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Abstract We present and analyzed bi-circular restricted four-body problem model that accounts for dissipative
forces. Specifically, the model for Sun–Earth–Moon-Spacecraft system is formulated with inclusion of Stokes
drag and Poynting–Robertson (P–R) drag. The Lagrange points are seen to be dependent on the strength and
the kind of the dissipative force involved, comparatively, the P–R drag is found to exert greater influence
on the spacecraft than the Stokes drag. The linear stability analysis of the model shows that the motion of
the Spacecraft around the system’s Lagrange points is stable only at L4,5. Moreover, an examination of the
dynamical behaviour of the system reveals it to be chaotic as the trajectories of the motion are exponentially
divergent. This model finds great applications in the study of astronomical system and mission planning in
space travels and interplanetary probes.

1 Introduction

Contrary to popular assumption that the outer space is a vast void, the interplanetary or interstellar space is
known to be full of Interplanetary or interstellar dust particles (IDPs) of various shapes, sizes, chemical com-
position and physiochemical properties. These corpuscles have their sources from debris of comets, asteroids,
planets and their satellites. Several scientific questions of great importance such as interstellar clouds, proto-
nebulae, planetary rings, etc are answered by reasons of the accumulation of the IDPs and micrometeorites in
certain regions of space.

Poynting [1,2] examined the effect of absorption and subsequent re-emission of sunlight by small isolated
particles in the solar system. A modification of his studies was carried out by [3] where he modeled the total
radiation force by relativistic approach of the first order in the ratio of the velocity of particle to that of light.
The study of the P–R effect finds its relevance in the investigation of asteroidal cloud, orbital evolution of
cometary meteor streams, interplanetary dust clouds and zodiacal cloud.

Poynting–Robertson (PR) effect is an important tool in the study of dissipation. Reduction in orbital
elements such as the semi-major axis of the particle is as a result of external dissipative forces which can
cause the particle to spiral toward the Sun. Colombo et al. [4] included the effect of P–R drag in the study
of the stability of equilibrium points and they showed that the points are unstable due to such drag force. In
discussing the orbital evolution of the Janus and Epimetheus system, Yoder et al. [5] pointed the effects of
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dissipative processes on stability. Peale [6] studied numerically and analytically the effects of nebular gas drag
on Trojan precursors in the orbit of Jupiter; he observed that the leading and trailing triangular equilibrium
points could be stable to this drag force. Murray [7]showed that there are certain classes of drag forces for
which the displaced triangular points become asymptotically stable, whereas objects displaced from these
equilibrium points have resulting paths in the rotating frame that spiral in toward the equilibrium points. Some
results on the global dynamics of the regularized restricted three-body problem with dissipation were given
by [8]. The equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind
drag was researched by [9]. Likewise, Chakraborty and Narayan [10] considered the effect of Stellar wind and
Poynting–Robertson drag on photogravitational elliptic restricted three-body problem and reported that the
equilibrium points are unstable due to the presence of drag.

Stokes drag is a form of dissipative force and studies have shown that dissipative forces are responsible for
secular changes in orbital angular momentum and energy. In planetary dynamics, there are certain instances
where interactions with gas particle can significantly affect the motion of solid particles. Two outstanding exam-
ples of this phenomenon are the interactions of planetisimal with the protoplanetary disk during the formation of
solar system and the orbital decay of ring particles as a result of drag caused by extended planetary atmospheres.
For certain objects having dimensions larger than the mean free path of the gas molecules, they experience
Stokes drag FD = −Cd Aρv2/2, where v is the relative velocity of the gas to the body, ρ is the gas density, A
is the projected surface area of the body and Cd is the dimensionless drag coefficient, which is of order unity.

Lamy and Perrin [11] asserts that the solar radiation force on a particle can be very large compared to
the gravitational forces that the particle experiences. The validity of this statement depends upon the size and
material composition of the particle and upon the spectral type of the star. Hence, when the motion of the IDPs
is considered, the force of radiation, and drag forces on the dust particles must also be put into cognizance
along with the impact of the gravitational force. In the light of restricted few body model, Radzievskii [12,13]
investigated the photo-gravitational restricted three-body problem, in which the motion of a test particle is
influenced by both the force of gravity and the radiation emitted from one of the primaries. Schuerman [14]
further extended the study to include the radiation from both primaries while Simmons et al. [15] examined
the problem more holistically with the case of negative radiation parameter. Recently, Sing and Omale [16]
investigated the combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability
of equilibrium points in the restricted four-body problem.

It is important most times to have the restricted models formulated in a manner that some real physical
phenomenon can be captured as much as possible. The bi-circular and bi-elliptic restricted problem attempt
to achieve this very goal. Authors such as [17,18] pioneered this facet of the restricted four-body problem.
Others such as [19,20] have lent their contributions in the area of bi-elliptic restricted four-body problem.
The bi-circular restricted four body problem (BCR4BP) is very useful for analytic and application purpose,
the effect of the fourth body is included to the restricted three-body problem. In the BCR4BP for instance,
the earth and the moon are assumed to move in circular orbits around their centre of mass and their centre of
mass also moves in the circular orbit around the Sun in the same plane. Authors such as [21–24] have used
the BCR4BP for applications in the periodic orbit and gravitational capture.

Knowing that dissipative forces are driving evolutionary processes in the solar system, we aim at studying
the effect of two of them, namely, the Poynting–Robertson drag and the Stokes drag and on the motion of
spacecraft from the Earth–Moon-focused view of the Sun–Earth–Moon system. This work is arranged thus;
Sect. 2 is the mathematical formulation of the model using Bi-circular approach, in Sects. 3 and 4 we investigate
the Lagrange points and establish the linear stability of the motion around the Lagrange points respectively.
Section 5 is the verification of chaos in the system and we draw the conclusion in Sect. 6.

2 Model Formulation and Equations of Motion

Letm1,m2 andm3 be three primaries of finite masses whose motions are on the same plane along with the fourth
body m4 of negligible mass compared to the masses of the three primaries, and its motion is under the gravita-
tional influence of the three finite masses. We set up the configuration of the system in such a way that O ′ is taken
as the centre of mass of m2 and m3 which revolves around O the centre of mass of the integral system. Further,
let the distances between m1 and OO ′ and OO ′ and m2O ′ and m3 be D1D2, d1 and d2 respectively (Fig. 1).

Now, given a rectangular coordinate system having its origin at O and its three axes
(
ξ̂ , η̂, ζ̂

)
fixed in space

so that the ζ̂−axis is perpendicular to the plane of the masses. Then, the four bodies possess the coordinates
(ξ1, η1, 0), (ξ2, η2, 0), (ξ3, η3, 0) and (ξ, η, ζ ) respectively. Then the equations of motion for m4 are given as
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Fig. 1 The setup of the bi-circular model

ξ̈ = −
3∑

k=1

Gmk(ξ−ξk )

r3
k

η̈ = −
3∑

k=1

Gmk (η−ηk )

r3
k

ζ̈ = −
3∑

k=1

Gmk(ζ−ζk)

r3
k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where the dots denote the differentiation with respect to time. Let n1 and n2 be the angular velocities of the
system m2 − m3 as it moves about O ′, and as O ′ moves about O . Then;

ξ1 = −D1 cos (n1t), η1 = −D1 sin(n1t)
ξ2 = D2 cos (n1t) − d1 cos (n2t), η2 = D2 sin (n1t)−d1 sin (n2t)
ξ3 = D2 cos (n1t) + d2 cos (n2t), η3 = D2 sin(n1t)+d2 sin (n2t)

⎫⎬
⎭ (2)

such that

D = D1 + D2 and d = d1 + d2 (3)

From Kepler’s law

n2
1 = G (m1 + m2 + m3)

D3 (4)

n2
2 = G (m2 + m3)

d3 (5)
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Transforming
(
ξ̂ , η̂, ζ̂

)
to a new coordinate system (x, y, z) with its centre O such that the x-axis revolves

with m2 and m3 and the z-axis is parallel to the ζ̂ -axis. Then we have

ξ̂ = D2 cos (n1)t + x cos (n2)t − y sin (n2)t
η̂ = D2 sin(n1)t + x sin (n2)t + y cos (n2)t
ζ̂ = z

⎫⎬
⎭ (6)

The new coordinate system of m1,m2 and m3 are respectively

(x1, y1, z1) = (−Dcos (n2 − n1) t, Dsin (n2 − n1) t, 0)
(x2, y2, z2) = (−d1, 0, 0)
(x3, y3, z3) = (−d2, 0, 0)

⎫⎬
⎭ (7)

Substituting equations in systems (2) and (6) into the system (1) and making use of (7) gives the system of
equations below

ẍ − 2n2 ẏ = n2
2

(
x − D2

D
n2

1
n2

2
x1

)
−

3∑
k=1

Gmk (x−xk )
r3
k

ÿ + 2n2 ẋ = n2
2

(
y − D2

D
n2

1
n2

2
y1

)
−

3∑
k=1

Gmk (y−yk )
r3
k

z̈ = −
3∑

k=1

Gmk (z−zk)
r3
k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8)

with

r2
k = (x − xk)

2 + (y − yk)
2 + (z − zk)

2 , k = 1, 2, 3 (9)

The system (8) can be expressed as

ẍ − 2n2 ẏ = Wx
ÿ + 2n2 ẋ = Wy
z̈ = Wz

⎫⎬
⎭ (10)

where

W = n2
2

[
1

2

(
x2 + y2) − D2

D

n2
1

n2
2

(x1x + y1y)

]
+

3∑
k=1

Gmk

rk
(11)

But

x1x + y1y = r Dcosφ (12)

Since z1 = 0 and φ is the angle subtended by m4 and m1 at O . Then on using (4), (5) and (12), (11) becomes

W = 1

2

G(m2 + m3)

d3

(
x2 + y2) − Gm1r

D2 cosφ − G(m2 + m3)r

D2 cosφ +
3∑

k=1

Gmk

rk
(13)

Noting that D2
D is nearly unity since D1

D � 1 and D � r is essential for the real motion of m4. Hence using
the first three terms of the expansion of the spherical harmonics below

1

r1
= 1

D

∞∑
n=0

( r

D

)n
Pn (cosφ) (14)

we obtain

1

r1
= 1

D
+ r

D2 cosφ + r2

2D3

(
3cos2φ − 1

) + · · · (15)
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Then (13) becomes

W = 1

2

G(m2 + m3)

d3

(
x2 + y2) + Gm1

D
+ Gm1r2

2D3

(
3cos2φ − 1

)

−G (m2 + m3) r

D2 cosφ +
3∑

k=2

Gmk

rk
(16)

We non-dimensionalize by taking the sum of the masses m2 and m3 and the distance d as the units of mass
and length, so that the mass parameter μ = m3

m2+m3
with m2 = 1 − μ and m3 = μ. Also taking the unit of

time so that the gravitational constant G = 1. More specifically, using the Sun–Earth–Moon system as a case
study, μ = mE

mE+mM
and μS = mS

mE+mM
we have,

W = 1

2

(
x2 + y2) + μS

D
− r

D2 cosφ + μSr2

2D3

(
3cos2φ − 1

) + 1 − μ

r2
+ μ

r3
(17)

Constraining the problem to the xyplane, we can write φ = α − α0, where α and α0 are the respective angles
which the positive x-axis makes with the vectors O ′m4 and O ′m1. Recognizing α0 as a constant in a scale of
time for few hours, then (17) becomes

W = 1

2
(1 + �)

(
x2 + y2) + μS

D
− xcos(α0) + ysin(α0)

D2

+3

2
�

[(
x2 − y2) cos (2α0) + 2xysin (2α0)

] + 1 − μ

r2
+ μ

r3
(18)

where � = 1
2

μS
D3

For a particle moving in a gas, the molecules exert a force as the particle collides with gas molecules. This
dissipative force is described by stokes drag and it is given by [25]

[
Fx
Fy

]
= −ks

⎡
⎣

(
ẋ − y − 3σ y

2r7/2

)
(
x + ẏ + 3σ x

2r7/2

)
⎤
⎦ (19)

ksε[0, 1) is the constant of dissipation due to Stokes drag, r = (
x2 + y2

)1/2
, σε(0, 1) is the rate of the gas

velocity and the Keplerian velocity n2 = 1. More so, for a nongravitational force such as the Poynting–
Robertson force which is due to the solar radiation incident on the particle, the drag force is given by [25] as

[
Fx
Fy

]
= − k

r2
1

⎡
⎢⎢⎣

(
ẋ − y + x

r2
1
(x ẋ + y ẏ)

)

(
ẏ + x + y

r2
1
(x ẋ + y ẏ)

)

⎤
⎥⎥⎦ (20)

The Eqs. (20) is a combination of two parts that describe the impact of the drag from solar photons and Doppler
shift of solar radiation as shown in Eqs. (21) and (22) respectively.

− k

r2
1

[
(ẋ − y)
(ẏ + x)

]
(21)

− k

r2
1

[ x
r2

1
(x ẋ + y ẏ)

y
r2

1
(x ẋ + y ẏ)

]
(22)

Now to study the effect of dissipative forces on a test particle in the Sun–Earth–Moon, we substitute r1 = D
into (20) and then combine Eqs. (19) and (20) in the system of equations (10) for which n2 = 1 and W is
defined in Eq. (18). Thus, the governing equations of motion our model can be written as:

ẍ − 2 ẏ = Wx − KS

(
ẋ − y − 3σ y

2r7/2

)
− KPR

D2 (ẋ − y + x
D2 (x ẋ + y ẏ))

ÿ + 2ẋ = Wy − KS

(
x + ẏ + 3σ x

2r7/2

)
− KPR

D2 (ẏ + x + y
D2 (x ẋ + y ẏ))

⎫⎬
⎭ (23)

where KS and KPR are the constant of dissipation due to Stokes drag and P–R drag respectively, r2
2 =

(x + μ)2 + y2 and r2
3 = (x + μ − 1)2 + y2
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3 Investigation of the Libration Points

It is known that the acceleration and the velocity of the spacecraft at the libration points are zero, so that
ẍ = ÿ = ẋ = ẏ = 0. Hence the libration points are solutions of equations

(1 + �) x − (1 − μ) (x + μ)

r3
2

− μ (x + μ − 1)

r3
3

− cos(α0)

D2

+3� (x cos (2α0) + y sin (2α0)) + KS

(
y + 3σ y

2r7/2

)
+ yK PR

D2 = 0 (24)

(1 + �) y − (1 − μ) y

r3
2

− μy

r3
3

− sin(α0)

D2

+3� (x sin (2α0) − y cos (2α0)) − KS

(
x + 3σ x

2r7/2

)
− xK PR

D2 = 0 (25)

By observation, Eqs. (24) and (25) show that the positions of the primaries varies with α0. Since the func-
tions of α0 are periodic, we will carry out the investigation of the Lagrange points on the scale 0 ≤ α0 ≤ π .
The libration points are computed by solving Eqs. (24) and (25) simultaneously by Newton–Raphson method
with the aid of Mathematica 10.0. To compute the libration points for Sun–Earth–Moon-Spacecraft system
from the Earth–Moon-focused view, we use the following values of the parameters μs = 328900.48, μ =
0.012151, D = 389.1724 The Stokes drag depends on the parameter σ which is the ratio of the gas to
the Keplerian velocities, so σ = 0.05, kS = 10−5 and in the case of high drag coefficient we can have
σ = 0.12, kS = 10−3. Beauge and Ferra-Mello [26] stated that in the case of formation of the solar system
σ = 0.995 The results are shown in Tables 1, 2 and 3 and their positions are displayed in Figs. 2, 3, 4, 5, 6,
7 and 8 for three cases, namely; when the Stokes drag is dominant, when the P–R drag is dominant and when
both Stokes drag and P–R drag are inaction together. As shown in Table 1, under the effect of Stokes drag, there
exist six libration points Li , i = 1, 2, 3, 4, 5, 6. Out of these six libration points, L1,2 are collinear, L3,6 are
nearly collinear and L4,5 are non-collinear. Unlike the case of restricted four-body problem with Stokes drag
(for instance, the studies done by [16]) where there exist eight equilibrium points, in the case of the Bi-circular
restricted four-body problem, there are six libration points. Recognizing α0 as a constant in a scale of time for
few hours, the positions of the libration points also vacillate periodically with respect to the value of α0

Table 2 shows the results of the libration points when the Stokes drag is neglected and the effect of the
P–R drag is evaluated. In this case there exist only five libration points with L6 not present. The sixth libration
point L6 is as a result of the Stokes drag. So under the combined effect of the Stokes drag and the P–R drag,
there are six libration points as shown in Table 3 and Fig. 7. Moreover, when the effects of the drag forces are
neglected, that is, kS = 0, kPR = 0, we found that the system possesses five libration points. Meanwhile, as
shown in Fig. 8 below, there is a translation in the position of the libration points notable at L4,5 as well as
increase in the number of the libration points from five to six libration points under the combined effect of the
Stokes drag and P–R drag but the sixth libration point is solely as a result of the Stokes drag.

4 Linear Stability of the Lagrange Points

We investigate the linear stability of the motion when a small displacements τ and γ are given to the coordinates
of the Lagrange point (x0, y0) such that

τ = x − x0, γ = y − y0 (26)

Then the variational form of the equations of motion is derived as

τ̈ − 2γ̇ = τ
(

∂2U
∂x2

)
0
+ γ

(
∂2U
∂x∂y

)
0
+

(
∂2U
∂x∂ ẋ

)
0
τ̇ +

(
∂2U
∂x∂ ẏ

)
0
γ̇

γ̈ + 2τ̇ = τ
(

∂2U
∂y∂x

)
0
+ γ

(
∂2W
∂y2

)
0
+

(
∂2U
∂y∂ ẋ

)
0
τ̇ +

(
∂2U
∂y∂ ẏ

)
0
γ̇

⎫⎬
⎭ (27)

where Ux = ∂U
∂x and Uy = ∂U

∂y denote the expression on the right hand side of Eq. (23) respectively. The
subscripts 0 implies that the second partial derivatives are evaluated at the equilibrium point (x0, y0) and the dots
are the derivatives with respect to time t and only the linear terms in τ and γ have been considered. We assume

τ = Peλt , γ = Qeλt (28)
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Table 1 Libration points for the Sun–Earth–Moon-Spacecraft System under Stokes drag kS = 10−3, σ = 0.12, kPR = 0

α0 = 0 α0 = π
2 α0 = π

6

L1 0.836831, −0.00013417 0.836955, −0.000271003 0.836862, −0.000124096
L2 1.15551, −0.000582436 1.15577, −0.000589303 1.15558, −0.000203288
L3 −1.0001, 0.0955521 −1.00107, 0.0911089 −1.0048, 0.00824444
L4 0.436866, 0.893265 0.484459, 0.867676 0.432381, 0.895172
L5 0.502038, −0.857833 0.533625, −0.838026 0.521822, −0.845976
L6 −1.00245, 0.066765 −0.996662, 0.130515 −1.00408, 0.0392449

α0 = 5π
6 α0 = π

L1 0.836861, −0.000416933 0.83683, −0.000134172
L2 1.15557, −0.000966468 1.15551, −0.000582412
L3 −0.995923, 0.132545 −1.0001, 0.0956556
L4 0.450552, 0.886464 0.422796, 0.900114
L5 0.502051, −0.857496 0.501702, −0.858029
L6 −0.991437, 0.162448 −1.00245, 0.0668376

Table 2 Libration points for the Sun–Earth–Moon-Spacecraft System under P–R drag kS = 0, σ = 0, kPR = 10−3

α0 = 0 α0 = π
2 α0 = π

6

L1 0.836831, -1.33368*10−9 0.836954, -1.59264*10−6 0.836862, 0.000145617
L2 1.15551, -3.46909*10−9 1.15577, -3.02508*10−6 1.15557, 0.000380103
L3 -1.00469, 5.35412*10−7 -1.00525, -0.000732178 -1.00281, -0.0629108
L4 0.465189, 0.878634 0.510141, 0.85267 0.462972, 0.879506
L5 0.465189, -0.878634 0.510346, -0.852542 0.488582, -0.865822

α0 = 5π
6 α0 = π

L1 0.836861, -0.000147215 0.83683, -1.3337*10−9

L2 1.15557, -0.000383103 1.15551, -3.46895*10−9

L3 -1.00285, 0.0624113 -1.00469, 5.35992*10−7

L4 0.488185, 0.866049 0.464799, 0.878841
L5 0.46272, -0.879635 0.4648, -0.87884

Table 3 Libration points for the Sun–Earth–Moon-Spacecraft System under Stokes drag and P–R drag kS = 10−3, σ =
0.12, kPR = 10−3

α0 = 0 α0 = π
2 α0 = π

6

L1 0.836831, −0.000134171 0.836955, −0.000271004 0.836861, −0.00028135
L2 1.15551, −0.00046839 1.15577, −0.000589306 1.15557, −0.000852259
L3 −1.0001, 0.0955526 −1.00107, 0.0911097 −0.995923, 0.132546
L4 0.436866, 0.893265 0.484459, 0.867676 0.450552, 0.886464
L5 0.502038, −0.857833 0.543446, −0.831633 0.502051, −0.857496
L6 −1.00245, 0.0667656 −1.00408, 0.0392455 −0.991437, 0.162449

α0 = 5π
6 α0 = π

L1 0.836862, 0.0000114842 0.83683, −0.000269822
L2 1.15558, −0.000203292 1.15551, −0.000582416
L3 −1.0048, 0.00824502 −1.0001, 0.0956561
L4 0.432381, 0.895172 0.422795, 0.900114
L5 0.511918, −0.852072 0.490733, −0.864432
L6 0.836862, −0.000124098 −1.00245, 0.0668381
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Fig. 2 Libration points under Stokes drag only when kS = 10−3, σ = 0.12, α0= 0
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Fig. 3 Libration points under Stokes drag only when kS = 10−3, σ = 0.12, α0=π
2

where P, Q are constants and λ is a parameter.
Now if Eq. (28) are the solutions of Eq. (27) then

(
λ2 + λU 0

x ẋ −U 0
xx

)
P −

(
2λ +U0

xy

)
Q = 0(

2λ −U0
yx

)
P +

(
λ2 + λU 0

y ẏ −U 0
yy

)
Q = 0

⎫⎬
⎭

∣∣∣∣∣∣

(
λ2 −U 0

xx − λU 0
x ẋ

) −
(

2λ +U0
xy + λU 0

x ẏ

)
(

2λ −U 0
yx − λU 0

yẋ

) (
λ2 −U 0

yy − λU0
y ẏ

)
∣∣∣∣∣∣
= 0 (29)

Then the characteristic polynomial of the system (27) is given as

λ4 + Rλ3 + Sλ2 + Tλ + M = 0 (30)
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Fig. 4 Libration points under Stokes drag only when kS = 10−3, σ = 0.12, α0= π
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Fig. 5 Libration points under P–R drag only when kPR = 10−3, α0= 0

Where

R = −(U 0
x ẋ +U 0

y ẏ)

S = 4 +U 0
x ẋU

0
y ẏ −U 0

xx −U 0
yy + 2U 0

x ẏ − 2U 0
yẋ −U 0

x ẏU
0
yẋ

T = U 0
xxU

0
y ẏ +U 0

x ẋU
0
yy + 2U 0

xy − 2U 0
yx −U 0

xyU
0
yẋ −U 0

yxU
0
x ẏ

M = U0
xxU

0
yy −U 0

xyU
0
yx

∂2U

∂x2 = 1 + μs

2D3 + 3μ (x + μ − 1)2

r5
3

− μ

r3
3

+3 (1 − μ) (x + μ)2

r5
2

− (1 − μ)

r3
2

+ 3μs cos 2α0

2D3 − 21σKsxy

4r11/2 − KPR

D4 (2x ẋ + y ẏ) (31)



15 Page 10 of 14 J. Singh, S. O. Omale

L1
L2L3

L4

L5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

x axis

y axis

Fig. 6 Libration points under P–R drag only when kPR = 10−3α0=π
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Fig. 7 Libration points under Stokes drag and P–R when kS = 10−3, σ = 0.12, kPR = 10−3α0 = 0

∂2U

∂y2 = 1 + μs

2D3 + 3μy2

r5
3

− μ

r3
3

+ 3 (1 − μ) y2

r5
2

− (1 − μ)

r3
2

− 3μs cos 2α0

2D3 + 21Ksσ xy

4r11/2 − KPR

D4 (x ẋ + 2y ẏ) (32)

∂2U

∂x∂y
= 3μ (x + μ − 1) y

r5
3

+ 3(1 − μ) (x + μ) y

r5
2

+3μs sin 2α0

2D3 − Ks

(
−1 − 3σ

2r7/2 + 21σ y2

4r11/2

)
− KPR

D2 (
x ẏ

D2 − 1) (33)
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Fig. 8 Comparative location of the Libration Points when there is no drag effect and when Stokes drag and P–R drag when
kS = 10−3, σ = 0.12, kPR = 10−3α0= 0

Table 4 Linear stability of the Sun–Earth–Moon-Spacecraft Libration points under Stokes drag and P–R drag

α0=π
6 λ1,2 λ3,4

L1 0.836861, −0.00028135 ±2.93148 −0.000535879 ± 2.33368i
L2 1.15557, −0.000852259 ±2.16177 −0.000519985 ± 1.86411i
L3 −0.995923, 0.132546 ±0.183755 −0.000751681 ± 1.01077i
L4 0.450552, 0.886464 −0.000828032 ± 0.95917i −0.000171974 ± 0.283808i
L5 0.502051, −0.857496 −0.000841506 ± 0.950497i −0.000158501 ± 0.308244i
L6 −0.991437, 0.162449 ±0.183138 −0.000751825 ± 1.01066i

∂2U

∂y∂x
= 3μ (x + μ − 1) y

r5
3

+ 3(1 − μ) (x + μ) y

r5
2

+3μs sin 2α0

2D3 − Ks

(
1 + 3σ

2r7/2 − 21σ x2

4r11/2

)
− KPR

D2 (
yẋ

D2 + 1) (34)

Uxẋ = −Ks − KPR

D2

(
1 + x2

D2

)
(35)

Uyẏ = −Ks − KPR

D2

(
1 + y2

D2

)
(36)

Ux ẏ = −KPRxy

D2 = Uyẋ (37)

A Libration point is said to be stable if the characteristic equation (30) has all of its four eigen-roots with
negative real parts or are purely imaginary and in geometrical sense that they all lie in the negative half-plane.
But as displayed in Table 4, four of the Libration points have at least two characteristic roots with positive real
parts. Hence, the motion of the spacecraft is linearly unstable around all these Lagrange points but the motion
is stable around L4,5 Furthermore, the libration points are gotten from the equations of motion is considered
at time t0 = 0, that implies that at time t1 �= t0 there will be a change in the position of the libration points
and the test particle will move from position A to position B which brings the possibility of the libration point
to potentially “lose hold” of the test particle, depending on the factors such as the strength of the attraction
and the speed of the libration point. In that case, the libration point may always be instantaneously stable but
effectively unstable. On this regards we infer that the motion around L4,5 is instantaneously stable and the
remaining libration points are effectively unstable.
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Fig. 9 Divergence of trajectories for the Sun–Earth–Moon-Spacecraft system underStokes drag and P–R drag after 50 iterations
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Fig. 10 Divergence of trajectories for the Sun–Earth–Moon-Spacecraft system under Stokes drag and P–R drag after 100 iterations

5 Dynamical Behaviour of the Model

For every dynamical system it is of great interest to establish the regularity or chaoticity of the system. A
measure of the system’s sensitivity to change in initial conditions defines its nature. If a dynamical system is
very sensitive to change in initial conditions, then it is chaotic and predictability of its future behavior becomes
impossible. In particular, if the neighboring orbits separate exponentially fast, then the system possesses irreg-
ularity and this irregularity or chaos can be quantified with the aid of Lyapunov characteristic exponents. Given
some initial condition x0, consider a nearby point x0 + δ0, where the initial separation δ0 is very small.

Let δn be the separation after n iterates. if

|δn| ≈ |δ0| enλ (38)

Then λ is called Lyapunov exponent.
A positive Lyapunov exponent is a signature of chaos (see [27]). The first order LCEs is Computed with

the help of Mathematica package developed by [28]. For 50 iterations, we found the LCEs as [1.01862,
1.01818, −0.0193187, −0.0194755]. While for 100 iterations, the LCEs are [1.0091, 1.00913, −0.0101028,
−0.0101311]. In each case, two of the LCEs are seen to be positive. Moreover, the Figs. 9 and 10 above show
the rate of divergence of the trajectories for the Sun–Earth–Moon-Spacecraft system. They were plotted by
first reducing the equations of motion to a first order system and then we used the Mathematica package [28]
to generate the divergent. By the rate of divergence shown by the graphs 9 and 10, and the numerical value of
the LCEs, we conclude that the orbit of the system is chaotic.
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6 Conclusion

A Bi-circular Restricted Four-Body Problem (BCR4BP) was formulated to model the effect of dissipative
forces, namely, Stokes drag and P–R drag from the Earth–Moon-focused view in the Sun–Earth–Moon-
Spacecraft System. The Earth–Moon-focused view is assumed because in Eq. (24) we substituted D for r1
in the drag equation. More so, D = D1 + D2, which implies the approximation of the solar radiation on
the test particle as the solar radiation experienced by a test particle near the Earth and moon. This model is
nearly coherent in that the orbits of all the primaries were approximated circular. More so, it is a fair model
and more realistic than the conventional Restricted Four-Body Problem (R4BP) which has shortcomings in
the assumptions of triangular and collinear configurations, two primaries having equal masses (see [29]). We
found that the dissipative forces influence the number and location of positions of the Lagrange points. For
instance, in the case where only Stokes drag was considered, there exist six equilibrium points where as in
the case of only P–R drag, there were five equilibrium points. Furthermore, by observing the y-coordinate of
the Lagrange points in Tables 1 and 2, we discovered that P–R drag has greater dissipative influence than the
Stokes drag. The linear stability analysis around the Lagrange points under the combined effect of both forces
revealed the motion of the spacecraft to be unstable around all the Lagrange points except at L4,5. Investigating
the dynamical behavior of the system showed the exponential divergence in the trajectories of the system and
thus we establish the chaotic nature of the system. This model has wide applications to other planetary system
other than the Sun–Earth–Moon system because it can incorporate systems that are non-coplanar.
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