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Abstract In this study, the Klein–Gordon equation was solved with the Deng–Fan potential using the
Nikiforov–Uvarov-functional-analysis in higher dimensions. By employing the improved Pekeris-type approx-
imation scheme, the relativistic and nonrelativistic energy spectra of the Deng–Fan potential were obtained
in closed form. In addition, the scattering state phase shift expression of Deng–Fan potential was obtained
in higher dimensions. The effects of the vibrational and rotational quantum numbers on the vibrational ener-
gies and scattering phase shift of hydrogen chloride (HCl) and lithium hydride (LiH) diatomic molecules
were studied numerically and graphically at different dimensions. Interestingly, there exists inter-dimensional
degeneracy symmetry for the scattering phase shift of the diatomic molecular systems considered. Our results
generally were in agreement with that obtained from literatures.

1 Introduction

Different researchers have developed interest in obtaining both exact and approximate solutions of relativistic
and nonrelativistic wave equations with various potential models. This is because all the information describing
a quantum system can be obtained comfortably from these models [1–7]. These solutions are highly appli-
cable to different areas of physics including chemical physics [8–12]. Different approximation schemes and
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formalisms have been employed to obtain the solutions of these wave equations [13–23]. Worth mentioning
is the most recently proposed formalism called the Nikiforov-Uvarov-functional-analysis (NUFA) method
[24–27]. This method is known to be very elegant and simple to use. Klein–Gordon equation (KGE) is one of
the relativistic wave equation which has been widely studied [28]. The KGE is known to be a basic relativistic
wave equation that describes the motion of spin zero particles [29,30]. In recent times, the studies of KGE have
been extended to higher dimensions with different potential models by some authors [31–38]. For instance,
the functional analysis approach has been employed to obtain the solution of the KGE with generalized hyper-
bolic potential model in higher dimensions [39]. Many researchers have been involved in proffering solutions
to scattering state problems with different potential models [40–44]. The bound and scattering states solu-
tions of the relativistic spinless particles with multiparameter potential have been obtained by Tas and Havare
[45]. In addition, the bound and scattering state solutions of position dependent mass KGE with Hulthen plus
deformed-type hyperbolic potential has been obtained in higher dimensions [46]. Most recently, Okorie and
his collaborators [47] employed the functional analysis approach (FAA) to obtain the bound and scattering
states solutions of the Klein–Gordon equation with generalized Mobius square potential in higher dimensions
for nitrogen monoiodide (NI) diatomic molecule. It has been observed that a study on the scattering states of
KGE with potential model for diatomic molecular systems carried out by Okorie [47] is the first to the best of
our knowledge. It is hoped that this study will extend the research trend in this direction. The aim of this paper
is to obtain the bound and scattering states solutions of the KGE with Deng–Fan potential model for LiH and
HCl diatomic molecules in higher dimensions. The Deng–Fan potential is defined as [48,49]

VDFP (r) = de

[
1 − g e− δ r(

1 − e− δ r
)
] 2

; g = eδ re − 1, (1)

where δ is the screening parameter,g is the potential parameter and de and re represent the dissociation energy
and equilibrium bond length of the molecular system, respectively. It is well known that molecular Deng–Fan
is a modified form of Morse potential. This potential finds applications in the study of motion of nucleons in
the mean field exerted by the interaction between nuclei and in describing diatomic energy spectra. Recent
studies show that Deng–Fan potential is consistent with quantum requirement which can be used to study
molecular systems besides the coulomb or linear terms [50].

The organization of this work is as follows: Sect. 2 gives the bound state solutions of the KGE with
Deng–Fan potential in higher dimensions. The scattering state solutions of the Deng–Fan potential in higher
dimensions are contained in Sect. 3. Section 4 contains the numerical and graphical results and obtained in
this work and their necessary discussion. The concluding remarks of this work are given Sect. 5.

2 Bound State Solutions of the KGE with Deng–Fan Potential in Higher Dimensions

The KGE for spherically symmetric potential in higher dimensions is defined as [51]

− h̄2c2�Dψn, l,m (r, � D) =
{(

En, lD − V (r)
)2 − (

μc2 + S (r)
)2}

ψn, l,m (r, � D) , (2)

with En, lD being the relativistic energy eigenvalues in higher dimensions, μ is the reduced mass,
V (r) and S (r) are the vector potential and scalar potential , respectively. Also, the parameter � D is given
as

�D ≡ ∇2
D = 1

r D − 1

∂

∂r

(
r D − 1 ∂

∂r

)
− �2

D (� D)

r2 , (3)

where �2
D (� D) defines the generalization of the centrifugal term for the higher dimensional space and ∇2

D is
the Laplace operator in higher dimensions.

The total wave function in higher dimensions is defined as

ψn, l,m (r, � D) = Fn, lD (r) Ym
lD (� D) , (4)

with the energy eigenvalues of �2
D (� D) being given as

�2
D (� D) Ym

lD (� D) = lD (lD + D − 2) Ym
lD (� D) . (5)
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Here, Ym
lD

(� D) is the hyperspherical harmonics and lD is the total angular momentum quantum number, both
in higher dimensions.

Substituting ansatz of the form Fn, lD (r) = r
− (D − 1)

2 G n, lD (r) for the wave function into Eq. (4) gives{
h̄2c2 d2

dr2 + (
En, lD − V (r)

)2 − (
μc2 + S (r)

)2 − (D + 2lD − 1) (D + 2lD − 3) h̄2c2

4r2

}
G n, lD (r) = 0, (6)

where G n, lD (r) is the hyper-radial wave function in higher dimensions.
In order to make the potential V (r) and not 2V (r) in the nonrelativistic limit, one proposed for equal vector

potential and scalar potential, that isV (r) = S(r) = V (r)
2 = S(r)

2 for the simplicity of the Klein-Equation ,then
Eq. (6) reduces to{

h̄2c2 d2

dr2 + (
E2
n, lD − μ2c4) − (

En, lD + μc2 ) V (r) − K (K + 1) h̄2c2

r2

}
G n, lD (r) = 0, (7)

where

K = lD + 1

2
(D − 3) . (8)

Substituting Eqs. (1) into (7) gives⎧⎨
⎩ d2

dr2 +
(
E2
n, lD

− μ2c4
)

h̄2c2
−
(
En, lD + μc2

)
h̄2c2

de

[
1 − g e− δ r(

1 − e− δ r
)
] 2

− K (K + 1)

r2

⎫⎬
⎭

G n, lD (r) = 0. (9)

Due to the presence of the centrifugal term, Eq. (9) cannot be solved exactly for lD = 0. Hence the improved
Pekeris-type approximation scheme is employed to handle the centrifugal term, reason being that it is suitable
for both bound and scattering state problems. The improved Pekeris-type approximation scheme used here is
defined as [52]

1

r2 ≈ δ2

[
d0 + eδ r(

1 − eδ r
)2
]

; d0 = 1

12
. (10)

Inserting Eqs. (10) into (9) and defining a new variable such as z = e− δ rwith the following dimensionless
parameters;

ε2
n, lD

= −
( (

E2
n, lD

−μ2c4
)

h̄2δ2c2 − de
(
En, lD + μc2

)
(1 + g)2

h̄2δ2c2 − d0K (K + 1)

)
;

P = −
(

2
(
E2
n, lD

−μ2c4
)

h̄2δ2c2 − 2de
(
En, lD + μc2 )(1 + g)

h̄2δ2c2 − K (K + 1) (2d0 − 1)

)
;

Q = −
( (

E2
n, lD

−μ2c4
)

h̄2δ2c2 − de
(
En, lD + μc2 )
h̄2δ2c2 − d0K (K + 1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

Equation (9) becomes

d2G n, lD (z)

dz2 + (1 − z)

z (1 − z)

dG n, lD (z)

dz
+
[
− ε2

n, lD
z2 + P z − Q

]
G n, lD (z)

z2 (1 − z)2 = 0. (12)

By employing the Nikiforov-Uvarov-Functional-Analysis (NUFA) method [53,54] and proposing a wave
function of the form

G n, lD (z) = zχ (1 − z)υ f n, lD (z) , (13)



101 Page 4 of 11 A. N. Ikot et al.

where

χ =
√√√√−

( (
E2
n, lD

−μ2c4
)

h̄2δ2c2 − de
(
En, lD + μc2

)
h̄2δ2c2 − d0K (K + 1)

)
;

υ = 1
2

[
1 +

√
1 + 4

(
deg2

(
En, lD + μc2

)
h̄2δ2c2 + K (K + 1)

)]
⎤
⎥⎥⎥⎥⎥⎦ (14)

it is worthy to mention here that the term under the square root signed in Eq. (14) must always be positive
for bound state solutions. The relativistic energy spectra of the Deng–Fan potential in higher dimensions is
obtained as

E2
n, lD − μ2c4 = de

(
En, lD + μc2 ) + d0K (K + 1) h̄2δ2c2 − h̄2δ2c2[

de
(
En, lD + μc2

) (
g2 + 2g

)
2 (n + υ)

− (n + υ)

2

] 2

(15)

By making use of the following mapping structure, En, lD + μc2 → 2μc2 and En, lD − μc2 → En, lD ,
the nonrelativistic energy spectra of the Deng–Fan potential in higher dimensions is obtained as

En, lD = de + h̄2δ2

2μ
d0K (K + 1) − h̄2δ2

2μ

⎡
⎣ 2μ de

h̄2δ2

(
g2 + 2g

)
2 (n + υ ′)

−
(
n + υ ′)

2

⎤
⎦

2

, (16)

where

υ ′ = 1

2

⎡
⎣1 +

√
1 + 4

(
2μ deg2

h̄2δ2
+ K (K + 1)

)⎤⎦ . (17)

3 Scattering State Solutions of the KGE with Deng–Fan Potential in Higher Dimensions

By employing a new transformation scheme ξ = 1 − e− δ rand the improved Pekeris-type approximation
scheme of Eqs. (10), (9) becomes

ξ(1 − ξ)
d2G n, lD (ξ)

dξ2 − ξ
dG n, lD (ξ)

dξ
+
[
�1 + �2ξ + �3ξ

2
]

ξ(1 − ξ)
G n, lD (ξ) = 0, (18)

where

�1 = −
(

deg2(En, lD + μc2 )
h̄2δ2c2 + K (K + 1)

)
;

�2 = 2 de g
(
En, lD + μc2

)
h̄2δ2c2 + 2 de g2

(
En, lD + μc2

)
h̄2δ2c2 + K (K + 1) ;

�3 =
(
E2
n, lD

−μ2c4
)

h̄2δ2c2 − de
(
En, lD + μc2 )
h̄2δ2c2 − 2 de g

(
En, lD + μc2 )
h̄2δ2c2 − deg2(En, lD + μc2 )

h̄2δ2c2 − d0K (K + 1)

⎤
⎥⎥⎥⎥⎥⎦ .

(19)

To find the regular solution of scattering states, the wave function is defined as

G n, lD (ξ) = ξλ (1 − ξ)−
ik
δ γ n, lD (ξ), (20)

where

λ = 1

2

(
1 ±√

1 − 4�1

)
; k = δ

√
�1 + �2 + �3. (21)
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Substituting Eqs. (21) into (18) gives the hypergeometric Gauss differential equation of the form

ξ(1 − ξ)
d2γ n, lD (ξ)

dξ2 +
[

2λ −
(

1 − 2ik

δ
+ 2λ

)
ξ

]
dγ n, lD (ξ)

dξ
−
(

λ − ik

δ
+ H

)(
λ − ik

δ
− H

)
γ n, lD (ξ) = 0, (22)

where

H = √− �3. (23)

As noted before, the quantities in the square root of Eqs. (21) and (23) can either be positive/negative for
bound/scattering states. If for instance, the term in the square root sign become negative then resonance
phenomena will occur. The solutions of Eq. (22) is the hypergeometric function given as

γ n, lD (ξ) = 2F1(φ1, φ2, φ3, ξ). (24)

Here, the following definitions are obtained:

φ1 = λ − ik

δ
+ H ; φ2 = λ − ik

δ
− H ; φ3 = 2λ. (25)

The general solution of the wave function is obtained as

G n, lD (r) = Nn, lD

(
1 − e− δ r ) 1

2 (1±√
1 − 4�1) (e− δ r )− i

√
�1+�2+�3

2F1
(
φ1, φ2, φ3, 1 − e− δ r ) .

(26)

The scattering state for relativistic energy greater than zero in three dimensions can be defined as [42]

U (r) → 0, r → 0;
U (r) → 2 sin

[
kr + � − lπ

2

]
, r → ∞

]
. (27)

For higher dimensions, it can be expressed as [42]

U (r) → 0, r → 0;
U (r) → 2 sin

[
kr + �lD − π

2

(
lD + (D− 3)

2

) ]
, r → ∞

]
, (28)

where �, �lD andU (r)are the scattering phase shifts in three dimension, higher dimension and wave functions,
respectively. From Eq. (26), the scattering phase shift and its corresponding normalization constant can be
obtained for large values of r in higher dimensions. Hence,

φ3 − φ1 − φ2 = 2ik
δ

= (φ1 + φ2 − φ3)
∗ ;

φ3 − φ1 = λ + ik
δ

− H = φ∗
2 ;

φ3 − φ2 = λ + ik
δ

+ H = φ∗
1

⎤
⎦ . (29)

Employing the transformation properties for the hypergeometric function [55],

2F1(φ1, φ2, φ3, 0) = 1, (30)

2F1 (φ1, φ2, φ3, ξ) = �(φ3)�(φ3 − φ1 − φ2)
�(φ3 − φ1)�(φ3 − φ2) 2F1 (φ3; φ2; φ1 + φ2 − φ3 + 1; 1 − ξ)

+ (1 − ξ) (φ1, φ2, φ3) �(φ3)�(φ1 + φ1 − φ3)
�(φ1)�(φ2) 2F1 (φ3 − φ1; φ3 − φ2; φ3 − φ1 − φ2 + 1; 1 − ξ)

.(31)

Also, the term 2F1
(
φ1, φ2, φ3, 1 − e− δ r

)
in Eq. (26) can be expanded as

2F1
(
φ1, φ2, φ3, 1 − e− δ r ) = � (φ3)

[
� (φ3 − φ1 − φ2)

� (φ3 − φ1) � (φ3 − φ2)

+
[

� (φ3 − φ1 − φ2)

� (φ3 − φ1) � (φ3 − φ2)

] ∗
e− δ(φ3 − φ1 − φ2) r

]
. (32)
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Table 1 Spectroscopic data for LiH and HCl diatomic molecules [49]

Parameters Li H HCl

de (eV ) 2.51528 4.6190

re
(

Å
)

1.5956 1.2746

δ
(

Å−1
)

1.1280 1.8677
μ (a. m. u.) 0.8801221 0.9801045

As r → ∞, Eq. (32) becomes

2F1
(
φ1, φ2, φ3, 1 − e− δ r ) = � (φ3)

[
�
( 2ik

δ

)
�
(
φ∗

2

)
�
(
φ∗

1

) +
[

�
( 2ik

δ

)
�
(
φ∗

2

)
�
(
φ∗

1

)
] ∗

e− 2ik r

]
. (33)

By using the relation

� (φ3 − φ1 − φ2)

� (φ3 − φ1) � (φ3 − φ2)
=
∣∣∣∣ � (φ3 − φ1 − φ2)

� (φ3 − φ1) � (φ3 − φ2)

∣∣∣∣ ei � , (34)

Equation (33) becomes

2F1
(
φ1, φ2, φ3, 1 − e− δ r

) = � (φ3)

∣∣∣∣∣ �
(

2ik
δ

)
�(φ∗

2)�(φ∗
1)

∣∣∣∣∣ [e i � + e− 2ik r × e− i �
]

= � (φ3)

∣∣∣∣∣ �
(

2ik
δ

)
�(φ∗

2)�(φ∗
1)

∣∣∣∣∣ e− i k r
[
e
i
(
� − k ln 2

δ
+ k r

)
+ e

− i
(
� − k ln 2

δ
+ k r

)]

= � (φ3)

∣∣∣∣∣ �
(

2ik
δ

)
�(φ∗

2)�(φ∗
1)

∣∣∣∣∣ e− i k r sin
(
k r + � − k ln 2

δ
+ π

2

[
lD + (D − 3)

2

]
+ π

2

[
lD + (D − 1)

2

])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

The asymptotic form of Eq. (26) becomes

Gn, lD (r) = 2Nn, lD � (φ3)

∣∣∣∣∣ �
( 2ik

δ

)
�
(
φ∗

2

)
�
(
φ∗

1

)
∣∣∣∣∣ e− i k r sin

(
k r + � − k ln 2

δ
+ π

2

[
lD + (D − 3)

2

]

+ π

2

[
lD + (D − 1)

2

])
. (36)

Comparing Eq. (36) with the boundary conditions [56],

r → ∞ ⇒ R (∞) → 2 sin
(
k r + �lD − π

2

[
lD + (D − 3)

2

])
. Hence, the scattering phase shift

relation for the Deng–Fan potential in higher dimension becomes

�lD = π

2

[
lD + (D − 1)

2

]
− k ln 2

δ
+ arg � (φ3 − φ1 − φ2) − arg � (φ3 − φ1)

− arg � (φ3 − φ2) . (37)

Its corresponding normalization constant gives

Nn, lD = 1

� (φ3)

∣∣∣∣∣�
(
φ∗

2

)
�
(
φ∗

1

)
�
( 2ik

δ

)
∣∣∣∣∣ . (38)
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Table 2 Bound state energy eigenvalues (in eV) of the Deng–Fan potential forLiH at different quantum states in higher dimensions

n l ED = 4
n� ED = 5

n� ED = 6
n�

0 0 0.1040479140 0.1052366400 0.1069005060
1 0 0.3026930480 0.3038384260 0.3054415940
2 0 0.4913473720 0.4924503730 0.4939942280

1 0.4939942280 0.4959786010 0.4984030610
3 0 0.6702375250 0.6712991090 0.6727849900

1 0.6727849900 0.6746948370 0.6770282410
2 0.6770282410 0.6797846630 0.6829634880

4 0 0.8395826180 0.8406037120 0.8420329100
1 0.8420329100 0.8438699010 0.8461142710
2 0.8461142710 0.8487655090 0.8518230100
3 0.8518230100 0.8552860930 0.8591539610

5 0 0.9995945430 1.000576038 1.001949808
1 1.001949808 1.003715543 1.005872851
2 1.005872851 1.008421226 1.011360078
3 1.011360078 1.014688747 1.018406459
4 1.018406459 1.022512353 1.027005527

Table 3 Bound state energy eigenvalues (in eV) of the Deng–Fan potential forHCl at different quantum states in higher dimensions

n l ED = 4
n� ED = 5

n� ED = 6
n�

0 0 0.2030591360 0.2048528830 0.2073638980
1 0 0.5917899970 0.5935335410 0.5959743120
2 0 0.9610208040 0.9627148210 0.9650862620

1 0.9650862620 0.9681349040 0.9718603950
3 0 1.311005597 1.312650715 1.314953724

1 1.314953724 1.317914402 1.321532376
2 1.321532376 1.325807282 1.330738792

4 0 1.641993306 1.643590203 1.645825690
1 1.645825690 1.648699490 1.652211356
2 1.652211356 1.656360841 1.661147679
3 1.661147679 1.666571314 1.672631284

5 0 1.954227960 1.955777237 1.957946007
1 1.957946007 1.960734112 1.964141193
2 1.964141193 1.968166869 1.972810848
3 1.972810848 1.978072638 1.983951728
4 1.983951728 1.990447434 1.997559190

4 Results and Discussion

In this work, the hydrogen chloride (HCl) and the lithium hydride (LiH) diatomic molecules are considered.
The molecular constants of the selected molecular systems are taken from Ref. [49], as presented in Table 1.
The relativistic energy spectra and the corresponding nonrelativistic energy spectra of Deng–Fan potential are
presented in Eqs. (15) and (16), respectively in higher dimensions. The bound state energies of the Deng–
Fan potential for LiH and HCl diatomic molecules at different quantum states are presented in Tables 2 and
3, respectively at different dimensions. It is seen that the bound state energies increase with increase in the
vibrational quantum number, n. For a particular vibrational quantum number, the bound state energies increase
with increase in the rotational quantum number, l. In addition, there exists a slow increase in the bound state
energies for each quantum state considered, as the dimension increases. This shows that the energy spectra of
the diatomic molecules are more bounded at higher dimensions. Our results in Table 4 show that the computed
results agree perfectly with the results obtained in Ref. [49] in three dimensions. In all the computation given
in Tables 2, 3 and 4, the dissociation energy de has been used as reference level for the bound states solutions.
The scattering state phase shift relation of the Deng–Fan potential in higher dimension is presented in Eq. (37)
and its corresponding normalization constant is given in Eq. (38). The numerical results of the scattering state
phase shift of the Deng–Fan potential for LiH and HCl diatomic molecules for different dimensions are given
in Tables 5 and 6 respectively and the phrase shifts are expressed in radian. It is observed that the scattering
phase shift of Deng–Fan potential increases with increase in rotational quantum number, for each dimension.
Also, the scattering state phase shift of Deng–Fan potential increases slightly as the dimension increases,
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Table 4 Bound state energy eigenvalues (in eV) of the Deng–Fan potential for LiH and HCl at different quantum states in three
dimensions

n l ED = 3
n� (Li H) Li H [49] ED = 3

n� (HCl) HCl [49]

0 0 0.1033345740 0.103334650 0.2019828040 0.201984174
1 0 0.3020057300 0.302005955 0.5907437530 0.590747827
2 0 0.4906854760 0.490685861 0.9600042860 0.960011044

1 0.4924503730 0.492450759 0.9627148210 0.962721591
3 0 0.6696004830 0.669601019 1.310018416 1.310027865

1 0.6712991090 0.671299648 1.312650715 1.312660203
2 0.6746948370 0.674695388 1.317914402 1.317923855

4 0 0.8389698740 0.838970564 1.641035079 1.641047243
1 0.8406037120 0.840604402 1.643590203 1.643602379
2 0.8438699010 0.843870601 1.648699490 1.648711644
3 0.8487655090 0.848766203 1.656360841 1.656373023

5 0 0.9990055600 0.999006401 1.953298310 1.953313156
1 1.000576038 1.00057688 1.955777237 1.955792078
2 1.003715543 1.003716397 1.960734112 1.960748932
3 1.008421226 1.008422072 1.968166869 1.968181734
4 1.014688747 1.014689589 1.978072638 1.978087513

Table 5 Scattering Phase Shift of LiH diatomic molecules at different dimensions

l �lD = 3 �lD = 4 �lD = 5 �lD = 6

0 4.712592654 5.498092654 6.283592654 7.069092654
1 6.283592654 7.069092654 7.854592654 8.640092654
2 7.854592654 8.640092654 9.425592654 10.21109265
3 9.425592654 10.21109265 10.99659265 11.78209265
4 10.99659265 11.78209265 12.56759265 10.21150000
5 12.56759265 10.21150000 10.99700000 11.78250000
6 10.99700000 11.78250000 12.56800000 13.35350000
7 12.56800000 13.35350000 14.13900000 14.92450000
8 14.13900000 14.92450000 15.71000000 16.49550000
9 15.71000000 16.49550000 17.28100000 18.06650000
10 17.28100000 18.06650000 18.85200000 19.63750000

for each rotational quantum number. This shows that the diatomic molecules are easily scattered at higher

dimensions than at lower dimensions. In addition, inter-dimensional degeneracy symmetry
(
� D

l = � D + 2
l − 1

)
is observed in the results for both the bound state energies and scattering state phase shift of the Deng–Fan
potential for LiH and HCl diatomic molecules. Hence, the bound state energies and the scattering state phase
shift of the Deng–Fan potential for LiH and HCl diatomic molecules are invariant under a transformation
of an increase in the higher dimension by two (D → D + 2) and a decrease in the rotational quantum
number by one (l → l − 1) which implies that there exists an inter-dimensional degeneracy symmetry
for the D-dimensional relativistic rotation-vibration energy spectra of the Deng–Fan potential .The variations
of the scattering state phase shift with rotational quantum numbers, at different dimensions for LiH and
HCl diatomic molecules are presented in Figs. 1 and 2, respectively. Figure 1 shows a direct increase in the
scattering state phase shift of Deng–Fan potential for LiH diatomic molecule as the rotational quantum number
increases, for the different dimensions considered. In Fig. 2, the scattering state phase shift of the Deng–Fan
potential for HCl diatomic molecule increases to a peak value as the rotational quantum number increases for
each dimension. Beyond a specific value of the rotational quantum number, the scattering state phase shift
begins to decrease and later increases as the rotational quantum number increases. It can be deduced that the
scattering state phase shift of Deng–Fan potential for LiH and HCl diatomic molecules largely depend on the
rotational quantum number for the dimensions considered. This is because nuclear and molecular potentials
model are state dependent [57–59] and are characterised by the strength and range parameters which have
many applications for obtaining the p- and d-wave scattering phase factor [60].
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Table 6 Scattering Phase Shift of HCl diatomic molecules at different dimensions

l �lD = 3 �lD = 4 �lD = 5 �lD = 6

0 4.712592654 5.498092654 6.283592654 7.069092654
1 6.283592654 7.069092654 7.854592654 8.640092654
2 7.854592654 8.640092654 9.425592654 10.21109265
3 9.425592654 10.21109265 10.99659265 11.78209265
4 10.99659265 11.78209265 12.56759265 13.35309265
5 12.56759265 13.35309265 14.13859265 14.92409265
6 14.13859265 14.92409265 15.70959265 16.49509265
7 15.70959265 16.49509265 17.28059265 14.92450000
8 17.28059265 14.92450000 12.56840735 13.35390735
9 12.56840735 13.35390735 14.13940735 14.92490735
10 14.13940735 14.92490735 15.71040735 16.49590735

Fig. 1 Variation of Scattering phase shift with rotational quantum number of LiH for various dimensions

5 Concluding Remarks

This study is devoted to the study of the bound state solutions, the scattering phase shift factor and the
normalization constant of the Klein–Gordon equation (KGE) with the Deng–Fan potential in higher dimensions
using the framework of Nikiforov-Uvarov-Functional Analysis (NUFA) method. Numerical results of the
bound state energies and the scattering states phase shift were obtained for lithium hydride (LiH) and hydrogen
chloride (HCl) diatomic molecules for various dimensions. In addition, the variations of the bound state
energies and scattering state phase shift with rotational and vibrational quantum numbers have been discussed
extensively. We have shown that the bound state energies and the scattering state phase shift of the Deng–
Fan potential model depend on the angular momentum quantum numbers for the diatomic molecule systems
considered. In our study, inter-dimensional degeneracy symmetry was seen to occur in the various bound
state energy and scattering phase shift results for the LiH and HCl diatomic molecules at higher dimensions.
This study will be very relevant in many areas of physics where the concepts of scattering and dimensional
scaling are of great importance [61–63]. It is worthy to note that it has been shown by Jia et al. [64] that the
behavior of the D-dimensional relativistic vibrational energies remains similar to that of the three dimensional
non-relativistic system. Finally, the concepts of D-dimensional scaling techniques has been recently employed
in physics and chemistry to study multiparticles systems in molecular quantum mechanics, even though the
study of the D-dimensional scaling is restricted to ground and first excited energies of quantum system [65].
It will be a good task for researchers to investigate this present work using D-dimensional scaling techniques.
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Fig. 2 Variation of Scattering phase shift with rotational quantum number of HCl for various dimensions
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