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Abstract We overview our recent calculations of scattering cross sections of positronium–antihydrogen colli-
sions. We discuss the cross sections calculated in the vicinity of the four-body resonances of H̄Ps and above the
energy threshold for the formation of the antihydrogen positive ions (H̄+). In the former energy region where a
Rydberg series of resonances dominated by the H̄+-e− interaction appears, we show a good agreement between
the resonant profiles in the cross sections and the resonance energies calculated by the complex coordinate
rotation method. H̄+ production cross sections near the threshold energy are reported for the positronium being
initially in the (n, l) states with n ≤ 3, together with all competing elastic/inelastic cross sections. Compar-
ison of our results with the latest continuum distorted wave final state calculation is presented. A qualitative
discrepancy concerning the dependence of cross sections on the angular momentum of Ps is indicated.

1 Introduction

The simplest antiatom, antihydrogen (H̄), consisting of an antiproton (p̄) and a positron (e+) can be a probe of
fundamental physics. So far the development of H̄ production [1–7] has been mainly focused on antihydrogen
spectroscopy with particular emphasis on a test of CPT symmetry [8–11].
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Since the H̄ is an electrically neutral system purely consisting of antiparticles, it can be a probe of the
gravitational interaction between matter and antimatter [12–23]. In the GBAR project [14–17], the ultra-cold
H̄ for free-fall experiments is to be obtained via sympathetic cooling of antihydrogen ions (H̄+ = p̄e+e+) and
the subsequent positron photodetachment. The H̄+ ions are to be obtained in collisions of positronium (Ps =
e−e+) and H̄.

In a collision between Ps(1s) and H̄(1s), the first excitation channels of Ps open at the collision energy 5.1
eV,

Ps (1s) + H̄ (1s) → Ps (n = 2, l = 0, 1) + H̄ (1s), (1)

and the next excitation channels of Ps open at 6.0469 eV,

Ps (1s) + H̄ (1s) → Ps (n = 3, l = 0, 1, 2) + H̄ (1s). (2)

The H̄+ production channel,

Ps (1s) + H̄ (1s) → e− + H̄+, (3)

opens at the threshold energy 6.0486 eV, just above the Ps second excitation threshold energy. Owing to the
parity conservation and the fact that H̄+ bound state is allowed only for the spin singlet positrons, under
LS-coupling approximation, the H̄+ production channel does not open when the two positrons form spin
triplet.

Due to the charge-conjugation symmetry, Ps + H̄ collisions are equivalent to Ps + H collisions. Low-energy
scattering of Ps(1s) and H has been studied as a fundamental example of positronium-atom interaction [24–
28], and elastic scattering cross sections for collision energies below 5.1 eV and scattering lengths have been
accurately obtained [29–39]. In recent years, the Ps collisions with atoms/molecules at low energies attract
attentions with particular focus on the correspondence between the experiments [40] and theories [28,41–43].

The understanding of inelastic scattering including the H̄+ formation, however, has been limited. The
reaction has a multichannel nature due to the presence of the fragmentation channels of Ps (n ≤ 3) + H̄ (1s),
and the H̄+ production reaction is a rearrangement process where the particle configuration drastically changes
from initial channel to final channel, which requires a simultaneous treatment of all constituent particles and
does not allow the semi-classical approximations. Even below the threshold energy of H̄+ production, a
resonant scattering involving H̄+ formation occurs:

Ps(1s) + H̄(1s) → [e−; H̄+] → Ps(n ≤ 2) + H̄(1s), (4)

where [e−; H̄+] is a resonance state having an electron attached to H̄+ core.
So far, the Born-based approximations and eikonal-based approximations have been adopted to predict

H̄+ production cross sections; however, such approximations assume intermediate to high energy collisions,
and may not be appropriate for low-energy scattering. In fact, the H̄+ production cross section in Ps(1s) +
H̄(1s) collision just above the threshold energy differs by more than one order of magnitude in the first Born
approximation (FBA) [44], the distorted wave Born approximation (DWBA) [44], and the Coulomb-modified
eikonal approximation (CMEA) [45]. We recently reported a rigorous four-body treatment of Ps-H̄ scattering
[46,47] utilizing a Gaussian expansion method (GEM) and also calculated the H̄+ production cross sections
above its threshold energy [48,49]. Very recently, a continuum distorted wave final state (CDW-FS) calculation
was updated with corrections in its implementation [50–53]. Since the CDW-FS involves perturbative nature
of the formulation, the suitability of this approach to the near-threshold production of H̄+ remains to be tested
by more rigorous calculations.

In this paper, we review our recent four-body scattering calculations of Ps-H̄ collisions and compare with the
latest CDW-FS calculations. This paper is organized as follows. In Sect. 2, we show outline of our calculation.
In Sect. 3, the inelastic scattering cross sections above the first excitation threshold energy of Ps are displayed.
Subsequently, H̄+ production cross sections from various Ps states (1s, 2s, 2p, 3s, 3p, 3d) are compared with
the competing inelastic scattering cross sections and with the CDW-FS results. We conclude our investigation
in Sect. 4. Atomic units (a.u.; me = h̄ = e = 1) are used throughout this paper, except where mentioned
otherwise.
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Table 1 Definition of arrangement channels F and the detailed channels α

F Fragments J = 0 J = 1 J = 2 J = 3

1 Ps(1s) + H̄(1s) λ = 0: α = 1 λ = 1: α = 1 λ = 2: α = 1 λ = 3: α = 1
2 Ps(2s) + H̄(1s) λ = 0: α = 2 λ = 1: α = 2 λ = 2: α = 2 λ = 3: α = 2
3 Ps(2p) + H̄(1s) λ = 1: α = 3 λ = 0: α = 3 λ = 1: α = 3 λ = 2: α = 3

λ = 2: α = 4 λ = 3: α = 4 λ = 4: α = 4
4 Ps(3s) + H̄(1s) λ = 0: α = 4 λ = 1: α = 5 λ = 2: α = 5 λ = 3: α = 5
5 Ps(3p) + H̄(1s) λ = 1: α = 5 λ = 0: α = 6 λ = 1: α = 6 λ = 2: α = 6

λ = 2: α = 7 λ = 3: α = 7 λ = 4: α = 7
6 Ps(3d) + H̄(1s) λ = 2: α = 6 λ = 1: α = 8 λ = 0: α = 8 λ = 1: α = 8

λ = 3: α = 9 λ = 2: α = 9 λ = 3: α = 9
λ = 4: α = 10 λ = 5: α = 10

7 e− + H̄+ λ = 0: α = 7 λ = 1: α = 10 λ = 2: α = 11 λ = 3: α = 11

λ denotes the angular momentum of relative motion of the fragments. We list only the channels that can lead to rearrangement
reaction

2 Theory

We briefly describe the calculation framework and definitions of cross sections in this section. A more detailed
description of the theoretical framework can be found in our previous papers [46–49].

We consider the Schrödinger equation for the non-relativistic time-independent scattering wavefunction
[54],

(H − E)Ψ = 0, (5)

where the Hamiltonian H includes kinetic energy operators in center-of-mass frame and all inter-particle
Coulomb potential operators. We construct the total wavefunction Ψ as

Ψ =
∑

α

ψα +
υmax∑

υ=1

bυΦυ (6)

where ψα are open channel functions that describe the asymptotically non-vanishing component and Φυ are
square-integrable four-body eigenfunctions that diagonalize the Hamiltonian in the matrix form and satisfy

〈Φυ ′ |H |Φυ〉 = Eυδυ ′υ. (7)

Here, Eυ is the υ-th eigenenergy.
In order to give a definition of open channel α, we consider the parity P and a total orbital angular

momentum J . Throughout this paper, only spin-independent interactions are considered; therefore, J and
P are conserved and stay the same both in the initial and final channels. In collisions between Ps(nili) and
H̄(NiL i), the total orbital angular momentum is given as J = li + Li + λi where λi is an angular momentum
of relative motion. The parity of the spatial part of ψα is given by Pi = (−1)li+L i+λi .

Considering L = 0 case and the final channel of the Ps excitation scattering that results in Ps(nl) + H̄(1s)
in λ-wave, |l − λ| ≤ J ≤ l + λ and P = (−1)l+0+λ = (−1)li+0+λi = Pi should be satisfied. Besides, in
the final channel of the rearrangement process, the ground state of H̄+(1Se) possesses the total orbital angular
momentum L = 0. As a consequence, the spatial part of its wavefunction has positive parity. In the final
channel of e− + H̄+, denoting the angular momentum of relative motion λ, the total orbital angular momentum
becomes |λ − L| ≤ J ≤ λ + L (hence J = λ for L = 0) and the parity is P = (−1)λ+L = (−1)J .

Thus, the parity conservation P = Pi or (−1)J = (−1)li+0+λi constrains the initial channels that allow
H̄+ production reaction (3). The channels α are specified by the fragments and their angular momentum of
relative motion λ (or λi). Distinguishing the kinds of the fragments by F , we list the channels α that lead to the
H̄+ production in Table 1. As an example, in the case of J = 2, the angular momentum of the relative motion
of Ps(ns) + H̄(1s) is constrained to be λi = 2. The same constraints for Ps(np) + H̄(1s) result in λi = 1, 3 for
J = 2 because |J − 1| ≤ λi ≤ J + 1 and (−1)J = (−1)1+0+λi . Turning to the case of the Ps(3d) + H̄(1s)
channel in J = 2, only the λi = 0, 2, 4 are allowed by |J − 2| ≤ λi ≤ J + 2 and (−1)J = (−1)2+0+λi .
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Fig. 1 Jacobi coordinate sets that are used in the present calculation. All sets are used simultaneously in the description of the
multichannel scattering wave function, in order to assure the adequate description of correlation in the reaction region and the
proper asymptotic behavior of the fragments

We construct {Φυ} using a Gaussian expansion method (GEM) [55–57], in terms of radial Gaussian
functions and spherical harmonics as

Φυ =
5∑

c=1

∑

lc Lcλc

∑

ncNcνc

A(υ)
cncNcνclc Lcλc

{
rlcc RLc

c ρλc
c exp

(
− r2

c

r2
nc

− R2
c

R2
Nc

− ρ2
c

ρ2
νc

)

×
[[

Ylc(r̂c)YLc(R̂c)
]

Λc
Yλc(ρ̂c)

]

JM
+ (1 ↔ 2)

}
, (8)

where the sets of Jacobi coordinates {rc,Rc, ρc} are shown in Fig. 1. The first coordinate set c = 1 is
suitable to describe four-body interactions of Ps + H̄ configuration and c = 2 and c = 3 are suitable to
describe the interactions of e− + H̄+ configuration. The linear coefficients A(υ)

cncNcνclc Lcλc
are determined by

the diagonalization of the Hamiltonian H with Φ. Non-linear coefficients {rnc}, {RNc} and {ρνc} are chosen
in accordance with geometrical progression. The total number of basis functions used for the expansion is
denoted as nb.

The use of the basis functions written in several coordinate systems facilitates the description of the four-
body interactions and multi-channel character of the scattering. {Φυ} provides the explicit description of virtual
H̄ excitation, virtual Ps excitation, virtual Ps+ formation (mainly described by c = 4, 5 coordinate sets in Fig. 1)
and transient formation of H̄+ and the resonances of H̄Ps during the scattering. They describe also the mutual
polarization of the atoms which is important in the description of their collisional interaction.

The Schrödinger equation (5) is then converted to a set of coupled equations with the following conditions,

〈ψα/Rα(ρc)|H − E |Ψ 〉rc,Rc,ρ̂c
= 0, (9)

and

〈Φυ |H − E |Ψ 〉 = 0. (10)

Here, 〈· · · 〉rc,Rc,ρ̂c
means the integration over the indicated coordinates leaving out integration over ρc.Rα(ρc)

is the part of the channel function ψα , it describes the relative motion of the fragments in the open channels α.
We solve it using a compact finite difference method [58] under proper boundary conditions at ρc → ∞, and
extract scattering matrix elements S(JM)

ααi .
Cross sections from an open channel αi to another open channel α are given by

σ (JM)
ααi

= π

k2
αi

|δααi − S(JM)
ααi

|2. (11)

Since the initial wave involves all partial waves, the scattering cross section from Fi to F can be expressed as

σFFi =
∑

λi

1

(2l + 1)(2L + 1)

∑

J

∑

α,αi

(2J + 1)σ (JM)
ααi

. (12)

Note that the allowed αi should be compatible with λi with regard to the addition and conservation of angular
momenta.
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(a)

(b)

Fig. 2 Upper panel: example of a complex coordinate rotation calculation where the blue symbols (circles and dots) represent the
eigenvalues for the two indicated scaling angles (unscaled and scaled calculations, respectively). The arrow shows the threshold
energy for n = 2 excited Ps. R1, R2, R3 and R4 are complex energies representing resonances. Lower panel: scattering cross
sections, green: elastic, orange: excitation of Ps to 2s, and pink: excitation of Ps to 2p. The resonances are clearly visible as
abrupt changes in the cross sections. We note that the resonances in the inelastic and elastic scattering have the same energy but
different shapes. The vertical dotted line indicates the threshold energy for n = 2 excited Ps. Resonance energies and the widths
that are obtained in the complex coordinate rotation calculation are indicated by the vertical solid lines and the shades. The blue
cross symbols represent results of the close-coupling calculation [34]

3 Results and Discussion

We first investigate the resonant scattering (4) in Ps(1s)-H̄(1s) s-wave collision (hence, J = 0), reviewing our
previous calculation [47]. Complex coordinate rotation calculations have predicted several resonance states
[e−; H̄+] that converge to the e− + H̄+ threshold energy [47,59,60]. These resonance states can be analysed
by a quantum defect theory [59], and are attributed to a series of Rydberg states of the electron associated with
H̄+. Two of these resonance states are located below the first excitation threshold energy of Ps, and the other
are located above.

The resonance energies Er and widths Γ can be calculated by the complex coordinate rotation method
[61]. Since {Φυ} are spanned in terms of square integrable basis function, we have

〈
Φυ ′(θ)

∣∣∣U (θ)HU−1(θ)

∣∣∣Φυ(θ)
〉
= Eυ(θ)δυυ ′, (13)

where U (θ) is a complex dilation operator, U (θ)r = eiθr .
Figure 2a shows the eigenenergies {Eυ(θ = 0)} and {Eυ(θ = 0.28 rad)} that are obtained by solving

the complex dilated eigenvalue problem. {Φυ} are expanded in terms of nb = 38320 basis functions. Two
eigenenergies of {Eυ(θ = 0.28 rad)} below the Ps(n = 2) threshold energy are found close to those of {Eυ(θ =
0)}. We call these resonances R1 and R2. Their resonance energies and widths are (Er = 0.1479, Γ = 0.0035)
and (Er = 0.1820, Γ = 0.0016), respectively. While most of the complex eigenvalues {Eυ(θ = 0.28 rad)}
above the Ps(n = 2) excitation threshold energy are rotated downward by an angle 2θ as illustrated by the
orange line, two of them do not follow the outrotation and are independent of the rotation angle. These additional
resonances are called R3 and R4, and their resonance energies and widths are determined as (Er = 0.1976,
Γ = 0.0013) and (Er = 0.2058, Γ = 0.0007), respectively.

Figure 2b shows the elastic and inelastic cross sections of Ps(1s)-H̄(1s) s-wave collision in the vicinity of
the Ps(n = 2) excitation threshold energy. In this energy region, the open fragment channels are F = 1, 2 and
3 (α = 1, 2 and 3). The convergence of these cross sections against the number of four-body functions υmax
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(a)

(b)

(c)

(d) (e)

(f)

Fig. 3 Elastic and inelastic scattering cross sections σFFi for Ps(nl) + H̄(1s) collisions in positronic spin singlet state are
displayed. H̄+ production cross section (red lines) are compared with the latest improved CDW-FS results [53] (indicated by
the right-head arrows because the energy scales that the CDW-FS deal with are different from the present work). The light-blue
vertical arrows indicate the threshold energies of H̄+ production in our calculation

included in the expansion of Eq. (6) (and also against the number of basis functions nb) was investigated in
Ref. [47], and υmax ≥ 28 gives converged cross sections. Below the Ps(n = 2) excitation threshold energy,
the elastic cross sections show two dips corresponding to the resonances R1 and R2. At the threshold energy,
the inelastic scattering cross sections grow from zero, which is consistent with the Wigner’s threshold law
that predicts that the excitation cross sections should grow in proportion to k2λf+1

f . We can see additional two
dips in elastic cross sections and peaks of inelastic cross sections above the threshold energy. These dips and
peaks correspond to the resonance energy predicted by the complex coordinate rotation calculation. Due to the
coupling with the background phase shifts, the cross sections show asymmetric behavior around the resonance
energy [46].

The importance of explicit description of H̄+ formation during the resonant scattering has been pointed
out in close-coupling investigation [34]. As shown by the blue crosses in Fig. 2b, our elastic scattering cross
sections agree well with the close-coupling results, except for the neighborhood of the lowest resonance. We
believe that the shift in the position of the R1 resonance comes from the more correct description of the H̄+-e−
system. The lowest resonance is the one which deviates the most from the frozen core description of the
H̄+-e− system used in Ref [34]. Since the functions Φυ are obtained by the diagonalization of the four-body
Hamiltonian, they can offer more precise description of the H̄+-e− interaction (particularly because of the use
of dedicated sets of Jacobi coordinates) than the use of frozen three-body wavefunction of H̄+ (which was
not very precise). In addition, the present calculation gives both elastic and inelastic cross sections within the
same calculation of the S-matrix, which, through the analysis of the S-matrix elements, provides information
about the branching ratios in the decay of resonant states.

We calculate σ
(JM)
ααi for each 0 ≤ J ≤ 2 for Ps(n = 3), 0 ≤ J ≤ 6 for Ps(n = 2) and 0 ≤ J ≤ 4

for Ps(n = 1), and subsequently construct σFFi . We display the H̄+ production cross sections together with
elastic/inelastic scattering cross sections in Fig. 3. The H̄+ production (rearrangement) cross section is defined
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as

σrearr(1 ≤ Fi ≤ 6) = σ7Fi . (14)

To better reflect the overall outcome of the scattering and to simplify the presentation, other inelastic channel-
to-channel cross sections σFFi that contribute to the same type of process are summed together according to
the following:

σex(Fi = 1) =
∑

2≤F≤6

σFFi , (15)

σex(Fi = 2, 3) =
∑

4≤F≤6

σFFi , (16)

σdex(Fi = 2, 3) =
∑

F=1

σFFi , (17)

σdex(Fi = 4, 5, 6) =
∑

1≤F≤3

σFFi , (18)

σpol(Fi = 2) =
∑

F=3

σFFi , (19)

σpol(Fi = 3) =
∑

F=2

σFFi , (20)

σpol(Fi = 4) =
∑

F=5,6

σFFi , (21)

σpol(Fi = 5) =
∑

F=4,6

σFFi , (22)

and

σpol(Fi = 6) =
∑

F=4,5

σFFi , (23)

where σex are Ps excitation cross sections, σdex Ps deexcitation cross sections, σpol Ps (de)polarization cross
sections associated with a change of internal orbital angular momentum of Ps without a change of its principal
quantum number.

The above cross sections are presented in Fig. 3 as a function of the collision energy Ei . Each panel shows
cross sections for all scattering processes (elastic, inelastic and rearrangement) originating from the same
initial state of Ps(nl). For comparison, we indicate also the values of the recent improved CDW-FS calculation
read from the Ref. [53].

For Ps(1s) + H̄(1s) collisions (Fi = 1), as shown in Fig. 3a, the H̄+ production channel, which opens at
6.0486 eV, is the second dominant process after the elastic scattering. In the present energy region, these cross
sections are nearly constant. The σrearr starts at the finite value and is also constant in agreement with Wigner’s
threshold law [62] for the case of the Coulomb attractive final fragments. The CDW-FS calculation predicts
cross sections that are several times higher in comparison to the present calculation. This is not surprising
because the CDW-FS method is not expected to perform well in the near-threshold region.

Figure 3b, c show the results of Ps(n = 2) + H̄(1s) collisions (Fi = 2, 3). σrearr is finite at the threshold
energy. Like the Ps(1s) collision, Ps(n = 2) + H̄(1s) collisions produce H̄+ as the dominating inelastic
scattering process. Similarly to the case of Fi = 1, the CDW-FS calculation predicts slightly higher cross
sections than the present calculation at the threshold energy.

In collisions between Ps(n = 3) and H̄(1s) (Fi = 4, 5, 6), as shown in Fig. 3d–f, σrearr decreases above
the threshold energy, and then is nearly constant at higher energies. σdex obey the Wigner’s threshold law [62]
for the neutral fragments, varying in proportion to Eλi−1/2

i , and thus for all l, σdex is finite at the threshold of
H̄+ formation (Ei = 0.0017 eV). The CDW-FS for Ps(3s) collisions predicts slightly higher cross sections
than obtained in the present calculation while for the Ps(3p, 3d) collisions the CDW-FS cross sections are of
a similar order of magnitude as the ones presented here.
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In addition to the absolute value of the cross sections, the comparison of the rearrangement originating
from different l states of Ps(nl) is of interest. At the threshold energy, Ps(2p) collision shows larger σrearr
than Ps(2s) collision. Similarly, Ps(3d/3p) collisions show larger σrearr than Ps(3s) collision. On the other
hand, the CDW-FS calculation predicts the largest σrearr in Ps(2s) and Ps(3s) collisions, respectively. These
discrepancies might be of experimental importance. Most probably they arise due to the perturbative treatment
inherent to the CDW-FS method, which nevertheless performs surprisingly well.

4 Conclusion

We have reviewed our four-body calculations of Ps(nl) + H̄(1s) scattering for n ≤ 3. Our method combines the
four-body structure calculation (implemented in the Gaussian basis) with the coupled channel procedure. The
calculation includes all open channels in the energy range that starts at the first inelastic threshold (Ps(n = 2)
+ H̄(1s)) and extends beyond the threshold for the rearrangement to H̄+ + e−.

The cross sections are presented throughout a Rydberg-like series of resonances converging to the threshold
energy for the ionic core (H̄+). These cross sections show typical resonant shapes (abrupt peaks and dips of
Breit-Wigner type) characteristic for the elastic scattering in the presence of inelastic and background scattering.
These features are gradually blurred as the resonances cease to be isolated towards the threshold for formation
of H̄+. The energy positions of the resonant profiles are in good agreement with the resonance energies that
we have calculated using the complex coordinate rotation method.

H̄+ production cross sections near the threshold energy are determined together with the cross sections
for all competing elastic/inelastic processes. A comparison with the latest improved CDW-FS calculation is
reported.
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