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Abstract We evaluate the three-body baryon effect in the quark model to solve the hyperon puzzle. As
candidates for the extra repulsive effect required to solve the puzzle, we focus on the structural repulsive core
caused by the quark-Pauli effect and the color-magnetic term. The result is that in the lowest threshold ΛNN
system, no significant structural repulsive core is obtained, but a strong repulsive three-body effect is obtained
from the color-magnetic term.

1 Introduction

The effects of three-body baryon forces on baryon multi-systems are becoming more important in many
physics categories. In particular, in the current situation called “hyperon puzzle”, the difficulty to reconcile
the measured masses of neutron stars with the presence of hyperons in their interiors, the three-body baryon
force seems to be a promising candidate for the origin of the extra repulsive effect.

Several approaches to the three-body baryon force using the quark model, that is, the 9-quark 3-baryon
system, have been reported so far. In other words, the effect of the interaction between the nine quarks through
antisymmetry may be the appearance of a kind of three-body effect over the three baryons. In this sense, the
quark model seems to be a promising approach.

There are two main advantages of the quark model. The first is that it is possible to describe from one
baryon system to several baryon systems in a unified framework. This allows us to extend the framework we
have used for two-baryon interactions directly to a three-baryon system. The second is that it is possible to
evaluate the effect of each quark-Hamiltonian component. This not only allows us to consider the kinematical
and dynamical parts of the quark separately, but also allows us to evaluate each component of the interaction.
We explore the possibility of solving the hyperon puzzle by applying the three-body baryon force derived from
the quark model.

We will examine in the next section whether the quark-Pauli effect has a special repulsive effect on various
three-baryon systems. In Sect. 3, we examine what kind of three-body effect the color-magnetic term, known
to produce a strong short-range repulsion in a two-baryon system, gives in various three-baryon systems under
the flavor-SU(3) approximation. A summary is drawn in Sect. 4.

2 Quark-Pauli Effect in Three-Baryon Systems

Just as white dwarfs are interpreted as being supported by electron-induced degeneracy, namely Pauli effect
by electrons, neutron stars are also considered to be supported by neutron-induced degeneracy. If the neutron
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Pauli effect and the repulsive force originating from the two-baryon interaction cannot support the neutron
star, it may be supported by the quark degeneracy pressure, namely the quark-Pauli effect.

The quark-Pauli effect is evaluated by solving the eigenvalue problem of the resonating group method
(RGM) norm kernel in the three-baryon systems [1]. This method may be intuitively interpreted as follows.
Let us consider a two-baryon wave function,

ΦB1B2(1; 2) = 1√
2

[
φB1(1)φB2(2) − φB1(2)φB2(1)

]
, (1)

which is normalized,
〈
ΦB1B2

∣
∣ ΦB1B2

〉 = 1. When this two-baryon wave function is re-expressed as a six-quark
wave function, it becomes as follows using the quark antisymmetrizer A:

Ψ(3q)1(3q)2(123; 456)

= A
{

1√
2

[
ψ(3q)1(123)ψ(3q)2(456) − ψ(3q)1(456)ψ(3q)2(123)

]}
, (2)

which is not normalized,
〈
Ψ(3q)1(3q)2

∣∣ Ψ(3q)1(3q)2

〉 = μ with μ �= 1, due to the effect of antisymmetry under
the exchange of quarks among the baryons. Namely, this is the quark-Pauli effect. If μ is explicitly zero, such a
two-baryon system means that the existence probability is zero from the viewpoint of six-quark configuration,
that is, the Pauli-forbidden state. Even if μ is not explicitly zero, the configuration of a two-baryon system
with a value of μ near zero also has a small existence probability, so that a system should be difficult to realize.
Since such a state, called an almost Pauli-forbidden state, resembles the characteristics of the wave function
of a system with a strong repulsive potential, it can be considered as a structural repulsive effect due to the
quark-Pauli effect. Studies of two-baryon interactions have shown that the structural repulsive effect of the
quark-Pauli effect is dominant with or without attraction in the interaction potential.

The 9-quark 3-baryon wave function is given by ΨSYI((0s)9; B1B2B3) = Ψ (orb)Ψ
(SF)
SYI Ψ (color), where

Ψ (orb) denotes the orbital part with the (0s)9 configuration, Ψ
(SF)
SYI the spin-flavor part with the spin value S,

the hypercharge Y , and the isospin I , and Ψ (color) the color part assuming a color singlet in each baryon.
Assuming the eigenfunction of A to be

∑

B1B2B3

C(SYI; B1B2B3)ΨSYI
(
(0s)9; B1B2B3

)
, (3)

we solve the eigenvalue problem
∑

B′
1B

′
2B

′
3

〈
ΨSYI

(
(0s)9; B1B2B3

) |A| ΨSY I
(
(0s)9; B ′

1B
′
2B

′
3

)〉
C(SYI; B ′

1B
′
2B

′
3)

= μSYIC(SYI; B1B2B3) . (4)

Table 1 shows the almost Pauli-forbidden states in the three-baryon system. We can find in this table the
feature that many systems have large isospin-value with Σ , namely systems containing Σ− particle. This is
due to the inclusion of the strong quark-Pauli repulsive effect on the Σ−n 3S1 state, as is well known in the
study of the two-baryon system [2,3]. We find that the ΛNN system, which has the lowest threshold of the
three baryon systems containing hyperons, is not in a almost Pauli-forbidden state. Therefore, the quark-Pauli
effect is not a candidate for solving the hyperon puzzle.

3 Behavior of Color-Magnetic Term in Three-Baryon Systems

Since the solution of the hyperon puzzle cannot be expected by the structural repulsive effect, we next aim at
the solution by the three-body baryon force generated from the quark-quark interaction.

We use the RGM formalism for this purpose. The RGM wave function for the nine-quark B1B2B3 system
can be expressed by

ψ = A [
φ(SYI; B1B2B3)χ (R12, R12−3)

]
. (5)
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Table 1 Almost Pauli-forbidden states in the three-baryon systems

S Y I B1B2B3 Particle basis Eigen value

1
2 2 2 ΣNN Σ−nn 4

81

1
2 1 5

2 ΣΣN Σ−Σ−n 4
81

1
2 −2 0 ΞΞΛ–ΞΞΣ – 0, 4

81

1
2 −3 1

2 ΞΞΞ – 4
81

3
2 2 1 ΣNN – 35

243

3
2 1 3

2 ΣΣN–ΣΛN Σ−Λn 1
27 , 35

243

3
2 0 2 ΞΣN Ξ−Σ−n 35

243

3
2 −2 0 ΞΞΛ – 1

27

3
2 −2 1 ΞΞΣ – 35

243

S denotes the total spin, Y the total hyper-charge and I the total isospin

For a definition of φ(SYI; B1B2B3) see Ref. [4]. The wave function χ is assumed to satisfy the following RGM
equation

[
h̄2

2μ1
ΔR12 − h̄2

2μ2
ΔR12−3

]
χ (R12, R12−3)

+
∫

K (E)
(
R12, R12−3; R′

12, R
′
12−3

)
χ

(
R′

12, R
′
12−3

)
dR′

12 dR
′
12−3

= ε χ (R12, R12−3) , (6)

where μ1 and μ2 are the appropriate reduced masses, and ε is the total energy minus three baryon masses. The
quark exchange kernel in Eq. (6),

K (E) = K (E)
T + K (E)

V − (ε + εB1 + εB2 + εB3)K
(E)
1 , (7)

gains contributions from the translationally invariant nine-quark kinetic energy operator, T , from the quark-
quark interaction, V = ∑

i> j vi j , and the norm kernel. In Eq. (7) εBi is the internal energy of the i th baryon.
The separation into two-body and three-body terms can be made through the specific construction of the
antisymmetrizer, A, of Eq. (5) which can be expanded in terms of the permutations Pi j and Pi jk by using
double coset generators [5] as

A = 1

6

{
[1 − 9 (P36 + P69 + P93) + 27 (P369 + P396)

+54 (P36P59 + P69P83 + P93P26)]

[
6∑

P=1

(−1)π(P)P
]

− 216P26P59P83

}

. (8)

The six P include those quark exchanges which are equivalent to baryon exchanges. Of the five basic types
of terms in A, the third to fifth category involve the exchange of quark pairs between different baryon pairs
and give rise to nonlocal three-body forces in the baryon–baryon interaction [6]. With these terms, the three-
body exchange kernel K (E)

Θ3 for the operator Θ(= T, V, 1) can be evaluated in terms of the baryon-separation
parameters Ra , Rb, R′

a , R′
b through

K (E)
Θ3 (Ra, Rb; R′

a, R
′
b)

= 〈
φ(SYI; B1B2B3)δ(RB1B2 − Ra)δ(RB1B2−B3 − Rb)

× |ΘA3| φ(SYI; B1B2B3)δ(RB1B2 − R′
a)δ(RB1B2−B3 − R′

b)
〉
, (9)

where A3 represents the third to fifth terms of the Eq. (8).
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Fig. 1 Vcm3 in Eq. (10) for the case where the three baryons form the equilateral triangle configurations with a side length of
r(fm). the bold line denotes NNN (the total isospin I = 1

2 ) system, the dashed-line ΛNN(0), the solid line ΛNN(1), the bold
dashed-line ΣNN(2), and the dotted line ΞNN

( 3
2

)
. The small dotted-line denotes the two-body contribution in the second term

in Eq. (8) for the ΛNN(1). Total spin is 1
2 in all channels

Here we focus on the three-baryon three-body effect originating from the color-magnetic term Θ =
−αSπ h̄3

6m2c
λci · λcjσi · σ jδ(r)(or Θ = cm), which is well known for giving short-range repulsion between two

baryons, as the quark potential, where λci denotes the color-SU(3) generator, σi the spin-SU(2) generator, αS
the strong quark–gluon coupling constant, m quark mass. We consider the flavor-SU(3) limit in this work. We
adopt a value that seems reasonable as a quark-parameter set; mc2 = 313 MeV, αS = 1 and the oscillator
length parameter for the quark wave functions in the baryon b = 0.6 fm.

We evaluate the following integral amount to evaluate the nonlocal three-body color-magnetic exchange
kernel, K (E)

cm3, as a localized:

Vcm3 (Ra, Rb) =
∫

K (E)
cm

(
Ra, Rb; R′

a, R
′
b

)
χ

(
R′
a, R

′
b

)
dR′

a dR
′
b, (10)

K (E)
cm

(
Ra, Rb; R′

a, R
′
b

) = K (E)
cm3

(
Ra, Rb; R′

a, R
′
b

) − (
εcmB1

+ εcmB2
+ εcmB3

)
K (E)

1 , (11)

χ
(
R′
a, R

′
b

)
exp

(

− 3

4ν2
1

R′ 2
a − 1

ν2
2

R′ 2
b

)

, (12)

where ν1 and ν2 are two types of width parameters in Jacobian coordinates composed of three baryons. we
assume ν1 = ν2 = b in this report for simplicity.

Figure 1 shows Vcm3 in Eq. (10) for the case where the three baryons form the equilateral triangle con-
figurations. From the figure, we can find the following behavior of the three-body effect, which is highly
flavor-dependent; it is a repulsive force in the NNN system with the isospin I = 1/2, a strong repulsive force
in the ΛNN system, an attractive force in the ΣNN system with I = 2, and a weak repulsive force in the
ΞNN system with I = 3/2. In particular, the strength of the repulsive force in the ΛNN system contributes as
much as the two-body effect generated from the second term in Eq. (8). Considering the consistency with the
binding energy of hyper-triton, such a strong ΛNN three-body repulsive force is not realistic. This may be due
to the use of the same values as the oscillator length parameter b for the two width parameters ν1 and ν2. The
relatively strong repulsive three-body effect in the ΛNN system of color-magnetic terms may be a promising
candidate for the extra repulsive effect needed to solve the hyperon puzzle.
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4 Summary

We evaluated the three-body baryon effect in the quark model to solve the ‘hyperon puzzle’. As candidates
for the extra repulsive effect required to solve the hyperon puzzle, we focused on the structural repulsive core
caused by the quark-Pauli effect and the color-magnetic term, which is a promising interaction between quarks.
The result is that in the lowest threshold ΛNN system, no significant structural repulsive core is obtained, but a
strong repulsive three-body effect is obtained from the color-magnetic term. This result is inconsistent with the
conclusions of Ref. [7], which the intrinsic three-baryon interaction at short distance vanishes for all quantum
numbers. Further research is needed to investigate the cause.
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