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Abstract The non-relativistic Feynman propagator with position dependent mass (PDM) is formulated by
means to introduce the generalized infinitesimal translation operator approach. Which is similar to deformed
quantum mechanics based on modified commutation relations. This latter is connected to the Feynman propaga-
tor with constant-mass by adopting the coordinates transformation methods, which are α−point discretization
dependent, to evaluate quantum corrections. In each application, the propagator (or the Green function) is
calculated, the wave functions and their associated eigenvalues are obtained, also the curves of energies are
illustrated. The limit cases are then deduced for a small parameter.

1 Introduction

The physical systems with position-dependent mass (PDM) have attracted great interest in various applied
domains of quantum mechanics and, by their importance, they agree with reality and allow us to understand
many phenomena of matter physics. Its different expressions appear in the motion of electrons in perturbed
periodic lattices [1], in the electronic properties of semiconductors [2], in the quantum dots and quantum
wells [3,4], in semiconductors Hetero-structures [5], in supper-lattice band structures [6] and He-Clusters
[7] quantum liquids [8], in the solid-state problem in the framework of the Dirac equation [9] and also the
dependence of energy gap on the magnetic field semiconductor Nano-scale rings [10].

Moreover, the PDM systems have generated great difficulties at the quantum level due to the ordering
ambiguity of the momentum and mass operators in the term of kinetic energy. Lot of authors have discussed
and tried to elucidate the problem of this kinetic energy operator order ambiguity, and one can find an excellent
review given by Shewell [11]. Following these requirements, several kinetic energy operators were proposed,
such as the ordering of von Roos [12,13], in which the following order had been chosen

T̂R = 1

4
(mαp̂mβ p̂mγ + mγ p̂mβ p̂mα), (1)

where p̂ = −ı h̄∇ is the momentum operator, and the parameters α, β and γ satisfying the condition α+β+γ =
−1, also including special cases of values α, β and γ . Referring to some of them, Gora and Williams [14]
suggested the values β = γ = 0, α = −1, the proposal of Zhu and Kroemer [15] is α = γ = − 1

2 , β = 0
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and Ben Daniel et al [16] gave the following parameters α = γ = 0, β = −1. The other ordering is the Weyl
order defined by [17],

T̂W = 1

6

[
1

m
p̂2 + p̂

1

m
p̂ + p̂2 1

m

]
, (2)

which is used as the prescription to evaluate the Feynman path integral relative to the mid-point interval
(x̄j = (

xj + xj−1
)
/2) [18–20]. As well as a more general form than von Roos symmetric order by taking into

account of the Weyl prescription [21],

T̂RW = a

4 (a + 1)

[
1

m
p̂2 + p̂2 1

m
+ 1

a

(
mαp̂mβ p̂mγ + mγ p̂mβ p̂mα

)]
, (3)

where " a " is an arbitrary parameter, and when (a = 0) we find the von Roos symmetric order. It can also
be tuned the a−parameter to generate different order prescriptions. All these expressions of kinetic energy
operators proposed above are Hermitian and they have attracted much attention for many applications with
several methods. We refer to some of them, the bound states for square potential wells [22], the Natanzon
potentials in position dependent mass background [23], the PDM momentum operator and minimal coupling
[24–26], the path integral formalism in nonrelativistic systems with PDM [27,28], the Lie algebraic approach
to effective mass Schrodinger equations [29,30] and the generation of solvable potentials with PDM [31].

While in the past few years, some studies have shown the existence of intimate connections between,
the Schrodinger equations based on the use of deformed canonical commutation relations (EUP), or the
modification in the underlying space, and the Schrodinger equation with a position-dependent mass [32].
These three problems have in common a generalized translation operator

Tλ(dx) = exp
[
−ı P̂λdx

]
, (4)

which leads the corresponding momentum operator depends on the position. As a consequence, Gosta et al.
[33,34] and Borges [35] have suggested a new type of EUP with a minimum momentum dispersion, based
on a generalized translation operator. In this context, the corresponding infinitesimal displacement operator is
related to the q−exponential and the q−logarithm functions. Wherefore, our aim in this paper is to propose a
generalization of the Ref. [33] by the following generalized momentum operator

P̂λ = −ı h̄ [mλ(x)/m0]−1/2 d

dx
, (5)

where mλ(x) = m0 fλ(x) plays the same role as that of the particle mass (i.e., it is called a position-dependent
mass function). The quantity fλ(x) is a dimensionless position-dependent mass and is related to λ−parameter,
with λ is a real constant and m0 is a constant mass, taking in mind that we must recover the usual quantum
mechanics in the limit mλ→0(x) = m0 and P̂λ→0 = −i h̄d/dx . The generalized momentum operator in Eq.
(5) makes the following canonical commutation relation between the position and momentum operators:

[
X̂λ, P̂λ

]
= ı h̄ [mλ(x)/m0]−1/2 , ΔXλΔPλ � h̄

2
[mλ(x)/m0]−1/2 . (6)

A representation of the commutation relation (6) can be obtained from operators x̂ = x and p̂ = −ı�d/dx ,
satisfying canonical commutation relations through the transformation

{
X̂λ = x,

P̂λ = [mλ(x)/m0]−1/2 p̂ + h(x)
. (7)

with h(x) an arbitrary function.
On the other hand, the EUP can be obtained also from the translation operator acting in a space with a

diagonal metric which describes the motion of a quantum particle in the curved space. It is defined by the
following metric [36]:

ds2 = ∑
μ,νgμνdx

μdxν, (8)

where gμν is the metric of the curved space and (μ, ν) ≡ x, y, z.

In one dimension, the Ref. [36] amazes us that if a particle goes from a point x to x + g−1/2
xx dx it has to

get a translation like Tg(dx)|x〉 = |x + g−1/2
xx dx〉. This translation is clearly non-additive and the operator
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can be written as Tg(dx) = 1 − ı P̂gdx , where P̂g = ıg−1/2
xx ∂x is a generalized momentum. It obeys to an

stationary equation of motion for a particle Ĥgψ = Eψ , with Ĥg = − 1
2mD2

x + V (x) and Dx = g−1/2
xx ∂x .

This means that in a 3−dimensions the square of Dx−operator indicates a Laplace-Beltrami operator (i.e.,
D2 ≡ 1√

g

∑
μ,ν ∂μ

√
ggμν∂ν), where g is the determinant of the matrix of components of the metric tensor.

Hence, under these considerations, the Heisenberg commutator has to be modified, in one dimension, as
follows: [

x̂, P̂g
]

= ıg−1/2
xx . (9)

From Eqs. (6) and (9) we can extract the following conformity

gxx ≡ mλ(x)/m0. (10)

Therefore, the modification of Heisenberg uncertainty principle in Eqs. (6) and (9) guarantees the existence of
the minimal momentum (Δp)min �= 0.

In the following, we derive the necessary relations based on systems whose masses depend on position.
So our strategy works on subspace L2(�, dλx) instead of all Hilbert space L2(R, dx), since the generalized
momentum operator in (5) is not Hermitian in all Hilbert space L2(R, dx). This leads to the deformed measure
dλx defined by:

dλx = [mλ(x)/m0]1/2 dx . (11)

Thus, some algebraic considerations will make the modified scalar product of two functions ψ(x) and ϕ(x)
as follows:

〈ϕ | ψ〉 =
∫

ϕ∗ (x) ψ (x) dλx . (12)

Under these assumptions, the closure relation can be generalized in the following way:∫
dλx |x〉 〈x | = 1. (13)

This means that the corresponding projection relation becomes as

〈
x | x ′〉

λ
=

+∞∫
−∞

dp

2π h̄
[mλ(x)/m0]−1/2 exp

[
− ı p

(
x − x ′)
h̄

]

= [mλ(x)/m0]−1/2 δ
(
x − x ′) . (14)

In effect, we have

〈
x | x ′〉

λ
=
∫

dλx
′′ 〈x | x ′′〉

λ

〈
x ′′ | x ′〉

λ

= [mλ(x)/m0]−1/2
∫

dx ′′ [mλ(x
′′)/m0

]1/2 [
mλ(x

′′)/m0
]−1/2

δ
(
x − x ′′) δ (x ′′ − x ′)

= [mλ(x)/m0]−1/2 δ
(
x − x ′) . (15)

In the case λ = 0, we recover the usual projection relation and the well-known by Dirac delta function〈
x | x ′〉

λ→0 = δ
(
x − x ′) . Hence, the element matrix for a generalized momentum operator under the EUP is

calculated by

〈
x
∣∣∣P̂λ

∣∣∣ x ′〉
λ

=
+∞∫

−∞

dp

2π h̄
[mλ(x)/m0]−1/2 exp

(
− ı p

(
x − x ′)
h̄

)[
−p + ı h̄

mλ(x ′)
2mλ(x)

]
. (16)

In this framework of the deformed displacement operator Tλ (δx) , many applications have been treated, and
for instance, we find the harmonic oscillator potential in one dimension [34,37,38], the particle in a square
well [33] and the inverse square plus Coulomb-like potential [39]. In addition, the Schrodinger equation with
PDM provides an interesting and useful model for the description of many physical problems, especially in the
physics of semiconductor nanostructures. For this, our task in this paper is similar to that used in our previous
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work [40], but by generalizing it to arbitrary position-dependent masses function (mλ(x) = m0 fλ(x)). We will
present a general method to use the coordinate transformation technique at different usual point intervals and
the difference resulting from the use of EUP algebra will be matched to the case of generalized uncertainly
principle (GUP) (see, Ref. [41]).

Our strategy is based on modeling the path integral formalism of non-relativistic systems by introducing the
generalized infinitesimal translation operator which corresponds to a modified Heisenberg uncertainty relation
stipulated in below equation (6). Moreover, a similar study of this model was discussed in the generalized
uncertainty principle in one dimension momentum space to treat the spinless relativistic particle [42] and
extended later to include the relativistic 1/2 spinning particle [41,43] and also in two dimensions [44]. It is
remarkable that in this case, the effective potential depends on the point discretization interval.

In the next section, we generalize the solutions to the PDM problem [40] by using the path integral formu-
lation. We will formulate the path integral representation of the transition amplitude for nonrelativistic particle
in the presence of potential V (x) in one dimension. This approach is formulated by means the introduction of
the generalized infinitesimal translation operator which is equivalent to a deformed quantum mechanics based
on modified commutation relations. In Sect. 3, we will validate the accuracy of α−points discretization to
have the exact solution. In Sect. 4, we distinguish three particular cases of PDM with choice of some scalar
potentials. We will determine the energy spectrum and the corresponding wave functions. The last section is
reserved for the conclusion.

2 Path Integral Formulation

The transition amplitude of non-relativistic quantum dynamics corresponding to a position-dependent effective
mass will be formulated by means of the generalized displacement operator approach [33,34] where we follow
the canonical steps in [45], then we have,

K (xb, tb; xa, ta) = lim
N→∞ < xb |

N+1∏
j=1

U
(
tj , tj−1

) | xa >λ, (17)

where U
(
tj , tj−1

) = exp(−ıεĤ/h̄) represents the infinitesimal evolution operator, with Ĥ is the standard
Hamiltonian form and ε = (tb − ta)/(N + 1), while tb and ta are the final and the initial time, respectively.
Inserting the closure relation for the position states given by Eq. (13) between each pair of infinitesimal
evolution operators, we easily obtain the following expression given by

K (xb, xa, T ) = lim
N→∞

N∏
j=1

[∫
dλxj

] N+1∏
j=1

< xj |e
− ıε

h̄

[
P̂2
λ

2m0
+V (X̂λ)

]
|xj−1 >λ, (18)

where x0 = xa and xN+1 = xb.
The appearance of the term dλxj in the measure part is due to the extended uncertainty principle algebra

(6). To extract the path integral representation of the transition amplitude for a particle with nonzero minimum
momentum uncertainty under the scalar potential V (x), firstly, we must calculate the matrix element for the
square of the generalized momentum operator P̂2

λ and is related to the relations (5), (14) and (16) as,

〈
xj

∣∣∣P̂2
λ

∣∣∣ xj−1

〉
λ

=
+∞∫

−∞

dpj

2π h̄

[
mλ(xj )/m0

]−1/2
e− ı pj Δxj

h̄

[[
mλ(xj )/m0

]−1
p2
j

−ı h̄ pj

3m0m′
λ(xj )

2m2
λ(xj )

− h̄2m0

2

(
2
(m

′
λ(xj ))

2

m3
λ(xj )

− m
′′
λ(xj )

m2
λ(xj )

)]
. (19)

The primes in Eq. (19) denote derivatives with respect to xj . Substituting (19) into (18), and performing the
Gaussian integrations over pj , the transition amplitude for the particle in question will simplify to:

K (xb, xa, T ) = lim
N→∞

N∏
j=1

∫
dλxj

N+1∏
j=1

√
m0

2π ı h̄ε
exp

⎧⎨
⎩
ı

h̄

N+1∑
j=1

[
mλ(xj )

2ε
(Δxj )

2
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−3ı h̄
m′

λ(xj )

4mλ(xj )
Δxj − εh̄2

4

(
−7

8

(m
′
λ(xj ))

2

m3
λ(xj )

+ m
′′
λ(xj )

m2
λ(xj )

)
− εV (xj )

]}
. (20)

It is remarkable that our system is similar to the relativistic quantum mechanics with non-zero minimum
momentum uncertainty (see Refs. [41,43]). Otherwise, if thedλx−measure term contains a singularity problem,
this problem will not worry us and for motivation see Ref. [40]. In addition, from Eq. (20), it is possible to resort
to the Schrodinger equation of the studied system and verify that the action fits our problem that concerns
the position-dependent mass. As we know the relation between the wave function and the corresponding
propagator is

�(xj , t + ε) =
√

m0

2π ı h̄ε

∫ √
mλ(xj−1)

m0
exp

{
ı

h̄
S (j, j − 1)

}
�(xj−1, t)dxj−1, (21)

with

S (j, j − 1) = mλ(xj )

2ε
(Δxj )

2 − εh̄2

4

(
−7

8

(m
′
λ(xj ))

2

m3
λ(xj )

+ m
′′
λ(xj )

m2
λ(xj )

)

−3ı h̄
m′

λ(xj )

4mλ(xj )
Δxj − εV (xj ), (22)

where S (j, j − 1) is the infinitesimal action. By substituting xj−1 by xj − y, we expand �(xj − y, t) and√
mλ(xj − y) around y = 0 as follows,

√
mλ(xj − y) =

√
mλ(x j )

(
1 − y

2
m′

λ(x j ) + y2

2

[
m′′

λ(x j )

2mλ(x j )
− (m′(x j ))2

(mλ(x j ))2

])
, (23)

and

�(xj − y, t) = �
(
x j , t

)− y
∂�

∂x j
+ 1

2
y2 ∂2�

∂x2
j

. (24)

Substituting (23) and (24) into (21), we can rewrite the expression (21) as:

�(xj , t + ε) =
√
mλ(x j )

2π ı h̄ε
e
− ıε

h̄

[
h̄2

4

(
m

′′
λ

(xj )

m2
λ
(xj )

− 7
8

(m
′
λ
(xj ))2

m3
λ
(xj )

)
+V (xj )

]

×
∫

dy e
ı
h̄

(
mλ(xj )

2ε
y2−3ı h̄

m′
λ
(xj )

4mλ(xj )
y

) [
�
(
x j , t

)− y
∂�

∂x j
+ 1

2
y2 ∂2�

∂x2
j

]

×
[

1 − y

2
m′

λ(x j ) + y2

2

(
m′′

λ(x j )
2mλ(x j )

− (m′(x j ))2

(mλ(x j ))2

)]
. (25)

Then, using all the Gaussian integrations over y and doing calculations to first order in ε, we get:

i h̄
∂

∂t
�(xj , t) =

[
− h̄2

2mλ(xj )

∂2

∂x2
j

+ h̄2

4

m′
λ(xj )

m2
λ(xj )

∂

∂xj

+ V (xj )

]
�(xj , t). (26)

This equation is the same Schrodinger equation of position-dependent mass with its Hamiltonian operator is

Ĥ = − h̄2

2m0

√
m0

mλ(x)

∂

∂x

(√
m0

mλ(x)

∂

∂x

)
+ V (x). (27)

Moreover, in order to convert the expression (20) to the standard form of the path integral formulation of
quantum mechanics, we implement the coordinate transformation method [20,45] in the next section. It is
self-evident that we are faced with the problem of determining the appropriate interval point prescription to
calculate the exact quantum corrections.
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3 Quantum Corrections Evaluation

It would be an exploit if all problems with position-dependent mass could be solved in one dimension using the
generalized displacement operator for non-relativistic quantum dynamics, with the path integral formalism.
Therefore, in order to make some specific applications in the next section, we will first examine the α-point
discretization interval value by comparing it to the Schrodinger equation. We define the α-point discretization
interval as:

x̄ (α)
j = αxj + (1 − α) xj−1. (28)

We convert xj and xj−1 to x̄ (α)
j , there are three quantum corrections obtained in expression (20),

– the first is related to the action C (1)
act

– the second correction is related to the measure C (1)
mes

– and the third correction is related to the f −factor (the CT
f −prefactor).

The basic idea is to expand the kinetic term in powers of the α−point prescription x̄ (α)
j , we get

exp

⎛
⎝ ı

h̄

N+1∑
j=1

(
mλ(xj )

2ε

(
Δxj

)2)
⎞
⎠ = exp

⎡
⎣ ı

h̄

N+1∑
j=1

mλ(x̄
(α)
j )

2ε

(
Δxj

)2
⎤
⎦(1 + C (1)

act

)
, (29)

where C (1)
act is the first quantum correction related to the action:

C (1)
act = ı

2h̄ε

[
2 (1 − α)m′

λ(x̄
(α)
j )

2

(
Δxj

)3 + (1 − α)2 m′′
λ(x̄

(α)
j )

2

(
Δxj

)4]

−2 (1 − α)2

(2h̄ε)2

(
m′

λ(x̄
(α)
j )/m0

)2
4

(
Δxj

)6
, (30)

herem′
λ(x̄

(α)
j ) andm′′

λ(x̄
(α)
j ) are the abbreviated derivatives functionmλ(x̄

(α)
j ) at the point x̄ (α)

j . Also, the measure
term contains corrections, will be developed as

√
mλ(xj )

m0
=
√
mλ(x̄

(α)
j )

m0

(
1 + C (1)

mes

)
, (31)

where C (1)
mes is the second correction related to measurement

C (1)
mes = (1 − α)

m′
λ(x̄

(α)
j )

2mλ(x̄
(α)
j )

Δxj + (1 − α)2

2

[
m′′

λ(x̄
(α)
j )

2mλ(x̄
(α)
j )

− (m′
λ(x̄

(α)
j ))2

4(mλ(x̄
(α)
j ))2

](
Δx2

j

)
. (32)

Also, in the second term of action (20) there is the prefactor term and it will be developed to second order in
Δxj :

exp

(
3

4

m′
λ(xj )

mλ(xj )
Δxj

)
= 1 + CT

f , (33)

where the quantum correction related to the f −factor is obtained as follows:

CT
f = 3

4
m′

λ(x̄ (α)
j )

mλ(x̄ (α)
j )

Δxj + 9
32

(m′
λ(x̄ (α)

j ))2

(mλ(x̄ (α)
j ))2

(
Δxj

)2

+ 3
4 (1 − α)

(
m′′

λ(x̄ (α)
j )

mλ(x̄ (α)
j )

− (m′
λ(x̄ (α)

j ))2

(mλ(x̄ (α)
j ))2

) (
Δxj

)2
. (34)

Moreover, in all the expressions of quantum correction proposed above, we have retained only the terms which
are all of order ε. In order to convert the path integral defined in the Eq. (20) to the usual form of the Feynman
path integral, we must change the kinetic term to the conventional one, namely, with a constant mass. Carrying
out the coordinate transformation over x by xj = g(ηj ). This transformation generates two corrections:
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– the first is related to the action C (2)
act

– and the other correction is related to the measure C (2)
m .

The α-point expansion of Δxj reads at each (j)

Δxj = g(ηj ) − g(ηj−1)

= Δηj ḡ
(α)′
j

(
1 + (1−2α)

2!
ḡ

(α) ′′
j

ḡ(α) ′
j

Δηj + (1−α)3+α3

3!
ḡ

(α) ′′′
j

ḡ(α) ′
j

Δη2
j

)
, (35)

where ḡα
j = g(η̄α

j ), and all the derivatives of the function g(η̄α
j ) in Eq. (35) denote derivatives with respect to

the new coordinate η̄
(α)
j (i.e., η̄

(α)
j = αηj + (1 − α)ηj−1). It would be useful to express the function g(η) by

this condition
dg (η)

dη
= [mλ(x)/m0]−1/2 . (36)

Thereafter, we develop the exponential of the kinetic term by expanding g(ηj ) and g(ηj−1) up to sixth order
in Δηj , so that

exp

⎡
⎣ ı

h̄

N+1∑
j=1

(
mλ(xj )

2ε

(
Δxj

)2)
⎤
⎦ = exp

⎧⎨
⎩
ı

h̄

N+1∑
j=1

[
m0Δη2

j

2ε

]⎫⎬
⎭
[
1 + C (1)

act

] [
1 + C (2)

act

]
, (37)

where C (2)
act is the second correction on the action and is obtained as,

C (2)
act =

{
ım0

2h̄ε

[
(1 − 2α)

ḡ
(α) ′′
j

ḡ(α) ′
j

Δη3
j

+
[

(1−2α)2

4

(
ḡ

(α) ′′
j

ḡ(α) ′
j

)2

+ (1−α)3+α3

3
ḡ

(α) ′′′
j

ḡ(α) ′
j

]
Δη4

j

]

− (1−2α)2

2(2h̄ε/m0)
2

(
ḡ

(α) ′′
j

ḡ(α) ′
j

)2

Δη6
j + ...

}
. (38)

Following the Kleinert method [45], the measure induces also a correction, we find

N∏
j=1

∫
dxj = ∂Δxj

∂Δηj

= ḡ
(α)′
j

(
1 + C (2)

m

)
, (39)

with C (2)
m is the second correction on the measure

C (2)
m = (1 − 2α)

ḡ
(α) ′′
j

ḡ(α) ′
j

Δηj + (1−α)3+α3

2

ḡ
(α)′′′
j

ḡ(α)′
j

Δη2
j . (40)

We can remove the terms with odd order (Δηj )
2�+1 and for the even terms, we can use the following expectation

values [20]: 〈
(Δη)2�

〉
= (ı h̄ε/m0)

� (2� − 1)!!. (41)

So by combining all the corrections and performing substitution given by the Eq. (41), theCT− total correction
becomes as,

CT = ı h̄ε

2m0

[
9

4

(
g′′ (η)

)2
(g′ (η))2 − (

1 + α − 2α2) [g′′′ (η)

g′ (η)

]]
. (42)

Thereafter, from the above results, we remark that in the deformed Heisenberg algebra (6), the calculation of
quantum correction via path integral approach is dependent on the α-point discretization interval, and it is the
same remark obtained in the previous works [41,43,44]. To confirm the same results obtained previously, we
will determine the α values by comparing them with a Schrodinger equation method. Hence, when inserting the
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Eq. (42) to the transition amplitude (20) for a particle with PDM subject in the potential V (x), the infinitesimal
propagator takes the form

K (ηj , ηj−1, ε) =
√

m0

2π ı h̄ε
exp

{
ıε

h̄

[
m0

2ε2 (Δηj )
2 − h̄2

2m0

g′′′ (η)

g′ (η)

(
α − 2α2)− V (ηj )

]}
. (43)

From Eq. (43), we have successfully converted the kinetic term defined in Eq. (29) to the conventional form by
using the following coordinate transformation x −→ η, which is known local path integral representation. It
is worth noting that the term obtained in the Kernel expression is that the effective potential is a function of the
α values. In order to determine these values, we make the proceeding Schrodinger equation method. Further
it can be readily find from relationship between this propagation and wave function, where the corresponding
wave function must satisfy for infinitesimal ε by the following relation [46],

�(ηj , t + ε) =
∫

K (ηj , ηj−1, ε)�(ηj−1, t)dηj−1, (44)

K (ηj , ηj−1, ε) is the infinitesimal propagator. By substituting ηj−1 by ηj − y and expanding �(ηj − y, t)
around y = 0, we find

�(ηj , t + ε) =
√

m0

2π ı h̄ε
e
− ıε

h̄

[
h̄2

2m0
g′′′(η)

g′(η)

(
α−2α2

)+V (ηj )
]

×
∫

dy e
ıε
h̄

m0
2ε2 y2

[
�(ηj , t) − y

∂�(ηj , t)

∂ηj

+ y2

2

∂2�(ηj , t)

∂η2
j

]
. (45)

Then using the Gaussian integration over y, we get:

�(ηj , t + ε) = e
− ıε

h̄

(
h̄2

2m0
g′′′(η)

g′(η)

(
α−2α2

)+V (η j )
) [

�(ηj , t) + ı h̄ε

2m0

∂2�(ηj , t)

∂η2
j

]
. (46)

Expanding both sides in powers of ε up to the first order, and convert η to x, we find:

ı h̄
∂

∂t
�(xj , t) = − h̄2

2

[
mλ(xj )

]−1/2 ∂

∂xj

[
mλ(xj )

]−1/2 ∂

∂xj

�(xj , t)

+V
(
xj

)
�(xj , t) − h̄2

2

(
α − 2α2) [− (m′

λ(xj ))2

(mλ(xj ))3 + m′′
λ(xj )

2(mλ(xj ))2

]
�(xj , t). (47)

On other hand, the Schrodinger equation for the deformed algebra (6) is given in Eq. (26). Therefore, Eq. (47)
is similar to the Schrodinger equation for the system corresponding to the PDM particle when α = 0 or 1/2.
In addition, when we use the standard model [20], there is a difference in correction between the two methods,
which is generated by the measure term. Consequently, this leads to different total quantum correction and
gives the different α−points discretization interval which takes two values from the domain

[
xj−1, xj

]
, are

α = (1 ± 1/
√

2)/
√

2. Moreover, these α−values have been confirmed in our previous works [41,44,47]. This
also gives the guarantee on the need to change of α−values of point discretization interval in the existence of
a EUP or GUP compared to usual Heisenberg algebra.

Accordingly, for these considerations and by replacing α by 0 or 1/2, the Feynman path integral in non-
relativistic case with PDM and in the presence of potential V (x) becomes as:

K (ηb, ηa, T ) = lim
N→∞

N∏
j=1

∫
dηj

N+1∏
j=1

√
m0

2π ı h̄ε
exp

⎧⎨
⎩
ıε

h̄

⎡
⎣N+1∑

j=1

m0

2ε2 (Δηj )
2 − V (ηj )

⎤
⎦
⎫⎬
⎭ , (48)

where ηa = η0, ηb = ηN+1. The use of the relation (36) ends up at the Feynman propagator with a constant
mass where the potential V (g(η)) is simply replaced by Vef f ≡ V (g(η)) without additional potentials.

In the next section we treat some examples for the quantum systems with different position-dependent
masses having exact solutions in the formulation of position-dependent infinitesimal translation operator.
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4 Specific Cases

Now, let us consider some explicit examples which have analytical solutions in this path integral for PDM
systems given by (48). In each case, the energy values and their corresponding wave functions are correctly
obtained.

4.1 The First Case

In this case, we consider the scalar harmonic oscillator potential (V (x) = m0ω
2

2 x2) with the PDM defined by:

mλ(x) = m0

(1 + λx2)2 , (49)

where m0, ω and λ are constant and positive parameters to indicate mass, frequency, and deformation coeffi-
cients respectively, with dimension of λ as [length]−2. This example is similar to a new type of EUP whose

modified Heisenberg relation includes a term of the linear function in x2 (i.e.,
[
X̂λ, P̂λ

]
= ı h̄

(
1 + λx2

)
),

where the EUP guarantees the existence of the minimum momentum (Δp)min = h̄
√

λ. In order to convert the
kinetic term to the conventional form, we use the following coordinate transformation:

√
λx = tan(

√
λη), where η ∈

]
−π/2

√
λ, +π/2

√
λ
[
. (50)

This provides an exact path integral representation of the transition amplitude of a point particle moving in
the symmetric Poschl-Teller potential. Thus, for the one-dimensional harmonic oscillator potential (49), the
transformation

√
λx = tan(

√
λη) leads to the new propagator,

K (ηb, ηa, T ) = lim
N→∞

N∏
j=1

∫
dηj

N+1∏
j=1

√
m0

2π ı h̄ε

× exp

⎧⎨
⎩
ıε

h̄

N+1∑
j=1

[ m0

2ε2 (Δηj )
2 − m0ω

2

2λ2 (1 + tan2(
√

λη))
]⎫⎬
⎭ . (51)

The solution of the spectral decomposition of the transition amplitude for the one-dimensional harmonic
oscillator with the PDM particle defined in Eq. (51) simplifies to

K (ηb, ηa; T ) =
+∞∑
n=0

√
λ�(α)2

[
22α−1n!(n+α)

π�(n+2α)

]
exp

[
− ı

h̄

(
h̄2λT
2m0

(
n2 + (2n + 1)α

))]

×
(

cos
(√

ληb

))α

Cα
n

(
sin
(√

ληb

)) (
cos

(√
ληa

))α

Cα
n

(
sin
(√

ληa

))
, (52)

where Cα
n (x) are Gegenbauer polynomials and α is a constant parameter given by:

α = 1

2
+
√

1 + 4m2
0ω

2/λ2h̄2

2
. (53)

From Eq. (52), the normalized eigenfunctions �n(x) and En have the expressions,

�n(x) = �(α)
[

22α−1n!(n+α)
√

λ
π�(n+2α)

] 1
2
(

cos
(

arctan
(√

λx
)))α

× Cα
n

(
sin
(

arctan(
√

λx)
))

, (54)

and

En = h̄ω

[(
n + 1

2

)√
1 + λ2h̄2

4m2
0

+ λh̄

2m0

(
n2 + n + 1

2

)]
. (55)
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Fig. 1 The energy En as a function of n for several values of λ and n ≤ 10

The energy En is presented as a function of n for several values of λ and n ≤ 10, with h̄ = 1, ω = 1 and
2m0 = 1 in the Fig. 1.

Following this example, it is remarkable that given a small parameter of λ, the form of (55) can be easily
expanded in terms of λ and we obtain the corrections to the energy spectrum of the usual 1D harmonic
oscillator, can be expressed as

En = h̄ω

(
n + 1

2

)
+ λ h̄2ω

2m0

(
n2 + n + 1

2

)
+ λ2 h̄3ω

8m2
0

(
n + 1

2

)
. (56)

From (56) we can see that the dependence of mass on spatial coordinate makes the energy levels for the harmonic
oscillator potential depend on n2. In the limit λ → 0 we recover the wave functions and corresponding energy
spectrum of the 1D harmonic oscillator potential in usual Heisenberg algebra [48].

Beside this example mλ(x) = m0/(1 + λx2)2, there is also other case for position-dependent mass that
are similar to the type chosen in this section, defined by the formula mλ(x) = m0/(1 + λx + λ2x2)2 with a
harmonic oscillator perturbed by a time-independent force which can give accurate results.

4.2 The Second Case

In the second example, we consider the mass of a particle and the scalar potential with an exponential form,
where their expressions can be defined as

mλ(x) = m0e
λx , V (x) = Aeλx + Be−λx + Ce− λ

2 x . (57)

A, B,C and λ are positive constant,m0 is the mass of particle in the case λ = 0 and λ is a deformation coefficient
with the length of an inverse unit. Recent studies indicate that the exponential variation of mass with position is
useful to study the confined energy states of carriers in semiconductor quantum well structures, where we can
often describe the motion of electrons by the envelope function effective-mass Schrodinger equation [49,50].
Where the absolute λ−value is proportion to the inverse of the quantum-well width.

In that case, the corresponding EUP modified Heisenberg relation includes the exponential function in

x (i.e.,
[
X̂λ, P̂λ

]
= i h̄ exp(−λx/2)), where the EUP guarantees the existence of the minimum momentum

(Δp)min as a function of λ. By performing the same steps from the previous case, we find the following
coordinate transformation

η = 2

λ
exp(

λx

2
) with η ∈ ]0,+∞[ . (58)
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The new propagator with the above η−coordinate is defined in the following equation,

K (ηb, ηa, T ) = lim
N→∞

N∏
j=1

∞∫
0

dηj

N+1∏
j=1

√
m0

2π ı h̄ε

× exp

⎧⎨
⎩
ıε

h̄

N+1∑
j=1

[
m0

2ε2 (Δηj )
2 − Aλ2η2

4
− 4B

λ2η2 − 2C

λη

]⎫⎬
⎭ . (59)

This latter contains with three potentials and it is difficult to find an exact solution. Consequently, we will put
some conditions on the parameters A, B and C.

For the particular case when A �= 0 and B = C = 0, the expression (59) for K (ηb, ηa, T ) simplifies to
(see Ref. [51]),

K (ηb, tb; ηa, ta) =
∞∑
n=0

2m0ω

h̄

√
ηaηb

n!
�(n + 3

2 )

(
m0ω

h̄
ηaηb

) 1
2

×e−m0ω

2h̄ (η2
a+η2

b)L
( 1

2 )
n

(
m0ω

h̄
η2
a

)
L

( 1
2 )

n

(
m0ω

h̄
η2
b

)
e
−iωT

(
2n+ 3

2

)
, (60)

which coincides exactly with the normalized wave functions �n(x) reads as [52],

�n(x) = (− 1
4 )n
√ √

m0ω/h̄
2n!�(n+ 3

2 )
e
− 2m0ω

h̄λ2 exp(λx)
H2n+1

(
2
√

m0ω

λ2h̄
exp(

λx

2
)

)
, (61)

and the corresponding energy levels is

En = h̄ω(2n + 3

2
), ω =

√
A

2m0
λ, (62)

where H2n+1(x) is defined as [53]

H2n+1(x) = (−1)n22n+1n!xL(1/2)
n (x2), (63)

Hn(x) represent the Hermit polynomials and L(α)
n are called the generalized Laguerre polynomials.

The Fig. 2 represents the energy levels En for B = C = 0, A = 2m0 = h̄ = 1, and is a function of n for
several values of λ.

A Kratzer potential is represented by the choice of the parameters A = 0, B �= 0 and C �= 0, therefore,
according to Ref. [51], we get

K (ηb, ηa, T ) =
∑
n

( √
λ

n+σ+1/2

)2
n!

a�(n+2σ+1)
e
ıT
h̄

2m0C
2

h̄2λ2(n+σ+1/2)2

×
(

2ληb
a(n+σ+1/2)

)λ

e− ληb
a(n+σ+1/2) L(2σ)

n

(
2ληb/a

(n+σ+1/2)

)

×
(

2ληa
a(n+σ+1/2)

)λ

e− ληa
a(n+σ+1/2) L(2σ)

n

(
2ληa/a

(n+σ+1/2)

)
+

+∞∫
−∞

dk ... (64)

with σ =
√

8m0B
λ2h̄2 + 1

4 and a = − λ2h̄2

2m0C
.

Consequently, we can easily extract the energies and the corresponding wave functions,

En = − 2m0C2

h̄2λ2(n + σ + 1
2 )2

, (65)
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Fig. 2 The energy En as a function of n for several values of λ and n ≤ 10, B = C = 0 and A �= 0

Fig. 3 The energy En as a function of n for several values of λ and n ≤ 10, B �= 0,C �= 0 and A = 0

and

�n(x) =
√

λn!
a
(
n+σ+ 1

2

)2
�(n+2σ+1)

(
exp( λx

2 )

a(n+σ+ 1
2 )

)λ

exp

[
− exp( λx

2 )

2a(n+σ+ 1
2 )

]

×L(2σ)
n

(
exp(λx

2 )

a(n + σ + 1
2 )

)
. (66)

The energy for this special case is represented in Fig. 3, with A = 0, B = C = 2m0 = h̄ = 1.
We note that when B = 0, the Eq. (65) coincides exactly with the following expression

En = − 2m0C 2

h̄2λ2(n + 1)2
. (67)
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Fig. 4 The energy En as a function of n for several values of λ and n ≤ 10, B �= 0,C = 0 and A �= 0

A general radial harmonic oscillator is represented by the choice of the parameters A �= 0, B �= 0 and C = 0.
For this case we obtain

K (ηb, ηa, T ) =
∞∑
n=0

(2m0ω) n!√ηaηb

h̄�(n + κ + 1)

(
m0ω

h̄
ηaηb

)κ

exp

(
−m0ω

2h̄
(η2

a + η2
b)

)

×L(κ)
n

(
m0ω

h̄
η2
b

)
L(κ)
n

(
m0ω

h̄
η2
a

)
exp (−iωT (2n + κ + 1)) . (68)

Hence, we get the spectral energies
En = h̄ω(2n + κ + 1), (69)

and the corresponding wave functions

ψn(x) = ( 2
λ

) 1
2 +κ

e
λx
2 (κ+ 1

2 )

√
2n!

�(n + κ + 1)

(
m0ω

h̄

) κ+1
2

× exp

(
−2m0ω

h̄λ2 exp(λx)

)
L(κ)
n

(
4m0ω

h̄λ2 exp(λx)

)
, (70)

with ω =
√

A
2m0

λ and κ =
√

8m0B
h̄2λ2 + 1

4 .

The Fig. 4 shows the energy En varies with n for different values of λ, and with C = 0, A = B = 2m0 =
h̄ = 1.

Finally when λ → 0, it may be noted that the above results can revert to the case of the discrete levels
energy are disappear, therefore only the continuous energy levels remain which entails a constant potential
problem.

4.3 The Third Case

In this example, we can handle the Mathews-Lakshmanan oscillator corresponding to mass and scalar potential
as follows [54]:

V (x) = m0ω
2x2

1 + λ2x2 , mλ(x) = m0

1 + λ2x2 . (71)
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Also this example, it is similar to a new type of EUP whose modified Heisenberg relation takes the following

expression [X̂λ, P̂λ] = ı h̄(1 + λ2x2)
1
2 . Under this consideration the choice of g(η) is fixed by condition

x = g(η) = sinh(λη)/λ. So the corresponding propagator is the Feynman path integral for the modified
Poschl-Teller potential, which evolves to

K (ηb, ηa, T ) = lim
N→∞

N∏
j=1

∫
dηj

N+1∏
j=1

√
m0

2π ı h̄ε

× exp

⎧⎨
⎩
ıε

h̄

N+1∑
j=1

[
m0

2ε2 (Δηj )
2 + m0ω

2

2λ2 cosh2(λη)
− m0ω

2

2λ2

]⎫⎬
⎭ . (72)

According to Ref. [51], K (ηb, ηa, T ) of Eq. (72) simplifies to

K (ηb, ηa, T ) =
∑
n=0

(
λ(n−γ− 1

2 )�(2γ−n)

n!
)

e
− iT

h̄

(
m0ω

2

2λ2 − h̄2(n−γ+ 1
2 )2

2M

)

×P (n−γ+1/2)
γ−1/2 (tanh(ληb))P

(n−γ+1/2)
γ−1/2 (tanh(ληa)). (73)

Thus, the eigenfunctions corresponding to this propagator can be evolved as:

�n(x) =
√

(n − γ − 1

2
)
λ�(2γ − n)

n! P(n−γ+1/2)
γ−1/2

(
λx√

1 + λ2x2

)
. (74)

We can write energy spectrum as

En = m0ω
2

2λ2 − h̄2 (n − γ + 1
2 )2

2M
, (75)

where P(β)
α (x) denotes the Legendre polynomials. M and γ are given as

M = m0

λ2 , γ =
√
m2

0ω
2

λ4h̄2 + 1

4
. (76)

By using the Eqs. (76), the energy spectrum can be written as

En = h̄ωλ(n + 1

2
) − h̄2λ2

2m0
(n + 1

2
)2 − h̄2λ2

8m0
, (77)

where ωλ = ω

√
1 + λ4h̄2/4m2

0ω
2.

These results (74) and (77) are coincide with Ref. [55]. Moreover, the representation of energy for this
example is shown in Fig. 5, with ω = h̄ = 2m0 = 1.

The validity of our results in case λ → 0 is compatible with the usual results of the 1D harmonic oscillator
with mass constant.

5 Conclusion

In summary, we have designed the path integral method of the generalized infinitesimal translation operator
in non-relativistic quantum mechanics and without spin term. It is compatible with position dependent mass
systems. Under these considerations, we found the non-local Feynman’s formalism of which kinetic term is
dependent on position coordinate as well as for the measure term. This requires using a coordinates transfor-
mation method x = g(η) at α−points discretization interval. The main result is that the calculation depends
on the α-point discretization interval, and we conclude that the problem of discretization is definitively settled
using the path integral framework. This lends credence to this paper about the necessity of changing α-values
of point discretization interval in the existence of a EUP or GUP compared to usual quantum mechanics. So as
to obtain results very accurately through the examples presented in this paper, where the Green functions and
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Fig. 5 The energy En as a function of n for several values of λ and n ≤ 10

transition amplitude of each case are converted to the effective potential such as; the Poschl-Teller potential,
Morse potentials, and the modified Poschl-Teller potential. The exact spectral energies and the corresponding
wave functions have been obtained with curves of energies for each case. In the limit case by taking the
parameter λ = 0, this means that mλ (x) = m0, we recover the same results obtained for physical systems in
usual Heisenberg algebra.
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