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Abstract Differential cross sections for elastic nucleon–deuteron scattering at intermediate energies are calcu-
lated by solving the Faddeev equation in coordinate space using interaction models consisting of a two-nucleon
potential and three-nucleon potentials based on the exchange of two pions among three nucleons. Attractive
effects of the pion-exchange at medium range region in the three-nucleon potential are taken into account by
using a larger cutoff mass parameter and by adding phenomenological repulsive three-nucleon potentials as a
counterpart. It is shown that these effects increase the cross sections at backward angles, which tends to reduce
discrepancies between theoretical calculations and experimental data.

1 Introduction

In a conventional picture, where atomic nuclei are considered as non-relativistic quantum systems of nucleons,
the Hamiltonian of three-nucleon (3N) systems contains two- and three-nucleon potentials. It is widely known
that realistic two-nucleon potentials (2NPs) made to reproduce nucleon–nucleon observables underbind 3N
bound states, 3H and 3He, by about 1 MeV, and that an additional attraction can be obtained by introducing
a three-nucleon potential (3NP) based on an exchange process of two pions among three nucleons (2πE) as
shown in Fig. 1 [1–7]. Since the 2πE process is considered to be a long-range part in 3NPs and our knowledge
of 3NPs at shorter range is still incomplete, combinations of a 2NP and a 2πE-3NP have been often used in
few-nucleon calculations.

In spite of various successful effects of the 2πE-3NP on 3N observables, there are still unsolved dis-
crepancies between experimental data and theoretical calculations. A typical example of these, which will be
discussed in the present paper, is the differential cross section for elastic nucleon–deuteron (N–d) scattering.
It has peaks at forward and backward angles along with a minimum at θ ≈ 120◦, where θ is the scattering
angle in the center of mass system. Calculations with 2NPs underpredict the cross section at this minimum
region. The introduction of the 2πE-3NP increases the cross section successfully, e.g., for E = 65 MeV as
shown in Ref. [8], where E denotes the incident energy in the laboratory system divided by the mass number
of the incident particle. However, as the energy increases, say E > 100 MeV, 2πE-3NP effects on the N–d
cross sections at the minimum region are not enough to explain experimental data. Relativistic effects on the
differential cross section were studied, but found to be small [9].

Here, it is remarked that the 2πE-3NP produces a strong attraction in the 3N bound states, and thus its
contribution at medium and short-range is suppressed to reproduce the 3N binding energy. In this paper, paying
attention to this suppression, which could hide an important role of pions at a medium range, I will study effects
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of 2πE-3NP at shorter range region by introducing a repulsive 3NP phenomenologically to reproduce the 3N
binding energies.

In Sect. 2, three-nucleon calculations and three-nucleon potential models will be described. In Sect. 3,
calculations of the N–d elastic cross section will be presented, and effects of the cutoff of 2πE-3NP will be
discussed. Summary will be given in Sect. 4.

2 Calculations and Models

2.1 Three-Nucleon Faddeev Calculations

Three-body calculations in the present paper are performed by solving the Faddeev equations [10] as integral
equations in coordinate space using a method developed in Refs. [11–15]. Here, I summarize some character-
istics of the calculations.

– Faddeev equations are solved by an iterative method called the method of continued fraction (MCF) [11,12].
A basic procedure of the algorithm in the MCF is to operate the integral kernel to a function made in a
preceding step, as are those in most iterative methods.

– Faddeev components are expanded by a complete set of the spectator particle with respect to relative
momenta of the spectator to the interacting pair. In this representation, numerical computations of the
integral kernels of the Faddeev equations are performed by solving ordinary differential equations and
performing numerical integrations, both of which are well under control [14].

– For systems of charged particles, 3He and p–d scattering in this paper, the Faddeev equation is modified to
accommodate the long-range Coulomb interactions, in which the spectator function becomes the Coulomb
wave function [13,15]. This method was successfully applied to systems of three charged particles, such
as three α-particles [16].

– 3N partial wave states for which 2NPs and 3NPs act, are restricted to those with total two-nucleon angular
momenta j ≤ 6 for bound state calculations, and j ≤ 5 for scattering state calculations. For scattering
state calculations, 3N partial wave states with the total 3N angular momentum J ≤ 27/2 are taken into
account, while 3NPs are switched on for 3N states with J ≤ 13/2.

2.2 Two-Pion Exchange Three-Nucleon Potential

A component of the 2πE-3NP described by the diagram, Fig. 1, is expressed in the coordinate space repre-
sentation as

V (3:1,2)(r13, r23) =
∫

dq1dq2e
−ıq1·r13−ıq2·r23 V̂ (3:1,2)(q1,q2), (1)

where qi (i = 1, 2) is defined in Fig. 1 and ri3 = ri −r3. The momentum space representation V̂ (3:1,2)(q1,q2)
is given by

V̂ (3:1,2)(q1,q2) = 1

(2π)6

(
gA

2 fπ

)2 F(q2
1)

q2
1 + m2

π

F(q2
2)

q2
2 + m2

π

(σ 1 · q1)(σ 2 · q2)

×
[
(τ 1 · τ 2){a + b(q1 · q2)} + (ıτ 3 · τ 1 × τ 2)(ıσ 3 · q1 × q2)d

]
, (2)

where mπ is the pion mass, and F(q2) is a form factor, which will be explained below. The coefficients, a, b,
and d , which characterize the 2πE-3NP, are extracted from pion-nucleon scattering amplitudes.

In this paper, I will use a newer version of the Brazil 2πE-3NP, BR-O(q4) in Ref. [7] (BR07), whose
coefficients are (a, b, d) = (

0.981m−1
π , −2.617m−3

π , −0.854m−3
π

)
.

The use of the form factor F(q2) in Eq. (2) is a conventional procedure to suppress the short-range
contributions of the 2πE-3NP. A typical functional form of the form factor is the dipole form:

F(q2) =
(

Λ2 − m2
π

Λ2 + q2

)2

, (3)
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Fig. 1 (Color online) Diagram that shows a component of the 2πE-3NP. Total 2πE-3NP is the sum of cyclic permutations of this
diagram

Table 1 Empirical and calculated values of the 3N binding energies and strength parameters of additional 3NPs for models used
in this paper. See the text for the description of the models

Model VC VT VSO BE(3H) BE(3He)
(MeV) (MeV) (MeV) (MeV) (MeV)

Empirical 8.482 7.718
AV18 7.626 6.928
+BR660 8.492 7.763
+BR1000 12.789 11.91
+BR(C)1000 139 8.456 7.727
+BR(CTSO)1000 122 −140 −8 8.439 7.715
+BR0.87 8.441 7.718
+BR(C)0.5 159 8.443 7.726

where Λ is a cutoff mass parameter. Calculations with the BR07-3NP adapting the dipole form factor, Eq. (3),
with the cutoff parameter Λ will be denoted as BRΛ.

In the present paper, I will use the Argonne V18 (AV18) 2NP model [17]. Calculated 3N binding energies
for the AV18 are shown in Table 1, which indicates the AV18 calculation underbinds the 3N bound states by
about 0.8 MeV. When the BR07-3NP is combined with the AV18-2NP, the cutoff parameter Λ determined to
reproduce the 3N binding energies is Λ = 660 MeV (BR660) (see Table 1 for numerical values).

The value of Λ determined to reproduce the 3N binding energy is quite small compared with ones used in
one-boson exchange 2NP models, such as the CD-Bonn potential [18], which are larger than 1000 MeV. This
indicates that some medium range contributions in 2πE-3NP may be reduced.

When the cutoff mass Λ larger than 660 MeV is used, calculated 3N binding energies for AV18 + BRΛ

are too large (e.g., see Table 1 for AV18 + BR1000). In order to reproduce the 3N binding energies, I introduce
a spin-independent repulsive Gaussian 3NP [19], which will be denoted as C-3NP:

WC = VC

∑
cyclic

e
−

(
rik
rC

)2−
( r jk

rC

)2

, (4)

where ri j is the relative distance between nucleons i and j , rC the range parameter, and VC the strength
parameter. With fixing rC = 1.0 fm, fitted values of VC for Λ = 1000 MeV are shown as BR(C)1000 in Table 1.

3 Results and Discussion

3.1 Nd Cross Section at Backward Angles

In Fig. 2, AV18, AV18+BR660, and AV18+BR(C)1000 calculations of differential cross section for elastic
proton-deuteron (p–d) scattering at E = 70 MeV and E = 170 MeV are compared with experimental data
[20,21]. The figures demonstrate that the deviation between the AV18 calculation and the data, especially for
the minimum region, 90◦ < θ < 150◦, is well reduced by introducing the BR600 for E = 70 MeV, but is
not for E = 170 MeV. The introduction of the BR(C)1000 gives almost the same effect on the cross section
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(a) (b)

Fig. 2 (Color online) The p–d cross sections at E = 70 MeV (a) and E = 170 MeV (b). Dotted (black), dashed (red), and full
(green) curves denote the AV18, AV18+BR660, and AV18 +BR(C)1000 calculations, respectively. Data are taken from Ref. [20]
for E = 70 MeV, and from Ref. [21] for E = 170 MeV

as BR600 at E = 70 MeV, while increases the cross section at backward angles larger than BR600 to give a
reasonable agreement with the data at E = 170 MeV.

To see the situation more clearly and comprehensively, relative differences between some of available
experimental data for E = 65 MeV to E = 250 MeV [20–26] and calculations are shown in Fig. 3, where
solid circles connected by dotted lines (black) show AV18 calculations, the empty squares connected by
dashed lines (red) do AV18+BR660 calculations, and the solid diamonds connected by full lines (green) do
AV18+BR(C)1000 calculations. Furthermore, energy dependence of the relative differences at θ = 30◦, 120◦,
140◦, and 165◦ are plotted in Fig. 4. In the figures, experimental data at the corresponding angles are interpolated
from the available data points for p–d scattering [20–29] and for neutron-deuteron (n–d) scattering [30–33].

As shown in these figures, the AV18 calculations underestimate the cross section at backward angles,
roughly for θ larger than 100◦, and the introduction of the 2πE-3NP increases the backward cross sections.
For lower energies, at least E < 100 MeV, the introduction works successfully for both of BR660 and BR(C)1000.
For higher energies, while the effects of BR660 at backward angles are not enough to explain the experimental
data, that of BR(C)1000 works well in general.

Fig. 5 shows a comparison between the AV18 + BR(C)1000 calculation and the AV18 + BR1000 calculation
at E = 170 MeV. It is remarked that the latter is much larger than the former and the experimental data. This
indicates that the increase of the cross sections at backward angles is mainly caused by the use of a large
cutoff mass value, from which pion contributions at shorter range are taken into account, while the short-range
repulsive 3NP plays a role to decrease the cross sections.

3.2 Another Cutoff Procedure

Since the use of the dipole form factor is not unique way to cut off a short-range part of interactions, I will
examine other methods: one used in recent the chiral effective field theory (χEFT) [34–36], and one used in
the Urbana (UR) [37] and Illinois (IL) 3NP models [38].

In recent calculations of few- and many-nuclear systems [34–36], 2NPs based on χEFT are provided in
the coordinate space representation with multiplying a damping function (called as regulator) fR(r), where
R is a parameter representing the range of cutoff. The cutoff procedure used in constructing the 2NP is also
applied to 3NP as follows: First, a bare 3NP V (3:1,2)

0 (r1, r2) is introduced by Eq. (1) with setting F(q2) = 1
in Eq. (2). Then, the bare potential in the coordinate space is multiplied by the regulator function fR(r) as

V (3:1,2)
R (r1, r2) = V (3:1,2)

0 (r1, r2) fR(r1) fR(r2). (5)

In the present work, a bare 2πE-3NP is made with the coefficients (a, b, d) of the BR07 model, and then
a functional form of the regulator used in Refs. [34,35],

fR(r) =
[

1 − exp

(
− r2

R2

)]6

, (6)

is applied. (It turns out that the use of different form of the regulator, e.g. one used in Ref. [36], leads to
the same conclusion as follows.) The range parameter that is decided to reproduce the 3N binding energy is
R = 0.87 fm. This 3NP will be denoted by BR0.87. Range of this regulator may be characterized by a r0.5
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Fig. 3 (Color online) Relative difference between experimental data and calculations of the p–d cross section. In each figure,
solid circles connected by dotted lines (black) denotes for AV18, empty circles connected by dashed lines (red) for AV18+BR660,
and solid diamonds connected by full lines (green) for AV18+BR(C)1000. Experimental data are from Refs. [22] for a; [20] for
b; [21] for c, d, e, h, j, and k; [23] for f ; [24] for g; [25] for i; and [26] for l

that satisfies, fR(r0.5) = 0.5, which becomes r0.5 ≈ 1.5R. In this case, r0.5 ≈ 1.3 fm, which indicates rather
long-range character of the regulator.

As in the case of the dipole form factor, I will introduce the repulsive C-3NP with taking a smaller value
of R = 0.5 fm. The strength parameter of the C-3NP is determined reproduce the 3N binding energies, which
are shown as BR(C)0.5 in Table 1.

The UR-3NP [37] and the IL-3NP [38] are often used in few-nucleon calculations with the AV18-2NP. The
UR-3NP consists of a long-rang attractive part originating from the Δ-mediated 2πE-3NP [b- and d-terms in
Eq. (2)] and a shorter range repulsive part. The IL-3NP adds some other 3NP components including a-term in
Eq. (2). The cutoff procedure of the long-range parts in UR- and IL-3NPs uses a cutoff function

ξ(r) = 1 − e−2.1r2
, (7)

but is not the same as in χEFT. Details are described in Ref. [38].
The short-range parts of the UR-3NP and IL-3NP are as follows:

V R = U0

∑
cyclic

T 2 (
mπri j

)
T 2 (

mπr jk
)
, (8)
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Fig. 4 (Color online) Energy dependence of the relative difference between experimental data and calculations of the p–d and
n–d cross section at fixed angles, θ = 30◦, 120◦, 140◦, and 165◦. The meaning of symbols connected by lines is same as Fig. 3.
Experimental data are [22] for E = 65 MeV; [20] for E = 70 MeV; [27] for E = 90 MeV; [30,31] for E = 95 MeV; [21] for
E = 108 MeV, 120 MeV, 135 MeV, 150 MeV, 170 MeV, and 190 MeV; [23] for E = 135 MeV; [24] for E = 135 MeV; [32] for
E = 135 MeV, 150 MeV, 160 MeV, 170 MeV, 180 MeV, 190 MeV, 200 MeV, 210 MeV, 220 MeV, 230 MeV, 240 MeV, and 250
MeV; [25] for E = 155 MeV; [29] for E = 146 MeV, 180 MeV, and 216.5 MeV; [26,33] for E = 250 MeV

Fig. 5 (Color online) The relative difference between experimental data [21] and calculations of the p–d cross section at E = 170
MeV. Solid circles (black) are for AV18, solid diamonds (green) for AV18+BR(C)1000, and solid triangles (blue) for AV18+BR1000

where T (x) is the normal tensor function,

T (x) =
(

1 + 3

x
+ 3

x2

)
ξ2(r). (9)

I take the bare BR07-3NP following the same cutoff procedure as in Ref. [38], and combine it with the
short-range 3NP, Eq. (8) by taking the strength parameterU0 as a fitting parameter to reproduce the 3N binding
energies. Thus determined parameter is U0 = 0.022 MeV, BR(UR-R).

In Fig. 6, the relative difference between experimental data and calculations of p–d scattering at E =
170 MeV are shown for AV18+BR0.87, AV18+BR(C)0.5, and AV18+BR(UR-R) calculations. This figure
shows a similarity between the AV18+BR0.87 and the AV18+BR660 calculations. Also, the AV18+BR(C)0.5
and AV18+BR(UR-R) calculations almost resolve the difference between the data and calculations as the
AV18+BR(C)1000 calculations. These indicate that the regulator function FR=0.5(r) and the cutoff function
ξ(r) play a similar role as the form factor with Λ = 1000 MeV in the 2πE-3NP.

In Fig. 7, the functions FR=0.87(r), FR=0.5(r), and ξ(r) are compared. The difference between FR=0.5(r)
and FR=0.87(r), as well as that of ξ(r) and FR=0.87(r) demonstrate that the increase of the N–d cross sections
at minimum and backward angle regions is caused by effects of the pion-exchange around r = 1 fm.
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Fig. 6 (Color online) The relative difference between experimental data [21] and calculations of the p–d cross section at E = 170
MeV. Solid circles connected by dotted line (black) are for AV18, empty squares connected by dashed lines (red) for AV18+BR0.87,
solid diamonds connected by full lines (green) for AV18+BR(C)0.5, and solid triangles connected by dotted line (blue) for
AV18+BR(UR-R)

Fig. 7 (Color online) Dashed (red), full (green), and dotted (blue) curves denote the regulator functions FR=0.87(r), FR=0.5(r),
and the cutoff function ξ(r), respectively

3.3 Spin-Dependent Repulsive 3NP

Next, I will consider a possible spin-dependence in the short-range 3NP. In Fig. 8, deuteron vector analyzing
power iT11(θ), and deuteron tensor analyzing powers, T20(θ), T21(θ), and T22(θ), in p–d scattering at E = 3.0
MeV, just below the 3N breakup threshold, are shown. As these figures show, the AV18 calculations deviate
from the experimental data [39] for iT11(θ), T21(θ), and T22(θ). The introduction of the BR660-3NP improves
T22(θ) well and iT11(θ) partially. However, it fails in reproducing the data of T21(θ) by giving worse agreement
between the measured and the calculated as noted in Ref. [19].

In Ref. [40], the following forms of tensor (T)- and spin-orbit (SO)-3NPs, (the latter one was introduced
originally in Ref. [41],) in addition to the C-3NP were introduced to explain p–d polarization observables:

WT = VT

∑
cyclic

e
−

(
rik
rT

)2−
( r jk

rT

)2

ST(i j)P̂11(i j),

WSO = VSO e−αSOρ
∑
i< j

Li j · (Si + S j )P̂11(i j), (10)

where ST(i j) is the tensor operator acting between nucleon pair (i, j), P̂11(i j) the projection operator to the

spin- and isospin triplet state of the (i, j) pair, ρ =
√

2
3 (r2

12 + r2
23 + r2

31), Li j relative angular momentum
between nucleon the (i, j) pair, and Si spin operator of the nucleon i . It is remarked that very similar forms to
Eq. (10) are reported to appear as contact 3NPs at N4LO in χEFT [42].

In the present work, the range parameter rT is taken to be 1.0 fm and αSO to be 1.5 fm−1 as in Ref. [40].
The C-, T-, and SO-3NPs are used combined with AV18+BRΛ, which will be denoted as AV18+BR(CTSO)Λ.
The strength parameters, VC, VT, and VSO, which are determined to reproduce the 3He binding energy; iT11(θ)
and T21(θ) in p–d scattering at E = 3.0 MeV, for Λ = 800 MeV and 1000 MeV, are shown in Table 11, and

1 The strength parameter VT quoted in Refs. [15,40] was incorrect due to an error in the numerical code to calculate the T-3NP.
The number is revised in this paper, and revised calculations remain almost the same as those in Refs. [15,40].
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(a) (b)
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Fig. 8 (Color online) Polarization observables, iT11(θ) and T2κ (θ)(κ = 0, 1, 2) in p–d scattering at E = 3.0 MeV. Dot-
ted (black) curves denote the AV18 calculations, dashed (red) curves the AV18+BR660 calculations, and solid (green) the
AV18+BR(CTSO)1000 calculations. Experimental data are taken from [39]

(a) (b) (c)

Fig. 9 (Color online) The relative difference between experimental data and calculations of the p–d cross section for E = 3 MeV
(a), 70 MeV (b), and 135 MeV (c). Solid circles (black) connected by dotted lines show AV18 calculations, solid diamonds (green)
connected by full lines AV18+BR(C)1000 calculations, and empty triangles (red) connected by dashed lines AV18+BR(CTSO)1000
calculations. Experimental data are taken from Ref. [43] for E = 3 MeV, and from Refs. [20,23] for E = 70 MeV and E = 135
MeV

the polarization observables of AV18+BR(CTSO)1000 calculations are shown in Fig. 8. It is remarked that the
strength of the C-3NP is reduced by introducing the T- and SO-3NPs, which means that these components
give a repulsive effect in 3N bound states. Actually, the T-3NP contributes to the repulsive energy by about
0.14 MeV, and the SO-3NP does 0.02 MeV in the 3N bound states.

In Fig. 9, the relative differences between experimental data [20,23,43] and AV18+BR(C)1000 and
AV18+BR(CTSO)1000 calculations for the p–d cross sections. Although the spin-dependent 3NPs give some
variations in the θ -dependence of the ratios, they are not so large. Thus, it is still essential to use a large cutoff
mass in the increasing of the cross section.

In Figs. 10 and 11 , the polarization observables in p-d scattering for AV18, AV18+BR660, and
AV18+BR(CTSO)1000 at E = 70 MeV and 135 MeV, respectively, are shown with experimental data [20,44].
It turns out that the present spin-dependent 3NPs are still effective in reproducing at E = 70 MeV, especially
for T22(θ), but are not enough to reproduce the polarization observables at this energy, which suggests further
studies about spin-dependence of 3NPs.

3.4 Short-Range Repulsive 3NP

Recently, the necessity of a short-range repulsive 3NP has been proposed [45–48] in connection with the
stiffness of the neutron-star matter and also with the cross section for nucleus-nucleus scattering. In Ref. [45],
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Fig. 10 (Color online) Polarization observables, iT11(θ) and T2κ (θ)(κ = 0, 1, 2) in p–d scattering at E = 70 MeV. Curves are
the same as Fig. 8. Experimental data are taken from Ref. [20]

(a) (b)

(c) (d)

Fig. 11 (Color online) Polarization observables, iT11(θ) and T2κ (θ)(κ = 0, 1, 2) in p–d scattering at E = 135 MeV. Curves are
the same as Fig. 8. Circles (blue) are experimental data from Ref. [20] and solid squares from Ref. [44]

a three-baryon repulsive interaction from a viewpoint of the quark confinement mechanism described in a
string-junction model was proposed, which has the same form as Eq. (4) but with rC = 0.45 fm or 0.5 fm
and VC = 2000 MeV. In Refs. [47,48], a multi-Pomeron exchange potential was introduced, which leads to a
triple-pomeron exchange 3NP of the form that

VMPP = VPe
−ρ2/a2

P , (11)

where strength parameter VP and range parameter aP are given as functions of the mass of the Pomeron,
coupling constants, etc. Calculations with these repulsive 3NPs show that they produce repulsive effects at
most by about 0.4 MeV in the 3N bound states. These values are smaller than those obtained above, and with
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the BRΛ-3NP, the 3N binding energies are reproduced for Λ ≈ 720 MeV. As a result, the increase of the p–d
cross section with these models is not so large.

4 Summary

In summary, nuclear interaction models consisting of the AV18-2NP, the BR-2πE-3NP, and phenomenological
short-range 3NPs adjusted to the empirical 3N binding energies equally, are presented. Different ways of the
cutoff procedure in the 2πE-3NP have been examined by fixing the calculated 3N binding energies. It is found
that the use of a large cutoff mass or short-range cutoff increases the N–d elastic cross section at minimum
and backward angle regions, which tends to improve consistency between calculations and experimental data.
Although there is some uncertainty for the spin-dependence of short-range 3NPs to improve polarization
observables, the present work demonstrates the importance of the medium range contribution in the 2πE-3NP
in studying few-nucleon systems.
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