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Abstract Understanding the structure and reactions of nuclei from first principles has been a long-standing
goal of nuclear physics. In this respect, few- and many-body systems provide a unique laboratory for studying
nuclear interactions. In the past couple of decades, the modeling of nuclear interactions has progressed signif-
icantly owing, in particular, to the development of chiral effective field theory (χEFT), a low-energy effective
representation of quantum chromodynamics. Within χEFT, many studies have dealt with the construction of
both two- and three-nucleon interactions. The aim of the present article is to provide a concise account of
chiral interaction models that are local in configuration space, and to report on a selection of recent results for
nuclear systems obtained with these interactions.

1 Introduction

The modeling of nuclei as systems of nucleons (protons and neutrons) interacting with each other via effective
forces and with external electroweak probes via effective currents has a long and venerable history. We refer
to it as the basic model of nuclear physics. When combined with accurate methods to solve the many-body
Schrödinger equation, the basic model presents us with the opportunity and challenge to understand and explain
nuclear structure and reactions in terms of the underlying dynamics of interacting nucleons. A calculation
carried out in such a framework is commonly referred to as an ab-initio one. Examples of ab initio calculations
are those based on the no-core shell model (NCSM) [1,2], the coupled cluster (CC) [3,4] or hyperspherical
harmonics (HH) [5] expansions, similarity renormalization group (SRG) approaches [6,7], self-consistent
Green’s function techniques [8,9], quantum Monte Carlo (QMC) methods [10,11], and nuclear lattice effective
field theory (NLEFT) [12]. While significant progress has been made in recent years, enabled by advances in
the input nuclear interactions and currents based on chiral effective field theory (χEFT), improved and novel
many-body frameworks, and increasingly powerful computer facilities, these ab initio calculations remain
challenging and their domain of applicability is, at present, limited to provide a quantitative description of
light and medium-mass nuclei [1,4,7–11,13] and their reactions [14–17]. The main challenge is to describe
diverse physical phenomena within a single coherent picture. The reasons are twofold. First, at the moment,
there exist no interactions and electroweak currents which are able to correctly predict, simultaneously, different
nuclear few- and many-body observables over a wide range of mass number, including infinite matter, within
quantified theoretical uncertainties. This can be probably traced back to fundamental questions regarding
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inconsistencies in the derivation and implementation of nuclear interactions and current operators, and the
complexity of the optimization procedures needed for estimating the parameters entering the nuclear models.
Second, the difficulty in the solution of the nuclear many-body problem is exacerbated by limitations inherent
to the different many-body frameworks utilized for atomic nuclei and nuclear matter. These drawbacks include
the scaling behavior as a function of mass number, the convergence of observables as a function of basis states,
the validity of many-body truncations, and constraints regarding which nuclear interactions can be used. A
special but related challenge is the development, within the basic model, of approaches accounting for the
coupling to the continuum—these are mandatory to describe, for instance, weakly bound nuclear systems
[18,19].

Of course, nucleons are composite particles, and it could be argued that an understanding of nuclei that
is truly fundamental can only be realized on the basis of approaches explicitly (as opposed to effectively)
accounting for the dynamics of quarks and gluons, the degrees of freedom of Quantum Chromodynamics
(QCD). Such approaches, which are computationally very demanding, attempt to solve the nuclear many-body
problem on a discretized (Euclidean) space-time lattice. Albeit there have been many advances [20–23], lattice
QCD calculations are still limited to small nucleon numbers and/or large pion masses, and hence, at the present
time, can only be used to address a limited set of representative key-issues. As a consequence, most theoretical
studies of nuclear systems must turn to the basic model to address the full complexity of the nuclear many-body
problem.

2 Nuclear Interactions

The basic model assumes that a Hamiltonian consisting of non-relativistic kinetic energy, and two-nucleon
(2N ) and three-nucleon (3N ) interaction, provides a good approximation to the energy of interacting nucleons.

Two-nucleon interactions are characterized by a long-range component, due to one-pion exchange (OPE)
[24], for inter-nucleon separation r � 2 fm, and intermediate- and short-range components for 1 fm �
r � 2 fm and r � 1 fm, respectively. Up until the mid-1990’s, these interactions [25–27] were based
essentially on meson-exchange phenomenology, with parameters characterizing the short- and intermediate-
range components that were constrained by fits to the 2N elastic scattering data up to lab energies of 350 MeV
(that is, slightly above the threshold for pion production). The χ2/datum achieved in these fits was close to
1 relative to the database available at the time [28]. Two well-known, and still widely used, examples in this
class of phenomenological 2N interactions are the Argonne v18 (AV18) [26] and CD-Bonn [27].

Already in the early 1980’s, accurate Faddeev calculations had shown that 2N interactions (those available
at the time) did not provide enough binding for the three-body nuclei, 3H and 3He [29]. In the late 1990’s
and early 2000’s this conclusion was shown to hold also for the energy spectra (ground and low-lying excited
states) of light p-shell nuclei in calculations based on the phenomenological interactions mentioned earlier,
and using quantum Monte Carlo (QMC) [30] and no-core shell-model (NCSM) [31] methods. This led to the
realization that the basic model without the inclusion of (at least) 3N interaction is definitely incomplete.

Because of the composite nature of the nucleon and, in particular, the dominant role of the Δ-resonance in
pion-nucleon scattering, multi-nucleon interactions arise quite naturally in the meson-exchange phenomenol-
ogy. In particular, the Illinois 3N interactions [32] consist of a dominant two-pion exchange (TPE) component
with a single intermediate Δ—the Fujita-Miyazawa interaction [33]—and smaller multi-pion exchange com-
ponents resulting from the excitation of multiple intermediate Δ’s. The most recent version, Illinois-7 (IL7)
[34], also contains phenomenological isospin-dependent central terms. The few (4) parameters characterizing
the IL7 model have been determined by fitting the low-lying spectra of nuclei in the mass range A = 3–10. The
resulting AV18 + IL7 Hamiltonian, generally utilized with QMC methods, then leads to predictions of about
100 ground- and excited-state energies up to A = 12, including the 12C ground- and Hoyle-state energies, in
good agreement with the corresponding empirical values [10]. However, when used to compute the equation
of state of neutron star matter, the AV18 + IL7 Hamiltonian does not provide sufficient repulsion to ensure the
stability of the observed stars against gravitational collapse [35]. Thus, it would appear that, in the context of
phenomenological nuclear interactions, we do not have models that can predict simultaneously the properties
of light p-shell nuclei and dense nuclear and neutron matter. It is also important to emphasize that these interac-
tions are affected by several additional limitations, most notably the missing link with the (approximate) chiral
symmetry exhibited by QCD, and the absence of rigorous schemes to consistently derive nuclear electroweak
currents.

The advent of chiral effective field theory (χEFT) [36–38] in the early 1990’s has spurred a new phase in
the evolution of the basic model, and has renewed interest in its further development. χEFT is a low-energy
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effective theory of QCD based on pions and nucleons (and, in some instances, Δ’s) as effective degrees of
freedom. For momenta p ∼ mπ , such a framework is expected to be accurate, since shorter-range structures,
e.g., the quark substructure, or heavier meson exchanges, e.g., ρ-meson exchanges, are not resolved, and
can be absorbed in short-range contact interactions between nucleons. This separation of scales between
typical momenta p ∼ mπ and much harder momenta of the order of the ρ-meson or nucleon mass can be
used to systematically derive a general scheme, which accommodates all possible interactions among the
relevant degrees of freedom (pions, nucleons, and, in some formulations, Δ’s), and which is consistent with
the symmetries of QCD.

The starting point in χEFT is the most general Lagrangian in terms of the chosen degrees of freedom,
which contains all interaction mechanisms allowed by the symmetries of QCD. This Lagrangian contains
an infinite number of terms and needs to be truncated using a given power-counting scheme. Most chiral
interactions used in nuclear structure calculations use Weinberg’s power counting, which itself is based on
naive dimensional analysis of interaction contributions. Within Weinberg’s power counting, the interactions are
expanded in powers of the typical momentum p over the breakdown scale Λb, that is, the expansion parameter
is Q = p/Λb, where the breakdown scale denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact interactions any longer (see Refs. [39–43] for
recent review articles). It is worthwhile mentioning that alternative power-counting schemes have been also
suggested, see Refs. [44–49].

This expansion defines an order by order scheme, defined by the power ν of the expansion parameter
Q in each interaction contribution: leading order (LO) for ν = 0, next-to-leading order (NLO) for ν = 2,
next-to-next-to-leading order (N2LO) for ν = 3 and so on. Similarly as for nuclear interactions, such a
scheme can also be developed for electroweak currents [50]. Therefore, χEFT provides a rigorous scheme to
systematically construct nuclear many-body forces and consistent electroweak currents, and tools to estimate
their uncertainties [51–56].

Nuclear interactions in χEFT are separated into pion-exchange terms, associated with the long- and
intermediate-range components, and contact terms that encode short-range physics. The strength of these
contact terms is specified by unknown low-energy constants (LECs), which are constrained by fitting experi-
mental data. Nuclear interactions (and electroweak currents) suffer from ultraviolet (UV) divergencies, which
need to be removed by a proper regularization and renormalization procedure. As a matter of fact, there are
two sources of UV divergencies that require regularization: one from loop corrections and the other when
solving the Schrödinger equation (or when calculating matrix elements of nuclear currents). Loop divergences
can be treated via dimensional regularization (DR) or spectral-function regularization (SFR), where the latter
is implemented by including a finite cutoff in the spectral functions. If this cutoff is taken to be infinity, then
SFR coincides with DR. To remove divergencies occurring in the solution of the Schrödinger equation, nuclear
interactions are multiplied by regulator functions that remove momenta larger than a preset cutoff scale. The
regularization of interactions (and currents) is followed by a renormalization procedure, that is, dependencies
on the regularization scheme and cutoff are reabsorbed, order by order, by the LECs characterizing these
interactions (and currents).

Nucleon–nucleon scattering has been extensively studied in χEFT in the past two decades following the
pioneering work by Weinberg [36–38] and Ordonez et al. [57]. In particular, 2N interactions at N3LO in
the chiral expansion are available since the early 2000’s [58,59] and have served as a basis for numerous ab
initio calculations of nuclear structure and reactions. More recently, models up to the fifth order in the chiral
expansion, i.e., N4LO, have been developed [60–63], which lead to accurate descriptions of 2N databases
up to laboratory energies of 300 MeV with χ2 per datum close to 1. These databases have been provided
by the Nijmegen group [25,28], the VPI/GWU group [64], and more recently the Granada group [65–67]. In
the standard optimization procedure, the 2N interactions are first constrained through fits to neutron–proton
(np) and proton–proton (pp) phase shifts, and then refined by minimizing the total χ2 obtained from a direct
comparison with the 2N scattering data. However, new optimization schemes are being explored in Refs.
[68,69]. For instance, the optimization strategy of Ref. [69] is based on a simultaneous fit of low-energy 2N
data, the deuteron binding energy, and the binding energies and charge radii of hydrogen, helium, carbon, and
oxygen isotopes using consistent 2N and 3N interactions at N2LO.

Three-nucleon interactions and their impact on nuclear structure and reactions have become a nuclear-
physics topic of intense current interest, see Refs. [70–72] for review articles. Three-nucleon interactions have
been derived up to N4LO in χEFT [73–77]. However, few- and many-nucleon calculations are, with very
few exceptions, still limited to chiral 3N interactions at N2LO. At this order, they are characterized by two
unknown LECs, one in a OPE-contact term and the other in a purely contact 3N term; these LECs are commonly
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denoted as cD and cE , respectively. They have been constrained either by fitting exclusively strong-interaction
observables [78–81] or by relying on a combination of strong- and weak-interaction observables [82–86]. This
last approach is made possible by the relation between cD and the LEC entering the 2N contact axial current
[82,83,87]. This relation emerges naturally in χEFT, and allows one to use nuclear properties governed by
either strong or weak interactions to constrain simultaneously the 3N interaction and 2N axial current.

Since χEFT is a low-momentum expansion, many of the chiral interactions available in the literature are
naturally formulated in momentum space and have the feature of being strongly non-local in coordinate space.
This makes them ill-suited for certain numerical algorithms, for example, Quantum Monte Carlo (QMC)
methods. This strong non-locality comes about on account of two factors: (i) the specific choice made for the
cutoff function needed to remove large momenta, and (ii) contact terms involving high-order derivatives of the
nucleon field.

3 Local Chiral Interactions

In recent years, local chiral interactions suitable for QMC calculations have been developed by two different
groups using Δ-less [79,80,88–91] and Δ-full [81,84,92–94] χEFT formulations. At LO, both Δ-less and
Δ-full interactions have the same operator structure. At this order, only the leading contact terms (involving
no derivatives of the nucleon field) and one-pion exchange (OPE) term contribute (the latter is often taken
to include also the charge-independence breaking induced by the difference between the neutral and charged
pion masses).

At higher orders, additional momentum-dependent contact as well as two-pion exchange (TPE) terms
appear. The TPE coordinate-space expressions at NLO and N2LO for both the Δ-less and Δ-full approaches
are given in Refs. [88,89,95] and Ref. [93], respectively. For the NLO contact interactions, the most general
form consists of 14 terms [40]. However, only 7 out of these 14 terms are linearly independent; they turn out
to be fully local. Moreover, at this order, a leading contact charge-dependent (CD) term is also accounted for,
needed to reproduce the pp and nn singlet scattering length.

At the next order, N3LO, contact interactions cannot be written down in a purely local fashion, since Fierz
identities prove ineffective in removing all non-localities. A possible way forward is the definition ofminimally
non-local N3LO interactions, which have been constructed in the Δ-full approach as reported in Ref. [93].
The local versions of these Δ-full minimally non-local 2N interactions have been defined by dropping terms
proportional to p2 that remain after Fierz rearrangement [92] (here, p is the relative momentum operator). The
inclusion of these terms was shown to yield no significant improvement in the fit to the 2N database [92].
As a matter of fact, three combinations of such terms vanish off the energy shell [62] and their effect can be
absorbed into a redefinition of the 3N interaction [96]. In these models, four charge-dependent (CD) operators
at N3LO are also retained [92].

In order to use these interaction models in many-body calculations, it is necessary to specify a regularization
scheme. For the Δ-less interactions, the following long- and short-range regulators are used [88,89],

flong(r) =
[
1 − e−(r/R0)

n1
]n2

, fshort(r) = n

4π R3
0 Γ (3/n)

e−(r/R0)
n
, (1)

with n1 = 4, n2 = 1, and n = 4.
The long-range regulator multiplies each radial function in the OPE and TPE contributions, while the short-

range regulator replaces all δ-functions in the contact terms. The regulator functions depend on the cutoff scale
R0 that is taken in the range of R0 = (1.0–1.2) fm. There are 11 LECs associated with contact terms in the
Δ-less (NLO) models. They are fixed by performing χ2 fits to 2N phase shifts from the Nijmegen partial-wave
analysis (PWA) up to 150 MeV laboratory energy [88,89].

In the Δ-full interactions, the long- and short-range regulators are, instead, given by the following functions

f Δ
long(r) = 1 − 1

(r/RL)6 e(r−RL)/aL + 1
, f Δ

short(r) = 1

π3/2R3
S

e−(r/RS)2
, (2)

where three values for the radius RL are considered: RL = (0.8, 1.0, 1.2) fm with the diffuseness aL fixed
at aL = RL/2 in each case. In combination with RL, the RS values considered are (0.6, 0.7, 0.8) fm, corre-
sponding to typical momentum-space cutoffs ΛS = 2/RS ranging from about 660 MeV down to 500 MeV.
The interactions with cutoffs (RL, RS) equal to (1.2, 0.8) fm, (1.0, 0.7) fm, and (0.8, 0.6) fm are denoted,
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respectively, as model a, b, and c. There are 26 LECs that enter these (N2LO) interactions. The optimization
procedure to fix these 26 LECs utilizes pp and np scattering data (including normalizations), as assembled in
the Granada database [65], the 2N scattering lengths, and the deuteron binding energy. For each of the three
different sets of cutoff radii (RS, RL), two classes of local interactions have been developed, which only differ
in the range of laboratory energy over which the fits were carried out, either 0–125 MeV in class I or 0–200
MeV in class II. The χ2/datum achieved by the fits in class I (II) was � 1.1(� 1.4) for a total of about 2700
(3700) data points. In the literature, these 2N interactions are generically referred to as the Norfolk interactions
(NV2s). Those in class I are designated as NV2-Ia, NV2-Ib, and NV2-Ic, and those in class II as NV2-IIa,
NV2-IIb, and NV2-IIc.

Both the Δ-less and Δ-full formulations account for 3N interactions. In the Δ-less version, the leading
3N contributions appear at N2LO in the power counting. They consist of (i) a long-range TPE term (VC ),
depending on the subleading pion-nucleon LECs c1, c3, and c4, that already appear in the 2N sector; (ii) a
OPE-contact term (VD) dependent on the LEC cD , and (iii) a purely contact 3N term (VE ) dependent on the
LEC cE . The LECs cD and cE are adjusted so as to fit properties of A ≥ 3 systems. In the Δ-less approach,
these observables have been chosen to be the 4He binding energy and n-α scattering P wave phase shifts. In
Fig. 1 of Ref. [79], the parameter curves for the 3N LECs corresponding to different 3N cutoffs R3N, chosen
similarly to R0, are shown.

In the Δ-full formulation, the 3N interaction consists of the three N2LO terms above (VC , VD and VE ) plus
a NLO TPE term involving the excitation of a Δ in the intermediate state, the well-known Fujita–Miyazawa
interaction [33] (VΔ). In the Δ-less approach, it is expected to be subsumed in VC . In the Δ-full chiral EFT, two
different sets for the values of cD and cE were obtained, leading to two different parametrizations of the 3N
interaction [81,84]. In the first, these LECs were determined by simultaneously reproducing the experimental
trinucleon ground-state energies and the neutron–deuteron (nd) doublet scattering length, as shown in Ref.
[81]. In the second set, these cD and cE were constrained by fitting, in addition to the trinucleon energies, the
empirical value of the Gamow-Teller matrix element in tritium β decay [84]. Because of the much reduced
correlation between binding energies and the GT matrix element, the second procedure leads to a more robust
determination of cD and cE than attained in the first one. Note that these observables have been calculated
with hyperspherical-harmonics (HH) expansion methods [5] as described in Refs. [81,84].

4 Applications

In this section, we briefly discuss some illustrative applications of local chiral interactions to the few- and
many-body systems.

Figure 1 shows the binding energies of nuclei up to 16O as calculated with the Green’s function Monte Carlo
(GFMC) method for one of the Δ-full models (NV2 + 3-Ia) [81], and with the Auxiliary Diffusion Monte Carlo
(AFDMC) method for one of the Δ-less models (GT + Eτ -1.0) [90,98]. The calculated energies are compared
to the experimental values. GFMC results only carry Monte Carlo statistical uncertainties, while for AFDMC
results, theoretical uncertainties coming from the truncation of the chiral expansion are also included. These
uncertainties are estimated accordingly to the prescription of Epelbaum et al. [61]. In addition to energies,
local chiral interactions describe charge radii extremely well as shown in Fig. 4 of Ref. [11] (see this reference
for a more extensive discussion).

The Δ-full models have been recently used in benchmark calculations of the energy per particle of pure
neutron matter (PNM) as a function of density using three independent many-body methods [99]: Brueckner-
Bethe-Goldstone (BBG), Fermi hypernetted chain/single-operator chain (FHNC/SOC), and AFDMC. These
calculations are especially useful in providing a quantitative assessment of systematic errors associated with
the different many-body approaches and how they depend on the chosen interaction. A selection of results is
reported in Fig. 2, where the energy per particle of pure neutron matter as obtained from AFDMC calculations
with the phenomenological AV18 and the NV2 models is reported. The inclusion of 3N interactions is essential
for a realistic description of neutron matter. Preliminary AFDMC calculations of the equation of state of PNM
carried out with the NV2 + 3-Ia/b and NV2 + 3-IIa/b models are not compatible with the existence of two solar
masses neutron stars, in conflict with recent observations [100,101]. On the other hand, the smaller values of
cE characterizing the 3N interactions entering the NV2 + 3-Ia*/b* and NV2 + 3-IIa*/b* models mitigate, if not
resolve, this problem. There are indications that these models also predict the energies of low-lying states in
light nuclei reasonably well, than 4% away from the experimental values. Studies along this line are currently
in progress.
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Fig. 1 From Ref. [11]. Ground-state energies in A ≤ 16 nuclei. For each nucleus, experimental results [97] are shown in green
at the center. GFMC (AFDMC) results for the NV2 + 3-Ia [81] (GT + Eτ -1.0 [90]) interactions are shown in red (blue) to the left
(right) of the experimental values. For the NV2 + 3-Ia (GT + Eτ -1.0) interactions, the colored bands include statistical (statistical
plus systematic) uncertainties

Fig. 2 From Ref. [99]. AFDMC energy per particle of PNM as a function of density for the AV18 (black triangles), NV2-Ia (red
triangles), NV2-Ib (solid blue points), NV2-IIa (green diamonds), and NV2-IIb (grey squares) interactions
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