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Abstract The s-wave nucleon–nucleon scattering matrix (S-matrix) exhibits UV/IR symmetries which are
hidden in the effective field theory (EFT) action and scattering amplitudes, and which explain some generic
features of the phase shifts. These symmetries offer clarifying interpretations of existing pionless EFT expan-
sions, and suggest starting points for novel expansions. The leading-order (LO) S-matrix obtained in the
pionless EFT with scattering lengths treated exactly is shown to have a UV/IR symmetry which leaves the sum
of s-wave phase shifts invariant. A new scheme, which treats effective range corrections exactly, and which
possesses a distinct UV/IR symmetry at LO, is developed up to NLO (next-to-LO) and compared with data.

1 Introduction

The language of EFT was commonplace among particle physics graduate students in the late 80’s and early
90’s. The syntax of this language is quite simple and intuitive and amounts primarily to counting dimensions
of operators, and, for quantitative calculations, including quantum effects perturbatively, as in the canonical
example of the chiral perturbation theory expansion [1,2]. This use of EFT requires an understanding of
regularization and renormalization at the level of the textbook treatment of λφ4 theory. Indeed, this was
covered in detail in Weinberg’s two-year quantum field theory sequence (attended by one of the authors) that
took place several times in that era and just preceded the initial publication of his classic textbooks.

Contemporaneously, Weinberg’s papers on EFT for nuclear physics provided an organizational principle—
based in QCD and its symmetries—for establishing the most important terms in the nuclear potential [3–5].
However there was not much mention in these papers of the manner in which the highly singular potentials
would be regulated and renormalized, or how such a procedure would modify the organizational principle.
The initial papers applying Weinberg’s ideas focused primarily on a direct numerical evaluation of phase shifts
to several non-trivial orders in the expansion and largely ignored issues of renormalization by smoothing out
singular contributions to the potential using effective form factors [6–8], the standard practice in the nuclear
physics community at the time. Eventually, the issue of renormalization in Weinberg’s scheme was carefully
considered in simple cases and rather dramatic inconsistencies were found in the potentials describing the

S. R. Beane (B) · R. C. Farrell
Department of Physics, University of Washington, Seattle, WA 98195, USA
E-mail: silas@uw.edu

R. C. Farrell
E-mail: rolanf2@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/s00601-022-01748-y&domain=pdf


45 Page 2 of 16 S. R. Beane, R. C. Farrell

simplest nucleon–nucleon (NN) scattering phase shifts, initially in the s-wave channels [9], and later in the p-
wave channels [10]. These observation spawned a research program into the internal consistency of Weinberg’s
program which has lasted over two decades and which still has achieved no consensus1. In parallel with this
rather abstract theoretical research program, the nuclear physics community has increasingly adopted the
initial Weinberg paradigm, while sometimes providing apologias for the original renormalization issues; see,
e.g. [14,15]. Indeed, one could argue that, while Weinberg’s program has been pushed to ever increasing
sophistication and to larger and more complex nuclear systems, the initial formal issues with consistent
renormalization—for the most fundamental systems (i.e. NN and NNN) which are foundational to the entire
program—remain unresolved2.

All of the above is in reference to the EFT relevant for characteristic momenta k ∼ Mπ and which therefore
includes the pion as a propagating degree of freedom in the EFT Lagrangian. Pions introduce the complexities
of a highly-singular tensor force, as well as non-trivial aspects of the chiral symmetry of QCD. Efforts to resolve
the renormalization issues with Weinberg’s program led to a new EFT proposal in which pions are treated in
perturbation theory and consistent renormalization is manifest [22,23]. While this scheme ultimately failed to
agree with the real world [24], it was an important success as regards the change of mindset in nuclear physics
that was brought by Weinberg’s work: it clearly demonstrated that a specific EFT organizational principle,
such as the one proposed in Ref. [22,23], is falsifiable.

By contrast, inspired by Weinberg’s work, tremendous progress was made in understanding renormalization
for k ∼ 1/as � Mπ , where as (s = 0, 1) are the s-wave NN scattering lengths [22,23,25,26]. At these distance
scales the pion and all its complexities can happily be integrated out, leaving a relatively simple EFT with
nucleon degrees of freedom, generally interacting with some external currents3. In the initial studies of EFTs
of NN scattering in which the potential is treated exactly, a fundamental point of confusion lay in the belief
that NN scattering could be described by a coordinate-space potential given by a gradient expansion of delta-
function interactions. That this is not the case was shown explicitly in Ref. [29], based on earlier work which
had clarified Wigner’s causality bounds on scattering parameters in the language of EFT [30–33]. Long ago
Wigner showed that causality places constraints on scattering parameters in quantum mechanical scattering
with potentials of finite range [34]. In the EFT paradigm, in mass-dependent schemes like cutoff regularization,
the UV momentum-space cutoff acts like the inverse of the range of interaction. While this relation is somewhat
fuzzy, removal of the cutoff in the renormalization procedure is operationally equivalent to taking the range
of interaction to zero.

It is worth mentioning here the flawed analogy between a non-perturbative cutoff EFT of nuclear physics
and EFTs of QCD relevant for lattice QCD simulations. While there is a clear parallel between the lattice
QCD action with Symanzik improvement and the nuclear EFT Lagrangian, lattice QCD has a continuum limit
which is consistent with all general physical principles, including causality while causality—via the Wigner
bound—prohibits nuclear EFT from achieving a continuum limit. This is no surprise physically: both nuclear
EFT and lattice QCD formally find their UV completion in QCD. However, nucleonic degrees of freedom
lose their meaning in the approach to the continuum limit, and this is, at least qualitatively, reflected in the
Wigner bound in NN scattering4. In some sense, the Wigner bound pigeonholes nuclear EFT into the Wilsonian
paradigm where a cutoff on short-distance modes is implemented and then varied over some range in order to
demonstrate cutoff independence order-by-order in the EFT.

The Wigner bound applies only when a strictly finite-range potential is treated exactly, giving rise to
a unitary S-matrix. Treating the NN s-wave effective-range parameters to be of order the range of interac-
tion of the potential, allows the gradients of delta-function potentials to be treated in perturbation theory
[22,23,25,26], and this renders the Wigner bounds a non-issue. A highly efficient pionless EFT, in which non-
perturbative nuclear binding arises from treating the momentum-independent four-nucleon operators exactly,
while momentum-dependent operators are treated in perturbation theory, has proven to be a remarkably suc-
cessful paradigm for low-energy few-body interactions with large scattering lengths [22,23,25,36,37]. Of
course, the inherent ambiguity in the form of the nuclear EFT potential at short distance allows avoidance
of the Wigner bound even when the potential—including momentum-dependent operators—is treated exactly
[38], as long as the range of the interaction is kept finite. However, as will be seen below, in this case it is
challenging to express amplitudes in a useful form, as renormalization conditions have to be imposed at all
orders in the momentum expansion.

1 The literature is too vast to cite in its entirety. For helpful discussions, see Refs. [11–13].
2 For an alternate point of view that consistent renormalization has been achieved see Refs. [13,16–21].
3 Halo nuclei have also been described successfully by an extension of the pionless EFT technology [27,28].
4 Note however that scattering with s-wave resonances can be described with zero-range forces [35].
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As the s-wave NN effective ranges are somewhat large as compared to the pion’s Compton wavelength, and
indeed the pionless EFT expansion is rendered more effective by expanding about the deuteron or dibaryon
pole which subsumes effective range corrections [39–41], it makes sense to treat the range-corrections exactly
[42] while continuing to treat shape-parameter effects in perturbation theory. A practical way to achieve this is
by making use of the dibaryon scheme developed for NN scattering in Ref. [43] and formulated in detail, with
many examples, in Ref. [44]. This method effectively includes range corrections non-perturbatively through
the use of energy-dependent potentials which, from the EFT perspective, can be constructed using operator
ambiguities and the freedom of field redefinition. One of the goals of this contribution is to provide an EFT
scheme which treats effective-range corrections exactly using energy-independent interactions. It may come
as a surprise that there is a powerful symmetry which constrains this system, and facilitates the avoidance of
the Wigner bound in a useful manner.

In the Wilsonian paradigm, EFTs are viewed as perturbations about fixed points of the renormalization
group (RG) [26]. In non-relativistic s-wave scattering with finite-range forces, the running couplings exhibit
two interesting fixed points, the trivial fixed point where there is no interaction, and the unitary fixed point
where the interaction is as strong as it can be without violating unitarity. At both fixed points, the EFT exhibits
conformal invariance or Schrödinger symmetry [45]. Note however that the notion that EFTs of contact forces
are expansions about fixed points of the RG is not strictly-speaking correct, as, at the fixed point itself, there
is no scattering. That is, the LO amplitude, with finite scattering lengths, has an intrinsic scale and is therefore
in itself necessarily a perturbation about the RG fixed point.

The main point that will be conveyed in this contribution is that the simplest S-matrices which describe
s-wave scattering with finite-range forces near (but not at) unitarity exhibit exact UV/IR symmetries [46–48].
A new viewpoint here that may be unfamiliar to the reader is the focus on the symmetries of the S-matrix,
rather than the symmetries of the action or the scattering amplitude. In addition to providing a new way of
viewing the EFT near the unitary fixed point, UV/IR symmetries suggest novel EFT expansions. In particular,
the s-wave scattering system at low energies, with scattering length and effective range corrections treated
exactly, is considered in detail as an example of the power and utility of the UV/IR symmetries.

2 The S-Matrix and UV/IR Symmetry

Below inelastic thresholds, the unitary s-wave scattering amplitude for a finite range potential is given by the
effective range expansion (ERE)

T (k) = −4π

M

[
−1

a
+ 1

2
rk2 + v2k

4 + v3k
6 + O(k8) − ik

]−1

, (1)

where k = √
ME is the on-shell center-of-mass (c.o.m.) momentum, a is the scattering length, r is the effective

range, and the vi are shape parameters. With the normalization of the scattering amplitude implied by Eq. (1),
the S-matrix element is given by

S = e2iδ(k) = 1 − i
kM

2π
T (k). (2)

Consider the scattering length approximation, where all effective range and shape parameters are taken to
vanish. In this case, the scattering amplitude and S-matrix element are

T (k) = 4π

M

a

1 + iak
, S(k) = 1 − iak

1 + iak
. (3)

It is immediately clear that S has a symmetry which is not a symmetry of T . The scale transformation k �→ eβk,
a �→ e−βa leaves S invariant and simply implies that varying k with a fixed is the same as varying a with k
fixed. The trivial fixed point, S = 1, is reached with no interaction, a = 0 or with k = 0, and the unitary fixed
point, S = −1, is reached with a infinite or with k infinite.

Now consider the momentum inversion

k �→ 1

a2k
. (4)



45 Page 4 of 16 S. R. Beane, R. C. Farrell

The transformation on T is complicated, however, it implies a simple transformation of the S-matrix element

δ(k) �→ −δ(k) ± π

2
, S → −S∗, (5)

where the sign of the π/2 phase is determined by the sign of the scattering length. This momentum inversion
clearly interchanges the trivial and unitary RG fixed points. As the trivial RG fixed point is, by definition, not
seen by the scattering amplitude, it is no surprise that the momentum inversion symmetry does not act simply
on T . The transformation interrelates the scattering amplitude and the unit operator, and thus is realized on
the S-matrix.

It may seem that the momentum inversion transformation of Eq. (4) is orthogonal to the idea of EFT since
it interchanges the UV and the IR. Note however that at LO in the EFT, one is considering scattering in a
limit in which all short-distance mass scales are taken to be very large. In this limit, long-distance forces (like
pion exchange) and inelastic thresholds (like the pion-production threshold) are only probed as momentum
approaches infinity. Therefore it is reasonable, at LO, to consider transformations of the momenta over the
entire momentum half-line, 0 < k < ∞.

The fixed point of the momentum-inversion transformation5 is the momentum that maps into itself under
inversion, k◦ = |a|−1, which is the absolute value of the scattering amplitude’s pole position in the complex
momentum plane. Therefore the EFT which reproduces the scattering length approximation is, strictly speaking,
an expansion about the fixed point, k◦, of the UV/IR transformation.

Next, consider the inclusion of effective range effects with shape parameters taken to vanish. In this case,
the momentum inversion

k �→ 2

|ar |k , (6)

implies the transformations of the S-matrix element

δ(k) �→ −δ(k) , S → S∗, ar > 0,

δ(k) �→ δ(k) , S → S, ar < 0. (7)

The absence of a phase in this transformation reflects that, as a function of momentum, the S-matrix element
begins and ends at the trivial RG fixed point, S = 1. This momentum inversion has the fixed point k◦ =√

2|ar |−1/2, which is the square root of the absolute value of the product of the scattering amplitude’s two
pole positions in the complex momentum plane. Again, if this amplitude with vanishing shape parameters is
treated as LO in an EFT, then the expansion is about the scale set by this fixed point.

3 UV/IR Symmetries of the NN s-Wave S-Matrix

Realistic NN scattering at low energies is not a single-channel system as the initial-state nucleons can be
arranged into two distinct spin configurations. The NN S-matrix at very low energies is dominated by the
s-wave and can be written as [46,49]

Ŝ(δ0, δ1) = 1

2
(S1 + S0) 1̂ + 1

2
(S1 − S0)P12, (8)

where now

Ss = e2iδs (k), (9)

the SWAP operator is

P12 = 1
2

(
1̂ + σ̂ · σ̂

)
(10)

5 This fixed point is not to be confused with the fixed points of the RG at which the EFT exhibits Schrödinger symmetry and
there is no scattering.
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and, in the direct-product space of the nucleon spins,

1̂ ≡ Î2 ⊗ Î2, σ̂ · σ̂ ≡
3∑

α=1

σ̂ α ⊗ σ̂ α, (11)

with I2 the 2×2 unit matrix, and σ̂ α the Pauli matrices. The δs are s-wave phase shifts with s = 0 corresponding
to the spin-singlet (1S0) channel and s = 1 corresponding to the spin-triplet (3S1) channel. Below, the following
physical effective range parameters will be used [23,50]: a0 = −23.714(13) fm, a1 = 5.425(1) fm, r0 =
2.73(3) fm, and r1 = 1.749(8) fm.

The momentum-inversion transformations of the S-matrix elements considered above are not transforma-
tions that act simply on the full S-matrix as they are s-wave channel dependent. However, these transformations
can be readily generalized to the full S-matrix. In the scattering length approximation, consider the momentum
inversion transformation [46]

p �→ 1

|a1a0|p . (12)

This implies the following transformations on the phase shifts for the NN physical case a1a0 < 0:

δ0(p) �→ δ1(p) − π

2
, δ1(p) �→ δ0(p) + π

2
. (13)

This transformation therefore corresponds to an exact symmetry, which leaves the combination of phase shifts
δ0 +δ1 invariant. As phase shifts are angles, this is, by definition, a conformal invariance, albeit one that allows
the presence of a mass scale. This conformal invariance facilitates the construction of a purely geometrical
theory of scattering [46,47].

With effective range corrections included, the momentum inversion transformation

p �→ 1

λ|a1a0|p , (14)

with the arbitrary real parameter λ > 0, implies

δ0(p) �→ δ0(p), δ1(p) �→ −δ1(p), (15)

but only in the special case6 where the effective ranges are correlated with the scattering lengths as

r0 = 2λa1, r1 = −2λa0. (16)

This UV/IR symmetry has interesting implications for nuclear physics. The measured singlet NN scattering
phase shift rises steeply from zero due to the unnaturally large scattering length, and then, as momenta
approach inelastic threshold, the phase shift goes through zero and becomes negative, indicating the fabled
short-distance repulsive core. While this impressionistic description assigns physics to the potential, which is
not an observable and indeed need not be repulsive at short distances, the UV/IR symmetry directly imposes the
physically observed behavior of the phase shift. Even though the singlet phase shift changes sign at momenta
well beyond the range of applicability of the pionless theory, ascribing this symmetry to the LO results—
through the required presence of range corrections—results in a more accurate LO prediction than the usual
pionless expansion [41].

6 The general case is considered in Ref. [47].
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4 EFT Description: Single-Channel Case

4.1 Potential and Lippmann–Schwinger Equation

It is convenient to introduce the generic UV scale M and the generic IR scale ℵ. The EFT will describe
physics for k ∼ ℵ � M. Subleading corrections to the scattering amplitude in the EFT are expected to
be parametrically suppressed by powers of k/M. For the NN system at very-low energies, described by the
pionless EFT, the UV scale is M ∼ Mπ .

The s-wave potential stripped from the most general effective Lagrangian of four-nucleon contact operators
is [32,43]

V (p′, p) = C0 + C2
(
p2 + p′2) + C4

(
p4 + p′4) + C ′

4 p
2 p′2 + . . . , (17)

where the Cn are the bare coefficients. The scattering amplitude is obtained by solving the Lippmann–
Schwinger (LS) equation with this potential

T (p′, p; E) = V (p′, p) + M
∫

d3q

(2π)3 V (p′, q)
1

EM − q2 + iε
T (q, p; E). (18)

As the potential is separable to any order in the momentum expansion, the scattering amplitude can be obtained
in closed form to any desired order in the potential [32]. Of course the singular nature of the potential requires
regularization and renormalization. The scattering amplitude can be regulated using, for instance, dimensional
regularization and its various schemes, or by simply imposing a hard UV cutoff, Λ, on the momentum integrals.

4.2 Matching Equations

In the language of cutoff regularization, matching the solution of the LS equation with the ERE of Eq. (1),
formally gives the all-orders matching equations

a = f0(Λ;C0,C2,C4, . . .),

r = f2(Λ;C0,C2,C4, . . .),

vn = f2n(Λ;C0,C2,C4, . . .), (19)

where the f2n are non-linear functions determined by solving the LS equation. These equations can be inverted
to find the now cutoff-dependent coefficients C2n(Λ; a, r, v2, . . .). To obtain an EFT with predictive power, it
is necessary to identify the relative size of the effective range parameters. If they all scale as powers of M−1,
then the entire potential of Eq. (17) can be treated in perturbation theory for momenta k � M. If there are big
parts that instead scale as powers of ℵ−1, they will, via the interactions of Eq. (17), constitute the LO potential
in the EFT expansion.

4.3 Scattering Length Approximation

With a ∼ ℵ−1 and the effective range and shape parameters of natural size, r ∼ M−1, vn ∼ M−2n+1, the
amplitude can be expanded for k � M as

T (k) = −4π

M

(
−1

a
− ik

)−1 [
1 + O(k)

]
. (20)

In order to generate this expansion in the EFT, the potential is written as

V (p′, p) = VLO + Vr (p
′, p), (21)

where VLO = C0 is treated exactly in the LS equation and the residual potential, Vr , which includes range and
shape parameter corrections, is treated in perturbation theory. Keeping the first term in the s-wave potential,
the solution of the LS equation is

TLO(k) =
(

1

C0
− I(k)

)−1

, (22)
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where

I(k) ≡
(ω

2

)3−d
M

∫
ddq

(2π)d

1

k2 − q2 + iε
PDS−−→ − M

4π
(ω + ik) , (23)

has been evaluated in dimensional regularization with the PDS scheme [22,23] and renormalized at the RG
scale ω. The matching equations in this case are

a =
(

4π

MC0
+ ω

)−1

,

r = vn = 0. (24)

Inverting one finds

C0(ω) = 4π

M

1

1/a − ω
. (25)

The coupling at the unitary fixed point, C0 = C0�, corresponds to a divergent scattering length (unitarity). A
rescaled coupling can be defined as Ĉ0 ≡ C0/C0�. The corresponding beta-function is then

β̂(Ĉ0) = ω
d

dω
Ĉ0(ω) = −Ĉ0(ω)

(
Ĉ0(ω) − 1

)
, (26)

which explicitly has fixed points at Ĉ0 = 0 and 1. Now note that the beta-function is invariant with respect to
the inversion of the RG scale [48]

ω �→ 1

a2ω
, (27)

which interchanges the trivial and unitary fixed points

Ĉ0(ω) ↔ 1 − Ĉ0(ω). (28)

This exactly mirrors the action of the UV/IR transformation on the S-matrix elements as was shown in section 2,
and shares the fixed point ω◦ = k◦ = |a|−1. The moral here is that while the UV/IR transformation is not
simply realized at the level of the EFT action, its effect is manifest in the RG flow of the EFT operators [48].

4.4 Range Corrections with Zero-Range Forces

With a, r ∼ ℵ−1 and shape parameters of natural size, vn ∼ M−2n+1, the amplitude can be expanded for
k � M as

T (k) = −4π

M

(
−1

a
+ 1

2
rk2 − ik

)−1 [
1 + O(k3)

]
. (29)

In order to generate this expansion from the EFT perspective, one may choose VLO = C0 + C2
(
p2 + p′2).

Due to the highly singular UV behavior of this potential, cutoff regularization will be used to carefully account
for the divergences that are generated when solving the LS equation. The amplitude is found in closed form
to be [32]

TLO(k) =
(

(C2 I3 − 1)2

C + C2
2 I5 + k2C2(2 − C2 I3)

− I(k)

)−1

, (30)

where now I(k) is evaluated with cutoff regularization, and

In ≡ −M
∫

d3q

(2π)3 q
n−3θ

(π

2
Λ − q

)
= − MΛn

21+nπ2−nn
. (31)
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Matching the amplitude to the ERE gives

a = M

4π

(
(C2 I3 − 1)2

C + C2
2 I5

− I1

)−1

,

r = 8π

M

(
(C2 I3 − 1)2

C + C2
2 I5

)2 [
1

(C2 I3 − 1)2 I3
− 1

I3

]
,

vn = −4π

M

Cn
2 (C2 I3 − 2)n(C2 I3 − 1)2

(C + C2
2 I5)

n+1
. (32)

Taking the limit Λ → ∞ then recovers the ERE with all shape parameter corrections vanishing, vn = 0.
However, it is straightforward to verify that in this limit, r ≤ 0, as required by the Wigner bound [34]. If
s-wave NN scattering involved negative effective ranges and resonances rather than bound states, then this
scheme, with the effective potential consisting of a finite number of strictly delta-function potentials, would
suffice [35]. However, as the s-wave NN effective ranges are both positive, it is clear that Λ must be kept finite.
In that case the higher-order terms in the bare potential, even if neglected in the choice of VLO , are generated
quantum mechanically at LO as evidenced by the non-vanishing shape parameters. Therefore the higher order
operators should be kept from the start. That is, one is back to the general, formal statement of the matching
conditions given in Eq. (19), where a renormalization scheme is required which ensures that vn = 0, and a
choice of VLO must be found which achieves this while including all orders in the momentum expansion.

4.5 Range Corrections with a Finite-Range Scheme: LO

The lesson provided by the Wigner bound is that if range corrections are treated exactly, then the LO potential
should, in general, include all orders in the momentum expansion. Therefore, the potential can be written as
in Eq. (21) except now with a momentum dependent LO potential

V (p′, p) = VLO(p′, p) + Vr (p
′, p). (33)

The residual potential, Vr , which accounts for NLO and higher effects in perturbation theory, will be considered
in detail below. Now the potential is non-unique and there is no reason for the separation into VLO and Vr to be
unique. Ideally one finds a LO potential which identically gives the ERE with all shape parameters vanishing,
and indeed that is what will be achieved by imposing the UV/IR symmetry at the level of the interaction.

As the s-wave EFT potential is non-local (non-diagonal in coordinate space) and separable to any order
in the momentum expansion, it appears sensible to assume that the LO potential which generates the ERE
with range corrections only is non-local and separable. However, such an assumption is not necessary: all
potentials which generate the ERE truncated at the effective range are, by definition, phase equivalent7. Once
one potential is found, others can be obtained by unitary transformation. Here the simplest possibility will be
considered; that the LO potential is (rank-one) separable.

For a separable potential V (p, p′), the on-shell scattering amplitude solves the LS equation algebraically
to

T (k) = V (k, k)

(
1 − M

∫
d3q

(2π)3

V (q, q)

k2 − q2 + iε

)−1

. (34)

The momentum inversion symmetry of Eq. (6) (assuming for simplicity η ≡ ar/2 > 0) implies

T (k) �→ T

(
1

ηk

)
= −ηk2 T ∗(k). (35)

With the range of the potential taken to be the momentum scale μ, the potential can be taken to be the
real function VLO(μ; p, p′). Constraints on the S-matrix concern the potential VLO(μ; p, p) ≡ VLO(μ; p).
Therefore,

T ∗(k) = VLO (μ; k)
(

1 − M
∫

d3q

(2π)3

VLO(μ; q)

k2 − q2 − iε

)−1

7 Note that the potential considered in the previous section is phase equivalent only in the limiting sense of Λ → ∞ and r < 0.
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=
− 1

ηk2 VLO

(
μ; 1

ηk

)
[

1 − M
2π2

∫
dq

(
− 1

ηq2

)
VLO(μ; 1

ηq )

]
− M

∫ d3q
(2π)3

(
− 1

ηq2

) VLO (μ; 1
ηq )

k2−q2−iε

(36)

where the first line follows from Eq. (34) and the second line follows from Eq. (35). Now consider non-singular
solutions of this equation of the form

VLO

(
μ; 1

ηq

)
= ε ηq2 VLO(ν; q) , (37)

where ε = ±1, and the range of the potential has been allowed to vary under momentum inversion, and so ν is
an independent scale in correspondence with the range of the transformed potential. Integrating this equation
gives

∞∫
0

dq VLO (μ; q) = ε

∞∫
0

dq VLO(ν; q). (38)

With the choice ε = −1 and μ = ν, this integral must vanish identically and there is clearly a formal solution
to Eq. (36). However, an explicit solution does not seem to exist for a real, finite-range potential.

What follows focuses on the case ε = 1 and μ �= ν. In this case, Eq. (37) is solved by the ratio of
polynomials

V n
LO (μ; p) = N

Mμ

1 −
(

p2

μ2

)n+1

1 −
(

p2

μ2

)n+2 , (39)

where n ∈ Z : n ≥ 0, N is a dimensionless normalization constant and μ ν = 1/η. One finds

∞∫
0

dq V n
LO (μ; q) =

∞∫
0

dq V n
LO (ν; q) = πN

M(n + 2)
cot

(
π

2n + 4

)
. (40)

With the postulated solution, Eq. (36) takes the form

T ∗(k) = V n
LO (μ; k)

(
1 − M

∫
d3q

(2π)3

V n
LO(μ; q)

k2 − q2 − iε

)−1

= V̄ n
LO (ν; k)

(
1 − M

∫
d3q

(2π)3

V̄ n
LO(ν; q)

k2 − q2 − iε

)−1

, (41)

where

V̄ n
LO (ν; k) = −V n

LO (ν; k)
⎛
⎝1 + M

2π2

∞∫
0

dq V n
LO (ν; q)

⎞
⎠

−1

= − N

Mν
(

1 + N
2π(n+2)

cot
(

π
2n+4

))
⎛
⎜⎝1 −

(
k2

ν2

)n+1

1 −
(
k2

ν2

)n+2

⎞
⎟⎠ . (42)

Now all that is required is to show that V n
LO(μ; k) and V̄ n

LO(ν; k) are phase-equivalent potentials. Equating the
two sides of Eq. (41) at both k = 0 and k = √

μν yields a single solution for n and N :

n = 0, N = −4π

(
1 + ν

μ

)
. (43)
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Fig. 1 The LO scattering amplitude from the LS equation. The blue circle corresponds to the LO amplitude and the split square
is an insertion of the LO separable potential

Solving the LS equation with either phase-equivalent potential gives

a = 1

μ
+ 1

ν
, r = 2

μ + ν
, vn = 0. (44)

Finally, the potential takes the separable and non-local form [29,51,52]

VLO

(
μ, ν; p, p′) = − 4π

Mμ

(
1 + ν

μ

)
1√

1 + p2

μ2

√
1 + p′2

μ2

, (45)

with phase-equivalent potential V̄LO

(
μ, ν; p, p′) = VLO

(
ν, μ; p, p′).

Note that the potential of Eq. (45) satisfies the scaling law of Eq. (37) only if N is held fixed. In some sense,
the original potential that appears in the LS equation may be viewed as a bare potential which is determined
by requiring that Eq. (37) leave the LS form invariant. The corresponding transformation of the S-matrix,
S → S∗, is seen only after solving the LS equation, which fixes N to its μ and ν dependent value in Eq. (43).
N is therefore a kind of anomalous scaling factor which takes the bare potential to the renormalized form of
Eq. (45). Letting the UV/IR transformation act on both the momenta, p, and the scales, μ and ν, (i.e. μ ↔ ν),
generates a transformation on VLO (V̄LO) which is augmented from that of Eq. (37) by an anomalous scaling
factor of ν/μ (μ/ν). One important observation is that, up to an anomalous scaling factor and a sign, VLO and
V̄LO transform in the same manner as the amplitude that they generate, Eq. (35).

With μ and ν intrinsically positive, the general case, with scattering length and effective range of any sign
is obtained by taking ζμ ν = 1/η, with ζ = 1 corresponding to ar > 0 and ζ = −1 corresponding to ar < 0.
The general solution is then

VLO

(
μ, ν; p, p′) = − 4π

Mμ

(
1 + ζ

ν

μ

)
1√

1 + p2

μ2

√
1 + p′2

μ2

, (46)

with phase-equivalent potential V̄LO

(
μ, ν; p, p′) = ζVLO

(
ν, μ; p, p′), and

a = 1

μ
+ 1

ζν
, r = 2

μ + ζν
, vn = 0. (47)

Having both a and r large as compared to the (inverse) UV scaleM−1 ∼ M−1
π generally requires μ, ν ∼ ℵ.

Expanding VLO in powers of the momenta for p, p′ � ℵ and matching onto the momentum expansion of
Eq. (17) leads to the scaling

C (′)
LO m ∼ 4π

Mℵm+1 . (48)

The coefficients of the residual potential are expected to be suppressed, in a manner to be determined below,
by the UV scale. As the potential is not unique, the decomposition into IR enhanced and UV suppressed
contributions is not unique. Treating the expanded LO potential as a renormalization scheme, then for momenta
p, p′ ∼ ℵ, all C (′)

LO m terms in the potential should be summed into the LO potential to give Eq. (46) which is
treated exactly in the LS equation, while the residual potential is treated in perturbation theory.
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Fig. 2 The NLO and beyond scattering amplitude in perturbation theory. The blue circle corresponds to the LO amplitude and
the red square is an insertion of the NLO potential

4.6 Range Corrections with a Finite-Range Scheme: NLO

Recall that treating a, r ∼ ℵ−1 and vn ∼ M−2n+1, for k � M, the ERE of Eq. (1) can be expanded to give
the NLO amplitude

TNLO(k) = 4π

M

(
−1

a
+ 1

2
rk2 − ik

)−2

v2k
4. (49)

Note that it has been assumed in this expression that r is close to its “physical” value. More generally, and of
greater utility when considering realistic NN scattering, one can decompose r = rLO +rNLO , where rLO ∼ ℵ−1

and rNLO ∼ M−1. In this case

TNLO(k) = 4π

M

(
−1

a
+ 1

2
rLOk

2 − ik

)−2
1
2rNLOk2 (50)

so that shape-parameter corrections enter at NNLO (as a subleading contribution to range-squared effects).
The goal in what follows is to generate the NLO amplitudes of Eq. (50) and Eq. (49) (in that order) in the

EFT. The LS equation, Eq. (18), for the full scattering amplitude is symbolically expressed as

T = V + V G T, (51)

where G is the two-particle Green’s function. Expanding the scattering amplitude and potential as

T = TLO + TNLO + . . . , V = VLO + Vr (52)

leads to TLO as an exact solution of the LS equation, as illustrated in Fig. 1, and the NLO and beyond amplitude

TNLO + . . . = Vr + Vr G TLO + TLO G Vr + TLO G Vr G TLO . . . , (53)

as illustrated diagrammatically to NLO via the Feynman diagrams in Fig. 2. The form of the bare EFT potential
Vr which matches to the expanded ERE is straightforward to find using the UV/IR symmetry. It is convenient
to express the LO potential in the compact form

VLO

(
p, p′) = CLO 0 G(p)G(p′). (54)

where CLO 0 and G(p(′)) are defined by comparing with Eq. (46). The LO amplitude is then

TLO (k) = CLO 0 G2(k) Z−1, (55)

with Z ≡ 1 − CLO 0I2 and the convergent integral

I2 = M
∫

d3q

(2π)3

G2(q)

k2 − q2 + iε
= − M

4π
G2(k) (μ + ik) . (56)

Now notice that the NLO amplitude of Eq. (50) transforms simply under the momentum inversion k �→
2/(|ar |k) = μν/k as TNLO → T ∗

NLO (ar > 0) or TNLO → TNLO (ar < 0). Based on the discussion below
Eq. (45) it may be expected that the part of Vr that generates TNLO will be invariant under momentum inversion
up to a sign and μ ↔ ν. Consider the energy-dependent potential,

k2VLO (k, k)G2(k) = CLO 0k
2 G4(k) (57)
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which maps to (minus) itself with μ ↔ ν for ar positive (negative) and is therefore a candidate for the piece
of Vr which generates TNLO . An energy-independent residual potential can then be defined as

Vr (p
′, p) = [

c0 + c2
(
p2 + p′2) + . . .

]
VLO

(
p′, p

) (G2(p) + G2(p′)
)

, (58)

where the c(′)
m coefficients are bare parameters, subject to renormalization. On-shell this potential has the

desired UV/IR transformation properties. Note that the form of the potential reflects that only odd powers of
G(p(′)) in Vr will match to a polynomial in k for k ∼ ℵ. Formally, the (bare) coefficients of the full potential
can be expressed for k � ℵ as C (′)

m = C (′)
LO m + C (′)

NLO m , where C (′)
NLO m ≡ CLO 0 · c(′)

m .
Evaluating the diagrams of Fig. 2 with a single insertion of Vr gives

TNLO = 2c0CLO 0G2(k)
[G2(k) + CLO 0Z−1 (G2(k)I2 + I4

) + C2
LO 0Z

−2
I2I4

]
+ 2c2CLO 0G2(k)

{
2G2(k)k2 + CLO 0Z−1[G2(k)

(
2k2

I2 − J2
) + 2k2

I4 − J4]
+C2

LO 0Z
−2[2I2I4k

2 − I2J4 − J2I4]
}

(59)

where

I4 = M
∫

d3q

(2π)3

G4(q)

k2 − q2 + iε
= − M

4π
G4(k)

(
1
2μ − k2

2μ
+ ik

)
,

J2 =
(ω

2

)3−d
M

∫
ddq

(2π)d
G2(q)

PDS−−→ − Mμ2

4π
(μ − ω) ,

J4 = M
∫

d3q

(2π)3G4(q) = Mμ3

8π
. (60)

Here the linearly divergent integral J2 has been evaluated in dimensional regularization with the PDS scheme
[22,23], and ω is the renormalization scale8. In terms of renormalized parameters, the amplitude takes the
form

TNLO = CLO 0

(G2(k)Z−1)2 [
cR0 (1 − ζν/μ) + cR2 (3 − ζν/μ) k2], (61)

where the renormalized parameters, c(′)R
m , are defined as

cR2 = c2, cR0 = c0(ω) + cR2

(
μ + ζν

μ − ζν

) [
ζμν + ω (μ − ζν)

]
. (62)

Matching to the expanded ERE of Eq. (50) gives cR0 = 09 and

CNLO 2 = M

4π
C2

LO 0 (3 − ζν/μ)−1 1
2rNLO, (63)

with C (′)
NLO m = CLO 0 · c(′)R

m . This relation gives a subleading enhancement of the same form as the usual
pionless EFT [22,23,25] up to the factor in parenthesis, and results in the scaling

cR2 ∼ 1

Mℵ , CNLO 2 ∼ 4π

MMℵ2 . (64)

In similar fashion, the NLO amplitude of Eq. (49) can be obtained via the energy-independent residual
potential

Vr (p
′, p) = [

c0 + c2
(
p2 + p′2) + c4

(
p4 + p′4) + c′

4 p
2 p′2 + . . .

]
×VLO

(
p′, p

) (G2(p) + G2(p′)
)
. (65)

8 The linearly divergent integral J2 in the MS scheme can be obtained by setting ω = 0. Similarly, cutoff regularization, as in
Eq. (31), is obtained by replacing ω with Λ (for Λ large).

9 Note that one can also decompose a = aLO + aNLO in which case this condition follows from aNLO = 0.
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Working in dimensional regularization with MS, the amplitude takes the form

TNLO = CLO 0

(G2(k)Z−1)2 [
cR0 (1 − ζν/μ) + cR2 (3 − ζν/μ) k2

+[2c′R
4 + cR4 (3 − ζν/μ)]k4], (66)

with the renormalized parameters

c(′)R
4 = c(′)

4 , cR2 = c2 − μ (μ + ζν)
[
cR4 + (3 − ζν/μ)−1 c′R

4

]
,

cR0 = c0 − μ

(
μ + ζν

μ − ζν

) [ − c2νζ + cR4 μ2(2μ + νζ ) + c′R
4 μ2(μ + νζ )

]
. (67)

Matching to the expanded ERE of Eq. (49) now gives cR0 = cR2 = 0 and

CNLO 4 + 2C ′
NLO 4 (3 − ζν/μ)−1 = M

4π
C2

LO 0 (3 − ζν/μ)−1 v2. (68)

The coefficients scale as

c(′)R
4 ∼ 1

M3ℵ , C (′)
NLO 4 ∼ 4π

MM3ℵ2 . (69)

This differs from the conventional pionless theory counting which has a nominally leading contribution to the
C (′)

4 operators from effective range (squared) effects.

5 EFT Description: The NN s-Wave Phase Shifts

The phase shifts to NLO in the EFT expansion are

δs(k) = δLO (s)(k) + δNLO (s)(k), (70)

with

δLO (s)(k) = −1

2
i ln

(
1 − i

kM

2π
TLO (s)(k)

)
, (71)

δNLO (s)(k) = −kM

4π
TNLO (s)(k)

(
1 − i

kM

2π
TLO (s)(k)

)−1

. (72)

Recall from section 3 that in s-wave NN scattering, the UV/IR symmetry of the full S-matrix requires range
corrections that are correlated with the scattering lengths and treated exactly. The physical effective ranges
can therefore be expressed as rs = rLO (s) + rNLO (s) with

rLO (0) = 2λa1, rLO (1) = −2λa0. (73)

The singlet and triplet phase shifts with the NLO amplitude given by Eq. (50) are plotted in Fig. (3). At LO,
there are three parameters given by the two s-wave scattering lengths and λ, which is fixed to λ = 0.14±0.11,
the range of values that exactly encompasses fits of λ to each s-wave channel independently. This spread in λ
corresponds to the shaded gray region of the figures and is a conservative estimate of the LO uncertainty. The
NLO curve has been generated by tuning the rNLO (s) to give the “physical” effective ranges. A band on the
NLO curves can easily be set by folding in the nominally NNLO effect.

The singlet and triplet phase shifts with the NLO amplitude given by Eq. (49) are plotted in Fig. (4). As this
treats both effective ranges exactly it provides an extremely accurate fit to the phase shifts due to the smallness
of the shape parameters.
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Fig. 3 Singlet (left panel) and triplet (right panel) s-wave NN phase shifts with the NLO amplitudes given by Eq. (50) plotted
versus center-of-mass momentum k. The cyan polygons are the Nijmegen phase shift analysis (PWA93) [53]. The red dashed
curve is the LO phase shift in the pionless theory (scattering length only). The solid black curve is the central value of the LO
phase shifts with exact UV/IR symmetry. The gray region represents an error band for the black curve and the dashed black curve
is the NLO curve

Fig. 4 Same as in Fig. (3) but with the effective ranges treated exactly in each channel and the NLO amplitudes given by Eq. (49).
In both channels, the NLO curve overlaps with the central value of the LO phase shift

6 Conclusion

The s-wave NN S-matrix obtained from the ERE with scattering length and effective range terms only, has
interesting UV/IR symmetries which are special inversions of the momenta. These symmetries set the region
of applicability of the EFT descriptions. For instance, while it is common to view the EFT of large scattering
lengths as an expansion about the unitary fixed point of the RG, it is, strictly speaking, an expansion about
the fixed point of a momentum inversion symmetry. The UV/IR symmetries, while not symmetries of the EFT
action or of the scattering amplitude, are present in the interaction. For instance, in the EFT of large scattering
lengths, the UV/IR symmetry is manifest in the RG flow of the contact operator as an inversion symmetry of
the RG scale which interchanges the trivial and unitary RG fixed points and leaves the beta function invariant
[48]. When the effective range is also treated at LO in the EFT, the S-matrix has a (distinct) UV/IR symmetry
which effectively determines the LO potential, and constrains the form of the perturbative NLO corrections.

There are many avenues to pursue with this new EFT. For instance, the softened asymptotic behavior of
the LO potential may resolve the issues of renormalization that arise when range corrections are added to the
integral equations that describe the three-nucleon system at very low energies. In addition, given the improved
convergence of LO in the EFT up to momenta beyond the range of validity of the pionless EFT, the perturbative
pion paradigm may be worth revisiting in this scheme. It may also be the case that the UV/IR symmetries have
interesting consequences for systems of many nucleons near unitarity.
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