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Abstract Kinetic, potential and overlap matrix elements of one dimensional correlated Gaussians multiplied
by polynomial factors are presented. These matrix elements can be used to calculate energies of one dimensional
cold atom systems, or to construct a tensorial product to calculate energies in 2 or 3 dimensional systems with
a nonspherical potential.

1 Introduction

The experimental realization of one-dimensional (1D) cold atomic systems [1–7] has sparked an intense
theoretical interest in 1D few particle systems [8–14]. High accuracy calculations of energies and wave functions
of few-body systems have been continuously developed [15–32] for three dimensional system and many of
these approaches can be used in 1D as well.

Two- and three-electron atomic systems can be very accurately calculated using Hylleraas-type functions
[33,34], but the extension of the Hylleraas basis approach beyond three electrons is very tedious due to the
difficulty of the analytical calculation of their matrix elements [35]. Explicitly Correlated Gaussian (ECG)
basis functions have no such restrictions, and have become very popular tools in high accuracy calculations
[36–49,49,50,50–56]. There are several recent reviews illustrating the wide range of applications of ECGs
[30,57,58].

ECGs as basis functions were first employed in 1960 by Boys [15] and Singer [16]. The simple quadratic
form involving inter-particle distances in ECGs permits the reduction of the matrix elements to simple analytic
expressions, and the algebraic complexity does not change with the number of particles. These matrix elements
depend on the parameters of the ECGs, which should be carefully optimized [41,59,60] to get highly accurate
variational upper bounds.

In this paper we present detailed derivations of matrix elements of one-dimensional generalized ECGs:
ECGs multiplied with a polynomial prefactor formed by the powers of the coordinates of the particles. The
polynomial prefactor not only helps the accuracy, but allows for the treatment of spin-orbit interaction or
calculation of matrix elements of the dipole operator of a laser field. While the matrix elements presented in
this work are in 1D, they can be simply generalized to 2D or 3D by using their tensor products. These tensor
products can be used in calculations of systems in nonspherical potentials (e.g. electric or magnetic fields) and
can also be used to derive general 3D ECG basis functions with arbitrary angular momentum after suitable
angular momentum coupling. In our earlier work [61], we have derived matrix elements of ECGs in 3D for
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arbitrary angular momentum; the present work extends this to nonspherical potentials and gives a general form
for 1D systems.

The outline of the paper is as follows: After the introduction we will introduce our notation and formalism,
and will give calculations for different operators, such as overlap, kinetic energy, one-particle and two-particle
potentials in later sections.

2 Formalism

We consider a system of N particles in 1D space, with positions in a lab-frame Cartesian coordinate system
given by xi , i = 1, . . ., N . To simplify the notation we introduce

x = (x1, . . ., xN ). (1)

The ECG basis functions are defined as

Φ A
m(x) =

[
N∏

k=1

xmk
k

]
exp

(
−1

2
xT Ax

)
, (2)

where the quadratic form in the exponent is defined as

xT Ax:=
N∑

i, j=1

Ai j xi · x j . (3)

Recall that x ∈ R
N is a vector in the configuration space of N particles, each moving in one dimension,

A ∈ R
N×N is a matrix of variational parameters, and m ∈ Z

N≥0 is a vector of polynomial exponents. To ensure
that these functions are normalizable, we require that A be positive-definite. Without loss of generality we can
take A to be symmetric.

We will consider a Hamiltonian in the lab frame defined as

H = T +UOne-Body + VTwo-Body

=
N∑
i=1

p2
i

2mi
+

N∑
i=1

U (xi ) +
N∑
i< j

V (xi − x j ),

where pk = −i h̄d/dxk is the momentum operator for the i th particle.

3 Overlap Matrix Elements

In this section we compute the matrix elements of the one-dimensional ECG basis functions.
To evaluate these matrix elements, we introduce the generating function

GA
t (x) = exp

(
−1

2
xT Ax + tT x

)
(4)

where t ∈ R
N is a vector of parameters. Observe that the basis functions Φ A

m(x) can be expressed as derivatives
of GA

t (x):

Φ A
m(x) =

[
N∏

k=1

∂mk

∂tmk
k

]
GA

t (x)

∣∣∣∣
t=0

(5)

Thus, our strategy will be to first evaluate the matrix elements
〈
GA

t ÔGA′
t′
〉

of the generating functions, and

then take derivatives with respect to the parameters tk to obtain the matrix elements
〈
Φ A

mÔΦ A′
m′
〉

of the ECG

basis functions.
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We first calculate the overlap matrix element. The overlap of two generating functions is simply a multi-
dimensional Gaussian integral:

〈
GA

t

∣∣∣GA′
t′
〉
=
√

(2π)N

det B
exp

(
1

2
(t + t′)T B−1(t + t′)

)
(6)

Here we have defined B = A + A′. (Note that the invertibility of B is guaranteed by A and A′ being positive-
definite.) This can be written in a more concise form by introducing the 2N -dimensional vector

t =
[

t
t′
]

= [t1 · · · tN t ′1 · · · t ′N
]� (7)

and the 2N × 2N block matrix

B =
[
B−1 B−1

B−1 B−1

]
. (8)

(Henceforth we will use underlined symbols to denote 2N -dimensional vectors or matrices obtained in this
fashion, by concatenating the N variables in the bra and the N variables in the ket.) By using these notations,
we have

〈
GA

t

∣∣∣GA′
t′
〉
=
√

(2π)N

det B
exp

(
1

2
tT Bt

)

=
√

(2π)N

det B
exp

⎛
⎝1

2

2N∑
i, j=1

Bi j t i t j

⎞
⎠. (9)

The overlap of the basis functions then can be calculated from

〈
Φ A

m

∣∣∣Φ A′
m′
〉
=
[

N∏
k=1

∂mk

∂tmk
k

][
N∏

k=1

∂m
′
k

∂t ′k
m′
k

] 〈
GA

t

∣∣∣GA′
t′
〉 ∣∣∣∣

t=t′=0

=
[

2N∏
k=1

∂mk

∂t
mk
k

] 〈
GA

t

∣∣∣GA′
t′
〉 ∣∣∣∣

t=0
. (10)

To evaluate these derivatives, we begin by Taylor-expanding the exponential function in equation (9). This
allows us to write 〈

GA
t

∣∣∣GA′
t′
〉
=
√

(2π)N

det B

2N∏
i, j=1

∞∑
ki j=0

1

ki j !
(

1

2
Bi j t i t j

)ki j
(11)

Now, we expand out the product
∏2N

i, j=1 and push all the summation operators to the front, obtaining

〈
GA

t

∣∣∣GA′
t′
〉
=
√

(2π)N

det B

∞∑
k11=0

∞∑
k12=0

· · ·
∞∑

k2N ,2N=0

2N∏
i, j=1

1

ki j !
(

1

2
Bi j t i t j

)ki j
. (12)

In the preceding equation there are a total of (2N )2 summation operators, one for each variable ki j , i, j =
1, . . . , 2N . Equivalently, if we let Z2N×2N

≥0 denote the set of 2N × 2N matrices with nonnegative integer
entries, we can write this as

〈
GA

t

∣∣∣GA′
t′
〉
=
√

(2π)N

det B

∑
k∈Z2N×2N

≥0

2N∏
i, j=1

1

ki j !
(

1

2
Bi j t i t j

)ki j
. (13)
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Thus we have:

〈
Φ A

m

∣∣∣Φ A′
m′
〉
=
[

2N∏
k=1

∂mk

∂t
mk
k

] 〈
GA

t

∣∣∣GA′
t′
〉 ∣∣∣∣

t=0

=
√

(2π)N

det B

∑
k∈Z2N×2N

≥0⎡
⎣ 2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
⎤
⎦
⎡
⎣ 2N∏

p=1

∂
mp

∂t
m p
p

⎤
⎦
⎡
⎣ 2N∏
i, j=1

(t i t j )
ki j

⎤
⎦ ∣∣∣∣

t=0

. (14)

This can be evaluated by observing that

2N∏
i, j=1

(t i t j )
ki j =

2N∏
p=1

t
∑2N

q=1(kqp+kpq)
p =

2N∏
p=1

t
u p
p (15)

where we have defined the abbreviation u p =∑2N
q=1

(
kqp + kpq

)
. It follows that

[
2N∏
k=1

∂mk

∂t
mk
k

]⎡⎣ 2N∏
i, j=1

(t i t j )
ki j

⎤
⎦ =

2N∏
p=1

∂
mp

∂t
m p
p

t
u p
p

=
2N∏
p=1

u p(u p − 1) · · · (u p − mp + 1)t
u p−mp
p . (16)

Now consider what happens when we set t = 0. The expression (16) is nonzero only when u p = mp for all

p = 1, . . . , 2N , since in this case t
u p−mp
p = 00 = 1. This means that the infinite sum (14) reduces to a finite

sum, since the only terms that contribute are those in which the numbers {ki j }2N
i, j=1 are arranged in such a way

that
2N∑
q=1

(
kqp + kpq

) = mp for all p = 1, . . . , 2N . (17)

This leads us naturally to the following combinatorial problem:

Definition Given a vector m ∈ Z
n≥0 of n nonnegative integers, let Ω(m) be the set of n×n matrices k ∈ Z

n×n
≥0

having nonnegative integer entries such that
∑2N

q=1

(
kqp + kpq

) = mp for all p = 1, . . . , 2N .
We will return to this combinatorial problem later in “Appendix A”. For now, let us assume that we know

how to compute Ω(m), and use this to simplify the infinite sum (13). We obtain the formula

〈
Φ A

m

∣∣∣Φ A′
m′
〉
=
[

2N∏
k=1

∂mk

∂t
mk
k

] 〈
GA

t

∣∣∣GA′
t′
〉 ∣∣∣∣

t=0

=
√

(2π)N

det B

⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
(18)

completing the derivation of the overlap matrix element.

4 Kinetic Energy Matrix Elements

The kinetic energy matrix elements can be evaluated using the generating function:

〈GA
t |T |GA′

t ′ 〉 = −
N∑
i=1

h̄2

2m
〈GA

t | ∂2

∂x2
i

|GA′
t ′ 〉. (19)
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This can be calculated in two equivalent ways, either taking the second derivative on one side or taking first
derivative on both sides.

The first, direct evaluation, gives:

∂2GA
t

∂x2
i

= (t2
i + (Ax)2

i − 2ti (Ax)i − Aii )G
A
t , (20)

and

〈GA
t |T |GA′

t ′ 〉 = − h̄2

2m
〈GA

t |t ′T t ′ + xT A′2x − 2t ′T A′x − Tr(A′))|GA′
t ′ 〉 (21)

This can be calculated using the integral given in “Appendix B”, and the final result is:

− h̄2

2m
〈GA

t |GA′
t ′ 〉(t′T t′ − Tr(A′) − 2t′T A′B−1(t + t′) + Tr(A′2B−1) + (t + t′)T B−1A′2B−1(t + t′)). (22)

Using the second approach, by integration by parts (neglecting the boundary term as G → 0 as x → ∞),
we have

〈GA
t | ∂2

∂x2
i

|GA′
t ′ 〉 = −

〈
∂GA

t

∂xi

∣∣∣∣∣∂G
A′
t ′

∂xi

〉
. (23)

Using
∂GA

t

∂xi
= (t − Ax)i G

A
t . (24)

we have

〈GA
t |T |GA′

t ′ 〉 = h̄2

2m
〈GA

t |(t − Ax) · (t′ − A′x)|GA′
t ′ 〉

= h̄2

2m
〈GA

t |t · t′ + xT AA′x − (tT A′ + t′T A)x |GA′
t ′ 〉. (25)

For the the quadratic term we can use the integral presented in “Appendix B”, for the linear terms we note∫
Rn

xi exp

(
−1

2
xT Ax + sT x

)
dx = ∂

∂si

∫
Rn

exp

(
−1

2
xT Ax + sT x

)
dx

= ∂

∂si

√
(2π)n

det A
exp

(
1

2
sT A−1s

)

=
√

(2π)n

det A
exp

(
1

2
sT A−1s

)
(A−1s)i . (26)

Then, similarly to above, Eq. (25) evaluates to:

h̄2

2m
〈GA

t |GA′
t ′ 〉[t · t′

+Tr(AA′B−1) + (t + t′)T B−1AA′B−1(t + t′)
−(tT A′ + t′T A)B−1(t + t′)]. (27)

Both Eqs. (27) and (22) are valid derivations for the kinetic energy for the generator functions. We have
included both because they can be useful in calculations, for example for checking computer codes.

Now, to find the matrix elements of the basis, we apply derivatives to the matrix elements of the generating
function:

〈Φ A
m |T |Φ A′

m′ 〉 =
2N∏
k=1

∂mk

∂t
mk
k

〈GA
t |T |GA′

t ′ 〉
∣∣∣∣∣
t=0,t ′=0

, (28)
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We will use the expression in (27) to find the kinetic matrix elements because it gives a manifestly symmetric
result. Expanding Eq. (27) in terms of sums and derivatives:

h̄2

2m
〈GA

t |GA′
t ′ 〉
⎛
⎝ N∑

i=1

(AA′B−1)i i +
N∑
i=1

ti t
′
i −

2N∑
i, j=1

Ci j t i t j +
2N∑

i, j=1

Di j t i t j

⎞
⎠

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

)
exp

⎧⎨
⎩1

2

2N∑
i, j=1

Bi j t i t j

⎫⎬
⎭ (29)

Where

C =
(
A′B−1 A′B−1

AB−1 AB−1

)
, D =

(
B−1AA′B−1 B−1AA′B−1

B−1AA′B−1 B−1AA′B−1

)
(30)

Pulling the sum out of the exponent and Taylor expanding, (29) takes on the form:

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

) 2N∏
i, j=1

∞∑
ki j=0

1

ki j !
(

1

2
Bi j t i t j

)ki j
. (31)

Expanding the product and pushing all the summations to the front,

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

) ∞∑
k11=0

∞∑
k12=0

· · ·
∞∑

k2N ,2N=0

2N∏
i, j=1

1

ki j !
(

1

2
Bi j t i t j

)ki j
. (32)

This can be written, using the shorthand notation from the overlap evaluation as

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

) ∑
k∈Z2N×2N

≥0

2N∏
i, j=1

1

ki j !
(

1

2
Bi j t i t j

)ki j
. (33)
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To find the matrix elements of the basis, we apply derivatives to matrix elements of the generating function

[
2N∏
k=1

∂mk

∂t
mk
k

]
h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

) ∑
k∈Z2N×2N

≥0

2N∏
i, j=1

1

ki j !
(

1

2
Bi j t i t j

)ki j

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

) ∑
k∈Z2N×2N

≥0

2N∏
i, j=1

[
1

ki j !
(

1

2
Bi j

)ki j
][

2N∏
k=1

∂mk

∂t
mk
k

]
2N∏

i, j=1

(
t i t j

)ki j
,

(34)

which, similar to the overlap case, becomes:

= h̄2

2m

√
(2π)N

det B

( N∑
i=1

(AA′B−1)i i +
N∑
j=1

∂

∂B j, j+N

−
2N∑

i, j=1

Ci j
∂

∂Bi j
+

2N∑
i, j=1

Di j
∂

∂Bi j

)⎛⎝ 2N∏
p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
. (35)

After distributing the terms, we have

= h̄2

2m

√
(2π)N

det B

⎛
⎝ N∑

i=1

Tr(AA′B−1)

⎡
⎣
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
⎤
⎦

+
N∑
j=1

∂

∂B j, j+N

⎡
⎣
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
⎤
⎦

−
2N∑

i, j=1

Ci j
∂

∂Bi j

⎡
⎣
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
⎤
⎦

+
2N∑

i, j=1

Di j
∂

∂Bi j

⎡
⎣
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j
⎤
⎦
⎞
⎠ (36)

Finally, differentiating, we arrive at our final result:

〈Φ A
m |T |Φ A′

m′ 〉 = h̄2

2m

√
(2π)N

det B

⎛
⎝Tr(AA′B−1)

⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
Bi j

)ki j

+
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

∏2N
i, j=1

1
ki j !
(

1
2 Bi j

)ki j
∏N

j=1
1

k j, j+N !
(

1
2 B

k j, j+N
j, j+N

) (

N∏
j=1

1

(k j, j+N − 1)! (
1

2
)k j, j+N (B j, j+N )k j, j+N−1)

+
⎛
⎝ 2N∑

i, j=1

Di j −
2N∑

i, j=1

Ci j

⎞
⎠
⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

(ki j − 1)!
(

1

2

)ki j
(Bi j )

ki j−1

⎞
⎠ (37)
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5 Potential Energy Matrix Elements

To calculate the matrix elements of the one-body U and two-body potential V we will use the following
expressions

N∑
k=1

U (xk) =
N∑

k=1

∫
U (x)δ(xk − x)dx =

N∑
k=1

∫
U (x)δ(w(k)x − x)dx (38)

where

w(k)x =
N∑
i=1

w
(k)
i xi w

(k)
i = δki (39)

and
N∑
k<l

V (xkl) =
N∑
k<l

∫
V (x)δ(xk − xl − x)dx =

N∑
k<l

∫
V (x)δ(w(kl)x − x)dx (40)

where

w(kl)x =
N∑
i=1

w
(kl)
i xi w

(kl)
i = δki − δli . (41)

These equations show that by calculating the matrix elements of

δ(wx − x) (42)

one can evaluate both the one-body and two-body integrals. The matrix element of δ(wx − x) :

〈GA
t |δ(wx − x)|GA′

t ′ 〉 =
√

c

2π
exp

{
− c

2
(x − wB−1(t + t ′))2

}
〈GA

t |GA′
t ′ 〉 (43)

where

c = 1

wT B−1w
. (44)

This matrix element can be written as

〈GA
t |δ(wx − x)|GA′

t ′ 〉 =
√

c

2π
exp

{
− c

2
x2
}√ (2π)N

det B
×

exp

⎧⎨
⎩1

2

2N∑
i, j=1

B ′
i j t i t j +

2N∑
j=1

xce j t j

⎫⎬
⎭ , (45)

where

e = Bw, w =
[
w
w

]
= [w1 · · · wN w1 · · · wN

]� (46)

and

B ′
i j = Bi j − cei e j . (47)

The potential matrix element can be calculated from

〈Φ A
m |δ(wx − x)|Φ A′

m′ 〉 =
2N∏
k=1

∂mk

∂t
mk
k

〈GA
t |δ(wx − x)|GA′

t ′ 〉
∣∣∣∣∣
t=0,t ′=0

, (48)
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which using the general Leibniz rule, can be written as

〈Φ A
m |δ(wx − x)|Φ A′

m′ 〉 =

=
√

c

2π
exp

{
− c

2
x2
}√ (2π)N

det B

2N∏
k=1

mk∑
nk=0

(
mk

nk

)

× ∂nk

∂t
nk
k

exp

⎧⎨
⎩1

2

2N∑
i, j=1

B ′
i j t i t j

⎫⎬
⎭

∂mk−nk

∂t
mk−nk
k

exp

⎧⎨
⎩

2N∑
j=1

xce j t j

⎫⎬
⎭ . (49)

The derivatives of the first exponent are already calculated in Eq. (18). The derivatives of the second exponent
can be calculated in a similar way, which eventually produces the following expression

〈
Φ A

m

∣∣∣ δ(wx − x)
∣∣∣Φ A′

m′
〉
=
[

2N∏
k=1

∂mk

∂t
mk
k

] 〈
GA

t

∣∣∣ δ(wx − x)
∣∣∣GA′

t′
〉 ∣∣∣∣

t=0

=
√

(2π)N

det B

⎛
⎝ 2N∏

p=1

mp!
⎞
⎠ ∑

k∈Ω(m)

2N∏
i, j=1

1

ki j !
(

1

2
B ′
i j

)ki j
⎛
⎝ 2N∏

p=1

(mp − n p)!
⎞
⎠ ∑

k∈Δ(m−n)

2N∏
j=1

1

k j !
(
xce j

)k j
(50)

where m, n are vectors ∈ Z
n≥0 of n nonnegative integers. Now let Δ(m−n) be the set of n-dimensional vectors

k ∈ Z
n≥0 having nonnegative integer entries such that kp = mp − n p for all p = 1, . . . , 2N , and Ω(m) is

defined as it is in the previous section. This completes the derivation of the potential matrix elements.
To calculate the potential matrix elements one has to integrate∫

V (x)x2nexp
{
− c

2
x2
}
dx . (51)

This can easily be calculated analytically or numerically for many potentials of interest.

6 Numerical Example

To show the usefulness of the matrix elements calculated in this work, we present a simple illustrative example:
the calculation of the energy of few electron atoms in 1D. As the Coulomb potential is singular in 1D, we use
a soft Coulomb potential

U (xi ) = − Z

(a2 + x2
i )

1/2
, V (xi − x j ) = 1

(a1 + (xi − x j )2)1/2 (52)

for the one and two-body potentials, respectively (a = 1 a.u.).
The wave function of the system is approximated as linear combination of ECGs,

Ψ =
∑
i

ciA{Φ Ai
m (x)}, (53)

where A is an antisymmetrizer. The nonlinear parameters, Ai , are optimized with the stochastic variational
method [41]. The energy of the 1D atoms are listed in Table 1. These can serve as reference numbers for test
calculations in 1D.

We have also calculated the electron density

d(x) = 1

N

N∑
i=1

〈Ψ |δ(xi − x)|Ψ 〉, (54)
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Table 1 Ground state energies (in a.u.) of 1D atoms. The spins of the electrons arranged in such a way that (N−1)/2 electrons
are spin up, the rest is spin down

N Energy

2 −2.238
3 −4.028
4 −6.785
5 −9.818
6 −13.313
8 −27.378

0 5 10
x

0.0

0.1

0.2

0.3

0.4

0.5

d(
x)

N=2
N=3
N=4
N=5
N=6
N=8

Fig. 1 Electron density of 1D atoms (in a.u.)

0 5 10
x

0.0

0.1

0.2

c(
x)

N=2
N=3
N=4
N=5
N=6
N=8

Fig. 2 Electron correlation of 1D atoms (in a.u.)

and the electron correlation function

c(x) = 2

N (N − 1)

N∑
i< j

〈Ψ |δ(xi − x j − x)|Ψ 〉. (55)

These functions are symmetric with respect to the origin and shown in Figs. 1 and 2.
The densities are very similar for different atoms, except in the N = 3 case, where it seems that two electrons

remains close to the center and the third electron is pushed outside. The N > 3 correlation functions each have
their maxima nearly the same distance from the center, which can be easily explained with electron repulsion.
The correlation function of the N = 2 and N = 3 atoms have their maxima at the origin (two electrons with
spin up and spin down are distinguishable and can stay close to the center). The N = 3 correlation function
has a second maximum, around the same position as the N = 3 density, showing that the third electron is
pushed away from the center.
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7 Summary

We have presented the matrix elements of general one dimensional ECGs. These analytical matrix elements
can be used in various calculations, for example in 1D cold atom systems. Using these matrix elements, one
can also construct matrix elements of 2D or 3D systems by simple tensor products. These matrix elements can
be especially useful in calculations where the potential is not spherical, for example in systems in magnetic or
electric field. The matrix elements can also be used for spherical system with appropriate angular momentum
couplings.

Acknowledgements Funding was provided by National Science Foundation (Grant No. 1826917).

8 Appendix A

In this appendix we show an example how to generate integers satisfying Eq. (17). First we rewrite Eq. (17) as

k1,p + k2,p + · · · + 2kp,p + · · · + kp,2N = mp (56)

This equation can be written in form of a linear equation by reindexing k1,p, . . ., kp,2N to form a vector, q ,
and defining an S matrix for the the coefficients of q:

2N∑
i=1

qi Sip +
2N+ 2N (2N−1)

2∑
k=2N+1

qk Skp = mp (57)

To illustrate how this can be done we give a N = 2 example showing the equivalence between Eqs. (56) and
(57).
Starting with Eq. (56) for N = 2,

2k1,1 + k1,2 + k1,3 + k1,4 = m1

2k2,2 + k1,2 + k2,3 + k2,4 = m2

2k3,3 + k1,3 + k2,3 + k3,4 = m3

2k4,4 + k1,4 + k2,4 + k3,4 = m4

(58)

Writing out the summations of Eq. (57),

q1S1,1 + q2S2,1 + q3S3,1 + q4S4,1

+q5S5,1 + q6S6,1 + q7S7,1 + q8S8,1 + q9S9,1 + q10S10,1 = m1 (59)

q1S1,2 + q2S2,2 + q3S3,2 + q4S4,2

+q5S5,2 + q6S6,2 + q7S7,2 + q8S8,2 + q9S9,2 + q10S10,2 = m2 (60)

q1S1,3 + q2S2,3 + q3S3,3 + q4S4,3

+q5S5,3 + q6S6,3 + q7S7,3 + q8S8,3 + q9S9,3 + q10S10,3 = m3 (61)

q1S1,4 + q2S2,4 + q3S3,4 + q4S4,4

+q5S5,4 + q6S6,4 + q7S7,4 + q8S8,4 + q9S9,4 + q10S10,4 = m4 (62)

To define a mapping between q and k, let qi = ki,i for i = 1, 2N . This is the diagonal of the matrix k. For
i > 2N , we assign the remaining qi to the elements for which i < j , left to right and top to down (with x
denoting redundant elements due to symmetry):⎛

⎜⎝
q1 q5 q6 q7
x q2 q8 q9
x x q3 q10
x x x q4

⎞
⎟⎠→

⎛
⎜⎝
k11 k12 k13 k14
x k22 k23 k24
x x k33 k34
x x x k44

⎞
⎟⎠ (63)

Note that q is not a matrix, it is only illustrated this way for clarity.
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The selection matrix S contains integer elements of 0, 1, or 2. This will account for (by setting the value of
S equal to 0) the extra terms in Eqs. (59)–(62) that are not in Eq. (58), and account for the coefficient of 2 in
front of some terms.
Rewriting Eq. (58) with this mapping,

2q1 + q5 + q6 + q7 = m1

2q2 + q5 + q8 + q9 = m2

2q3 + q6 + q8 + q10 = m3

2q4 + q7 + q9 + q10 = m4 (64)

The matrix S must then be ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(65)

Once the S matrix is defined, Eq. (57) can be solved for any given set of mp by finding the integers satisfying
the equation.

9 Appendix B

In this appendix we show how to calculate a Gaussian integral used in the derivation of the matrix elements.
Equations similar to this have been published before (see e.g. in Ref. [41]), but here we prove it for a general
complex symmetric matrix.
Let A ∈ C

N×N be a complex-symmetric matrix with positive-definite real part. Then for any Q ∈ C
N×N and

s ∈ C
N

∫
RN

1

2
xT Qx exp

(
−1

2
xT Ax + sT x

)
dx

=
√

2π

det B
exp

(
1

2
sT A−1s

)[
1

2
Tr(QA−1 + 1

2
(A−1s)T Q(A−1s)

]
(66)

Proof As in the preceding proof, pick an invertible matrix V ∈ R
N×N such that D ≡ V T AV is diagonal, and

let R ≡ V T QV and u ≡ V T s. Then by performing a change of variable y = V T x, we can write

I ≡
∫
RN

1

2
xT Qx exp

(
−1

2
xT Ax + sT x

)
dx

=
∫
RN

1

2
xT Qx exp

(
−1

2
xT V−T DV−1x + sT x

)
dx

=
∫
RN

1

2
yT V T QV y exp

(
−1

2
yT Dy + sT V y

)
det Vdy

= det V

2

∫
RN

yT Ry exp

(
−1

2
yT Ry + uT y

)
dy
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= det V

2

∫
RN

N∑
j,k=1

R jk y j yk exp

(
1

2

N∑
l=1

dl y
2
l +

N∑
l=1

ul yl

)
dy

= det V

2

N∑
j,k=1

R jk

∫
RN

y j yk

N∏
l=1

exp

(
−1

2
dl y

2
l + ul yl

)
dy (67)

At this point, we consider separately the j = k and j �= k terms. When j = k, we want to evaluate the integral

I j ≡
∫
RN

y2
j

N∏
l=1

exp

(
−1

2
dl y

2
l + ul yl

)
dy (68)

Observe that each term with l �= j contributes a factor of

∞∫
−∞

exp

(
−1

2
dl y

2
l + ul yl

)
dyl =

√
2π

dl
exp

(
u2
l

2dl

)
(69)

while the l = j term contributes a factor of

∞∫
−∞

exp

(
−1

2
d j y

2
j + u j y j

)
dy j =

(
d j + u2

j

d2
j

)√
2π

d j
exp

(
u2
j

2d j

)
(70)

multiplying these factors gives the result

I j =
(
d j + u2

j

d2
j

)
N∏
l=1

√
2π

dl
exp

(
u2
j

2d j

)
=
(
d j + u2

j

d2
j

)√
(2π)N

det D
exp

(
1

2
sT A−1s

)
(71)

When j �= k we want to evaluate the integral

I jk ≡
∫
RN

y j yk

N∏
l=1

exp

(
−1

2
dl y

2
l + ul yl

)
dy (72)

Again, each term with l �= j, k, contributes a factor of
√

2π
dl

exp

(
u2
l

2dl

)
, while the l = j, k terms contribute a

factor of
∞∫

−∞
y j exp

(
−1

2
d j y

2
j + u j y j

)
dy j = (

u j

d j
)

√
2π

d j
exp

(
u2
j

2d j

)
(73)

Multiplying these factors gives the result

I jk =
(
u juk
d jdk

) N∏
l=1

√
2π

2dl
exp

(
u2
j

2d j

)
=
(
u juk
d jdk

)√
(2π)N

det D
exp

(
1

2
sT A−1s

)
(74)
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Returning to the integral, we have

I = det V

2

[ N∑
j=1

R j j I j +
N∑
j �=k

R jk I jk
]

= det V

2

√
(2π)N

det D
exp

(
1

2
sT A−1s

)[ N∑
j=1

R j j
d j + u2

j

d2
j

+
N∑
j �=k

R jk
u j uk
d jdk

]

= 1

2

√
(2π)N

det
(
V−T DV−1

) exp

(
1

2
sT A−1s

)[ N∑
j=1

R j j

d j
+

N∑
j,k=1

R jk
u juk
d jdk

=
√

(2π)N

det D
exp

(
1

2
sT A−1s

)[1

2
Tr(RD−1) + 1

2
uT D−T T D−1u

]

=
√

(2π)N

det D
exp

(
1

2
sT A−1s

)[1

2
Tr((V T QV )(V T AV )−1)

+1

2
uT (V T AV )−T (V T QV )(V T AV )−1u

]

=
√

(2π)N

det D
exp

(
1

2
sT A−1s

)[1

2
Tr(QA−1) + 1

2
(A−1s)T Q(A−1s)

]
, (75)

which is the desired result. �
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10. T. Sowiński, M.Á. García-March, Rep. Prog. Phys 82(10), 104401 (2019). https://doi.org/10.1088/1361-6633/ab3a80
11. J. von Stecher, C.H. Greene, D. Blume, Phys. Rev. A 77, 043619 (2008). https://doi.org/10.1103/PhysRevA.77.043619
12. D. Rakshit, K.M. Daily, D. Blume, Phys. Rev. A 85, 033634 (2012). https://doi.org/10.1103/PhysRevA.85.033634
13. Y. Ding, C.H. Greene, Phys. Rev. A 95, 053602 (2017). https://doi.org/10.1103/PhysRevA.95.053602
14. Y. Yan, D. Blume, Phys. Rev. A 91, 043607 (2015). https://doi.org/10.1103/PhysRevA.91.043607
15. S.F. Boys, Proc. R. Soc. Lond. Ser. A 258, 402–411 (1960). https://doi.org/10.1098/rspa.1960.0195
16. K. Singer, Proc. R. Soc. Lond. Ser. A 258, 412–420 (1960). https://doi.org/10.1098/rspa.1960.0196
17. W. Kołos, L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963). https://doi.org/10.1103/RevModPhys.35.473
18. G.W.F. Drake, R.A. Swainson, Phys. Rev. A 44, 5448 (1991). https://doi.org/10.1103/PhysRevA.44.5448
19. Z. Yan, G.W.F. Drake, J. Phys. B 30, 4723 (1997). https://doi.org/10.1088/0953-4075/30/21/012
20. V.I. Korobov, Phys. Rev. A 61, 064503 (2000)
21. H. Nakatsuji, H. Nakashima, Y. Kurokawa, A. Ishikawa, Phys. Rev. Lett. 99, 240402 (2007). https://doi.org/10.1103/

PhysRevLett.99.240402
22. G.G. Ryzhikh, J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)
23. S. Bubin, K. Varga, Phys. Rev. A 84, 012509 (2011). https://doi.org/10.1103/PhysRevA.84.012509
24. S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)
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