
limits of λ1 and λ2 survive as linearly independent tensors). In the soft-gluon case (p = 0), which corresponds
to an angle between the momenta q and r , θqr = π , there is only one linearly independent tensor, namely
the tree-level one. Finally, in the bisectoral case defined by q2 = r2 (note that this case contain as particular
limits the symmetric and soft-gluon ones), the three first tensors λ1, λ2 and λ3 survive as linearly independent
tensors and thus we will have to deal with a 3x3 block of matrix M . The bisectoral case also contains the limit
in which the three momenta are parallel with q = r (and thus, applying momentum conservation, p = −2q),
corresponding to an angle θqr = 0, termed collinear in table 1. In this case there is no option to build a
transverse tensor and the rank of the matrix M is zero. Although there are similarities between the two extreme
bisectoral configurations: soft-gluon (θqr = π) and collinear (θqr = 0), there is a subtle difference between
them. In both cases all the momenta that appear are proportional to each other, but the soft-gluon limit p → 0
allows to construct a transverse tensor without ambiguity [21,30].

The different kinematic configurations can be represented in a three-dimensional plot whose axes corre-
spond to q2, r2 and p2 (Fig. 2a). The scalar form factors �i will depend 1 on the squared momenta q2, r2, and

1 Note that the products of these momenta can be rewritten in terms of the squared momenta as, for example, q · r =
1
2 (p2 − q2 − r2).
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Table 1 Number of independent tensors for each kinematical configuration. For each one, the angle between the momenta q and
r is also shown

Case Def. q̂r Tensors

Sym. q2 = r2 = p2 2π
3 2

Soft gluon p = 0 π 1
Collinear q = r = −p/2 0 0
Bisectoral q2 = r2 (0, π) 3
General – 4

p2

q2

r2
S

p2 = 0

q2 = 0r2 = 0

)b()a(

Fig. 2 The kinematic configuration of the three-gluon vertex represented by the Cartesian coordinates (q2, r2, p2) (left picture).
All kinematics allowed are contained in a circle around the symmetric case (q2 = r2 = p2, green dot) (right picture). The
bisectoral line (thick gray), and the particular soft-gluon (orange solid circle), and symmetric (green) cases appear depicted. The
other two soft-gluon limits (black) are also illustrated

p2, and therefore varies within the space defined by these axes. Nevertheless, the choice of the tensors we have
made implies that the �i are symmetric under exchange of the momenta, and can only depend on symmetric
combinations of the momenta [10]. The symmetric combination of the momenta s2 = 1

2

(

q2 + r2 + p2
)

is a
quantity shared by all the points lying on every plane perpendicular to the octant diagonal (see Fig. 2a). Given
a fixed s2, Fig. 2b represents all possible kinematics: the white incircle contains all the kinematic configu-
rations allowed by momentum conservation. The grey line corresponds to the one of the so-called bisectoral
regimes, where two of the squared momenta (q2 and r2 in this case) are equal. The green dot represents the
symmetric case, where all the three squared momenta are the same. Finally, the three dots on the limit of the
circle correspond to the three possible soft-gluon cases, where one of the momenta goes to zero.

4 Results

We have employed a large set of quenched gauge field configurations (See Table 2) using the standard Wilson
action and fixed them to the Landau gauge. From these configurations we have computed the gluon propagator
and the three-gluon vertex for the symmetric, soft-gluon and bisectoral cases as described above. From the
lattice bare inputs, we have implemented the Momentum substraction (MOM) renormalization by introducing
the renormalization constants for the gauge field and three-gluon vertex, �R,μ(q2) = Z−1

A (μ2, a)�(q2, a) and
�R,μ(q2, r2, p2) = Z3(μ

2, a)�(q2, r2, p2, a); such that the renormalized quantities take the tree-level values
at the substraction point μ. This implies �R,μ(μ2) = 1/μ2, for the gluon propagator; while, particularizing
the vertex for the soft-gluon kinematics, one is left with:

�R,μ(μ2, μ2, 0) = 1. (9)

For the gluon propagator and soft-gluon three-gluon vertex, the H4-extrapolation method described in Refs.
[49,49–52] has been applied to reduce the lattice artifacts. In all cases, statistical errors have been estimated
using “Jackknife method”.

Although the symmetric and soft-gluon kinematics have been largely studied in the past (see, for example,
[16,19] and references therein.), the so-called planar degeneracy, the fact that the dominant tree-level form
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Table 2 Quenched configurations employed for lattice calculations

β L4/a4 a (fm) Confs.

5.6 324 0.236 2000
5.8 324 0.144 2000
6.0 324 0.096 2000
6.2 324 0.070 2000

0 1 2 3 4 5 6
0

0.5

1

1.5

Soft-gluon

Symmetric

Fig. 3 Tree-level form factor �1(s) for symmetric (red) and soft-gluon (blue) kinematics, renormalized at μ = 4.3GeV

factor depends almost exclusively on the Bose-symmetric combination of momenta s2 [53], implies that

�
sym
1,R

(

2

3
q2,

2

3
q2,

2

3
q2

)

= �
sg
1,R(q2, q2, 0) ; (10)

where sym and sg denote the symmetric and soft-gluon cases, respectively. In Fig. 3, both form factors have
been represented in terms of the symmetric variable s, and shown to exhibit an impressive overlapping (spoiled
by their usual representation in terms of the momentum-scale q) which is a striking indication for the planar
degeneracy.

Every kinematic configuration belonging to the more general bisectoral case can be represented by moving
along the vertical line in Fig. 2b, varying the angle from θqr = 0, for the collinear case, to θqr = π for
the soft-gluon case. The symmetric one corresponds to an angle θqr = 2π/3 and is placed between the two
extreme cases. In order to show that the planar degeneracy holds true along the bisectoral kinematics, we have
plotted in Fig. 4 the dominant form factor for several values of s as a function of the angle θqr . From top-left
to bottom-right, the values of s correspond to 1, 1.5, 2, and 3 GeV. In each plot, momentum bins of s ± 5%
have been considered for the representation, exploiting data from the four data-sets in table 2.

Taking as reference the soft-gluon case, we have introduced in Fig. 4 a green band centered in the soft-gluon
average for this value of s and width 3σ . One can observe that, despite the fact that there is a large spreading
of the values for the bisectoral case, the planar degeneracy seems to work as a good approximation; i.e., the
data do not present a significant dependence on the angle for any given value of s. The same has been also
shown in Ref. [47].

Besides the fact that planar degeneracy appears to be satisfied at first sight, there are some effects that can
be appreciated from the plots in Fig. 4 and deserve a comment. First, the overall uncertainty increases when
one approaches the symmetric limit θqr → 2π/3. This is associated to the fact that the rank of matrix M in
Eq. (8) is 3 along the bisectoral case and reduces to 2 in the symmetric one. When approaching that limit, the
determinant of M approaches a zero and this increasing the numerical noise. Second, and more relevant from
a phenomenological point of view, there is a systematic deviation from the planar degeneracy (mostly seen at
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Fig. 4 Tree-level form factor �1(q2, q2, p2) as a function of the angle θqr for several fixed values of s = √

(q2 + r2 + p2)/2.
From top-left to bottom-right, s takes the values 1, 1.5, 2, and 3 GeV. In all subplots, blue symbols represent bisectoral kinematics,
red ones show the symmetric case (θqr = 2π/3 and black ones represent the soft-gluon case at θqr = π . The green band is centered
on the weighted average of the soft-gluon values and with its width is three times the average error. Grey points correspond to
bisectoral data close to one of the particular cases in table 1

high momenta) when we approach the soft-gluon limit θqr → π . This effect is indeed expected and can be
explained within a simple one-loop analysis with a non-running gluon mass [53].

5 Conclusions

We have presented the lattice calculations of the three-gluon vertex from a large ensemble of quenched
gauge-field configurations. We have analysed the transversely projected 1PI vertex beyond the soft-gluon
and symmetric kinematical configurations, choosing a suitable tensor basis that makes manifest the Bose
symmetry of the vertex. Focusing on the dominant tree-level form factor �1, we have shown an amazing
overlap between the soft-gluon and symmetric cases, when plotted in terms of the symmetric combination of
momenta s2 = (q2 + r2 + p2)/2. This is a strong evidence supporting the planar degeneracy, i.e., the fact
that the form-factors only depend on s. To support this evidence, we have also proved that, for all bisectoral
kinematics, this dominant form factor has almost no dependence on the angle θqr .

This planar degeneracy has also been reported in Dyson-Schwinger studies [10] and is of paramount
interest due to the simplifications that introduces in the structure of the three-gluon vertex. In this sense, the
planar degeneracy, joint to the dominance of the tree-level tensor contribution [53] allows to approximate the
transversely projected three-gluon vertex as:

�
αμν

(q, r, p) ≈ �
sg
1

(

q2 + r2 + p2

2

)

λ
αμν
1 (q, r, p). (11)

As a first very relevant phenomenogical application of Eq. (11), it has been implemented in Ref. [47] as an
input to deliver a lattice-based estimate of the so-called displacement function, which modifies the three-gluon
vertex Slavnov-Taylor identity only when the Schwinger mechanism for the dynamical gluon mass generation
is activated. The result entails that the Schwinger mechanism is strongly supported by the momentum running
observed from the lattice for the two- and three-point QCD Green’s functions.

At present, we have empirical evidence of the near “planar degeneracy” supported by a large amount of
lattice data and a one-loop calculation that incorporates a gluon mass. However, a deeper comprehension of
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its origin eludes us. It is crucial to uncover the mechanism that underlies this characteristic and to establish
any possible connections with other fundamental aspects of QCD.
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