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Abstract A nuclear model is proposed where the nucleons interact by emitting and absorbing mesons, and
where the mesons are treated explicitly. A nucleus in this model finds itself in a quantum superposition of states
with different number of mesons. Transitions between these states hold the nucleus together. The model—in its
simplest incarnation—is applied to the deuteron, where the latter becomes a superposition of a neutron-proton
state and a neutron-proton-meson state. Coupling between these states leads to an effective attraction between
the nucleons and results in a bound state with negative energy, the deuteron. The model is able to reproduce
the accepted values for the binding energy and the charge radius of the deuteron. The model, should it work
in practice, has several potential advantages over the existing non-relativistic few-body nuclear models: the
reduced number of model parameters, natural inclusion of few-body forces, and natural inclusion of mesonic
physics.

1 Introduction

In the low-energy regime the nucleons are believed to interact by exchanging mesons [1–3]. However the
accepted contemporary non-relativistic few-body nuclear models customarily eliminate mesons from the pic-
ture and introduce instead phenomenological meson-exchange-inspired nucleon-nucleon potentials tuned to
reproduce available experimental data [3–6].

In this contribution the meson-exchange paradigm is going to be applied literally by allowing nucleons to
explicitly emit and absorb mesons which will be treated on the same footing as the nucleons. A nucleus in this
model will be a superposition of states with different number of emitted mesons.

Since it takes energy to generate a meson, in the low-energy regime the states with mesons will find
themselves under a potential barrier equal to the total mass of the mesons. One might expect that in the first
approximation only the state with one meson will contribute significantly.

In one-meson approximation a nucleus becomes a superposition of two subsystems: a subsystem with zero
mesons, and a subsystem with one meson. The corresponding Hamiltonian is then given as a matrix,

H =
(
KN W
W † KN + Kσ + mσ

)
, (1)

where KN is the kinetic energy of nucleons, Kσ is the kinetic energy of the meson, mσ is the mass of the
meson, and W is the operator that couples these two subsystems by generating/annihilating the meson. The
corresponding Schrodinger equation for the nucleus is then given as(

KN W
W † KN + Kσ + mσ

)(
ψN
ψσN

)
= E

(
ψN
ψσN

)
, (2)
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where ψN is the wave-function of the subsystem with nucleons only; ψσN is the wave-function of the subsystem
with nucleons and a meson; and E is the energy. If E < mσ the meson is under barrier and cannot leave the
nucleus.

In the literature one can find several relativistic approaches to treat mesonic degrees of freedom dynamically
[7,8]. As an alternative, this model attempts to use the (usually somewhat simpler) non-relativistic Schrödinger
equation in line with the traditional phenomenological few-nucleon models.

The potential advantages of this model, should it work in practice, are the reduced number of parameters
(possibly only few parameters per meson); natural inclusion of few-body forces (expected to arise from
few-meson states); and natural inclusion of mesonic physics. One disadvantage is a substantially increased
computational load: an N body problem becomes (at least) a coupled N plus N + 1 body problem.

The lightest mesons are pions and they should presumably be included first. However in this first conceptual
trial of the model we shall for simplicity only include the scalar-isoscalar sigma-meson [9] which is assumed
to be responsible for the bulk of the intermediate-range attraction in nuclei [6] and which is also the lightest
meson in relativistic mean-field theories [10].

In the next sections we shall (i) describe the practical application of the model to the deuteron; (ii) describe
the correlated Gaussian method for coupled few-body systems to be used to solve the problem numerically;
(iii) present the results for the deuteron; and (iv) give a conclusion. Several relevant formulae are collected in
the “Appendix”.

2 Deuteron as a System of Two Nucleons and a Meson

The deuteron in this model consists of two coupled subsystems: a two-body neutron-proton subsystem and a
three-body neutron-proton-meson subsystem. The wave-function ψ of the deuteron is then a two-component
structure,

ψ =
(

ψnp(rn, rp)
ψσnp(rσ , rn, rp)

)
, (3)

where ψnp is the wave-function of the two-body subsystem; ψσnp is the wave-function of the tree-body
subsystem; and where rn, rp, rσ and are the coordinates of the neutron, the proton, and the sigma-meson.

Correspondingly, the Hamiltonian is a matrix,

H =
(
Kn + Kp W

W Kn + Kp + Kσ + mσ

)
, (4)

where Kn, Kp, Kσ are the kinetic energy operators for the neutron, the proton, and the sigma-meson; W is the
coupling operator (to be introduced later); and mσ is the mass of the sigma-meson.

It is of advantage to introduce relative Jacobi coordinates,

rnp = rp − rn, rσnp = mnrn + mprp

mn + mp
− rσ , (5)

with the corresponding relative kinetic energy operators,

Knp = − h̄2

2μnp

∂2

∂r2
np

, Kσnp = − h̄2

2μσnp

∂2

∂r2
σnp

, (6)

were the reduced masses are given as

μnp = mnmp

mn + mp
, μσnp = mσ (mn + mp)

mσ + mn + mp
. (7)

In the center-of-mass system the Hamiltonian is then given as

H =
(
Knp W
W Knp + Kσnp + mσ

)
, (8)
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with the corresponding Schrodinger equation,
(
Knp W
W Knp + Kσnp + mσ

)(
ψnp(rnp)

ψσ pn(rnp, rσnp)

)
= E

(
ψpn(rnp)

ψσ pn(rnp, rσnp)

)
. (9)

The coupling term for a scalar meson can be introduced in the integral form as

〈ψnp
∣∣ W ∣∣ ψσnp〉 =

∫
d3rnpd

3rσnpψ
∗
np(rnp)W (rnp, rσnp)ψσnp(rnp, rσnp). (10)

One can assume that the nucleons themselves are already “dressed” with mesons and that the W -operator only
accounts for the “extra” mesons generated due to the presence of another nucleon. The kernel W (rnp, rσnp)
then has to be of short range and has to vanish when either of the three particles is at larger distances. One of
the simplest form is a Gaussian,

W (rnp, rσnp) = Sσ exp

(
−r2

np + r2
σnp

b2
σ

)
, (11)

where the strength Sσ and the range bσ are the parameters of the model. With this form there are two parameters
per meson. The full model should presumably include π , σ , ρ, and ω mesons. That would make in total only
eight parameters for all the traditional few-nucleon forces: central, tensor, spin-orbit, and three-body.

The coupled Schrodinger equation (9) can be solved numerically using the correlated Gaussian method
described in the next section.

3 Correlated Gaussian Method for Coupled Few-Body Systems

In the correlated Gaussian method [11,12] the wave-function of a few-body quantum system is represented as
a linear combination of correlated Gaussians,

e−rTAr ≡ exp

⎛
⎝−

n∑
i, j=1

Ai jri · r j
⎞
⎠ , (12)

where r = (
r1 r2 . . . rn

)T is a column-vector size-n set of the coordinates of the system; A is the matrix of
parameters; and ri · r j signifies the scalar product of the two coordinates.

For the three-body σnp-subsystem the set r(σ ) of the center-of-mass coordinates is a two-component
structure,

r(σ ) =
(

rnp
rσnp

)
, (13)

and the corresponding matrix Aσ is a two-times-two matrix. For the two-body np-subsystem the set r(d) of the
center-of-mass coordinates is a simply a one-component structure,

r(d) = (
rnp

)
, (14)

and the corresponding matrix A(d) is a one-times-one matrix. Despite the unit dimension we shall keep the
matrix notation for consistency.

Now the wave-functions of the two subsystems are represented as

ψnp(r(d)) =
n(d)∑
i=1

c(d)
i e−r(d)TA(d)

i r(d) ≡
n(d)∑
i=1

c(d)
i 〈r(d)

∣∣ A(d)
i 〉 ,

ψσnp(r(σ )) =
n(σ )∑
j=1

c(σ )
j e−r(σ )TA(σ )

j r(σ ) ≡
n(σ )∑
j=1

c(σ )
j 〈r(σ )

∣∣ A(σ )
j 〉, (15)
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where n(d) and n(σ ) are the number of Gaussians in the subsystems, and where

{c(d)
i , c(σ )

j , A(d)
i , A(σ )

j }

are variational parameters. The non-linear parameters {A(d)
i , A(σ )

j } are chosen stochastically while the linear

parameters c
.= {c(d)

i , c(σ )
j } are obtained by solving the generalized eigenvalue problem,

Hc = EN c, (16)

where the matrices N and H are the overlap and the Hamiltonian matrix in the Gaussian representation (15).
The matrices have the following two-times-two block structure,

H =
⎛
⎝

〈
A(d)
i

∣∣ Knp
∣∣ A(d)

i ′
〉 〈

A(d)
i

∣∣ W ∣∣ A(σ )
j

〉
〈
A(σ )
j

∣∣ W ∣∣ A(d)
i

〉 〈
A(σ )
j

∣∣ Knp + Kσnp + mσ

∣∣ A(σ )

j ′
〉
⎞
⎠ , (17)

N =
⎛
⎝

〈
A(d)
i

∣∣ A(d)

i ′
〉

0

0
〈
A(σ )
j

∣∣ A(σ )

j ′
〉
⎞
⎠ , (18)

where i, i ′ = 1, . . . , n(d) and j, j ′ = 1, . . . , n(σ ).
One of the advantages of the correlated Gaussian method is that the matrix elements of the matrices N and

H are analytic [13]. The cross terms are zero for all operators X except for the coupling operator W ,

〈A(d)
i

∣∣ X ∣∣ A(σ )
j 〉 = 0. (19)

The overlap is given as

〈A ∣∣ A′〉 =
(

π size(A)

det (A + A′)

) 3
2

. (20)

The matrix element of the kinetic energy operator is given as

〈A ∣∣ − ∂

∂r
K

∂

∂rT

∣∣ A′〉 = 6 〈A ∣∣ A′〉 trace
(
AK A′(A + A′)−1) , (21)

where the matrix K for the σnp-subsystem is given as

K (σ ) =
⎛
⎝ h̄2

2μnp
0

0 h̄2

2μσnp

⎞
⎠ , (22)

and for the np-subsystem as

K (d) =
(

h̄2

2μnp

)
. (23)

The matrix element of the coupling operator (11) is given as

〈A(d)
∣∣ W ∣∣ A(σ )〉 = Sσ 〈 Ã ∣∣ A(σ )〉, (24)

where the matrix Ã is given as

Ã =
(
A(d) + 1

b2
σ

0

0 1
b2
σ

)
. (25)
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Fig. 1 Left: the deuteron ground-state energy, E0, calculated with n(d) Gaussians in the two-body subsystem and 80 Gaussians in
the three-body subsystem. Right: the deuteron ground-state energy, E0, calculated with 25 Gaussians in the two-body subsystem
and n(σ ) Gaussians in the three-body subsystem

The generalized eigenvalue problem (16) is solved using the standard algorithm. First the symmetric
positive-definite matrix N is Cholesky-factorized into a symmetric product, N = LLT, where L is a lower-
triangular matrix. The generalized eigenproblem (16) is then transformed into an ordinary symmetric eigen-
problem,

(
L−1HL−T) (

LTc
) = E

(
LTc

)
(26)

The matrix
(
L−1HL−T

)
is then diagonalized by any of the available diagonalization methods like the Jacobi

eigenvalue algorithm.
Correlated Gaussians are naturally suited for bound state calculations as they vanish at large distances.

Notwithstanding, they can also be used for continuum spectrum calculations. In particular, strength functions in
the continuum can be calculated by placing the quantum system in an artificial trap, where continuum spectrum
becomes discretized [14]. Cleverly chosen strength functions, calculated in the trap, can reveal resonances in
the continuum [14]. Very narrow resonances can be investigated using the trap-variation (stabilization) method
[12,14] or the complex scaling method [12]. Scattering problems can be solved using confining potential
method [12], the Kohn variational method [12], or the resonating-group method [15].

4 Results

Given the meson mass, mσ , the model has two free parameters: the strength, Sσ , and the range, bσ , of the
coupling operator (11). It turns out that for any mσ ∈ [100, 800] MeV it is possible to tune the parameters Sσ

and bσ such that the binding energy and the charge radius of the resulting deuteron are reasonable.
For illustration we assume mσ =500 MeV similar to relativistic mean-field models [10]. With mσ =

500 MeV and mn = mp = 939 MeV the parameters bσ = 3 fm and Sσ = 20.35 MeV give the deuteron’s
ground-state energy E0 = −2.2 MeV and the charge radius Rc = 2.1 fm which is close to the accepted values
[16].

In this calculation we used low-discrepancy Van der Corput sampling strategy [17] for the non-linear
parameters of the Gaussians. With this strategy the energy converges within 1% with about 10 Gaussians in
the two-body subsystem and about 25 Gaussians in the three-body subsystem, as illustrated in Fig. 1. The final
calculation has been done with n(d) = 25 and n(σ ) = 80.

The radial wave-function of the deuteron in the two-body subsystem is shown in Fig. 2. For illustration the
potential that produces the same wave-function via a radial Schrodinger equation is also shown. The potential
is short-range and finite at the origin.

The contribution of the three-body σnp-subsystem to the norm of the total wave-function is only about
2%. This justifies the assumption that the two-meson contribution might be a small correction.

5 Conclusion

A nuclear model has been introduced where the nucleons interact by emitting and absorbing mesons which are
treated explicitly. A nucleus in this model exists in a quantum superposition of states with increasing number
of generated mesons.
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Fig. 2 Top: the radial wave-function, u(r) = rψnp(r), of the neutron-proton subsystem together with its asymptotic

form, exp(−κr), where κ =
√

2μnp|E0|/h̄2 ; bottom: the effective potential that produces the same radial wave-function as
in the top figure

The model has been applied to the deuteron—in the model’s simplest, one sigma-meson, incarnation—
where the deuteron is a superposition of a two-body neutron-proton state and a three-body neutron-proton-sigma
state. The model is able to produce a bound deuteron with very reasonable values of the binding energy and
the charge radius.

The anticipated advantages of the model, compared to the phenomenological potential models, are the
reduced number of parameters, natural inclusion of few-body forces, and natural inclusion of mesonic physics.

The next step in the development of the model could be inclusion of pions.

6 Appendix

6.1 Stochastic Sampling of Gaussian Parameters

The Gaussians can be parameterized in the form

〈r ∣∣ A〉 = exp

⎛
⎝−

N∑
i< j=1

(
ri − r j
bi j

)2
⎞
⎠ ≡ exp

(−rTAr
)
, (27)

where ri is the coordinate of the i-th particle and the matrix A is given as

A =
n∑

i< j=1

wi jw
T
i j

b2
i j

, (28)

where the column-vectors wi j are defined through the equation

ri − r j = wT
i jr. (29)

In the laboratory frame r = (
r1 r2 . . . rN

)T and the wi j are given for a two-body system as

w12 =
(

1
−1

)
, (30)
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and for a three-body system as

w12 =
⎛
⎝ 1

−1
0

⎞
⎠ , w13 =

⎛
⎝ 1

0
−1

⎞
⎠ , w23 =

⎛
⎝ 0

1
−1

⎞
⎠ . (31)

Under a coordinate transformation r → Jr the column-vectors wi j transform as wi j → UTwi j where
U = J−1.
The range parameters bi j of the Gaussians are chosen stochastically from the exponential distribution,

bi j = − ln(u)b, (32)

where the quasi-random number u ∈]0, 1[ is taken from a Van der Corput sequence [17] with the scale b = 3 fm.
Separate sequences with different prime bases are used for each i j-combination.

6.2 Charge Radius

We define the charge radius, Rc, of an N -body system as

R2
c =

N∑
i=1

Zi 〈r2
i 〉 =

N∑
i=1

Zi 〈rTwiw
T
i r〉, (33)

where the summation goes over the bodies in the system; Zi is the charge of the body in unit charges; ri is the
coordinate of the body (in the center-of-mass frame); the brackets 〈〉 signify the expectation value in the given
state of the system; and the column-vector wi is defined via the formula

ri = wT
i r. (34)

In the laboratory frame, for a two-body system

w1 =
(

1
0

)
, w2 =

(
0
1

)
, (35)

and for a three-body system

w1 =
⎛
⎝ 1

0
0

⎞
⎠ , w2 =

⎛
⎝ 0

1
0

⎞
⎠ , w3 =

⎛
⎝ 0

0
1

⎞
⎠ . (36)

Under a coordinate transformation r → Jr the column-vector wi transforms with the inverse matrixU = J−1

as wi → UTwi (see Sect. 6.3 for a transformation to the center-of-mass frame).
Now the matrix element in (33) between two Gaussians is given as [13],

〈
A

∣∣ rTwiw
T
i r

∣∣ A′〉 = 3

2
wT
i (A + A′)−1wi

〈
A

∣∣ A′〉 . (37)

6.3 Coordinate Transformations

Under a linear coordinate transformation to a new set of coordinates,

r → x = Jr, (38)

the matrix elements with correlated Gaussians preserve their mathematical form as long as the determinant of
the transformation matrix J equals one (otherwise they have to be divided by the determinant), and as long as
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one makes the corresponding transformations of the related matrices and column-vectors: the kinetic energy
matrix transforms as1

K → J K JT, (40)

and the wi (and wi j ) column-vectors transform as2

wi → UTwi , (42)

where U = J−1.
One practical set of coordinates are the Jacobi coordinates defined as

xi<N =
∑i

k=1 mkrk∑i
k=1 mk

− ri+1 , xN =
∑N

k=1 mkrk∑N
k=1 mk

, (43)

where the last coordinate, xN , is the center-of-mass coordinate that can be omitted if no external forces are
acting on the system. This is equivalent to simply discarding the last row of the J matrix and the last column
of the U matrix.
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1 Which follows from the identity (with implicit summation notation),

∂

∂ri
Ki j

∂

∂r j
= ∂

∂xk

∂xk
∂ri

Ki j
∂

∂xl

∂xl
∂r j

= ∂

∂xk
Jki Ki j Jl j

∂

∂xl
. (39)

2 Which follows from the identity

wT
i r = wT

i Ux = (UTwi )
Tx. (41)
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