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Abstract A method proposed to assign the symmetry character of the rovibrational spectrum of trimers
has been applied to the case of H+

3 . This system, much lighter than previously investigated rare gas three
body molecules such as Ar3 or Ne3, constitutes a challenging example to test the possible limitations of
this approach. Calculation of the corresponding rovibrational spectra for J = 1 and rotational constants and
the corresponding comparison with results from hyperspherical coordinates methods reveals that distorsion
Coriolis coupling terms, not accounted for in the original method, play a significant role for some specific
symmetry representations.

1 Introduction

An approximative method based in the use of distributed Gaussian functions (DGF) to describe the interparticle
distances was proposed some time ago to characterize the symmetry of the rovibrational spectrum of trimers
[1]. Besides the original application to the Ar3 system [1,2], a recent investigation shows the capabilities of the
method for some other examples such as Ne3 [3]. In this work we extend the study for a much more demanding
system, H+

3 , for which the lighter mass in comparison with those rare gas trimers is expected to play some
role in the structure of the rovibrational levels. Protonated hydrogen is one of the most important species in
Astrophysics [4–6] and many investigations have been focussed on its rotation–vibration spectrum [7–11]. The
absence of low energy stable excited electronic states and a permanent dipolar moment due to the equilateral
triangle minimum energy geometry makes that the trimer has not allowed rotational transitions. Since the ν1
vibrational stretching mode is totally symmetric, the only nonzero transition dipole moment corresponds to
the other mode ν2 associated with a doubly degenerated bending–stretching movement. The only possible
experimental detection consists then in the vibration–rotation infrared spectrum produced by changes in the
quantum number v2 for such ν2 vibration.

A detailed description of the H+
3 spectrum is out of the scope of this work, where we will instead test

the capabilities of the above mentioned DGF approach to assign the symmetry character to the rovibrational
energy levels. We will also perform calculations by means of the same hyperspherical coordinate (HC) method
employed in our previous investigation on Ar3 [2] for a proper comparison of the corresponding J > 0 states.
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2 Theory

A modified version of the method proposed in Refs. [1,2] has been employed here for the study of the
rovibrational spectrum of H+

3 . We suggest the interested reader to consult those references for the general
theory and we will restrict here to highlight the novel details with respect to the originally reported approach.
The overall strategy consists on separating the total Hamiltonian in the sum of the vibrational and rotational
components: Htot = Hvib + Hrot. The vibrational Hamiltonian for the present case of homonuclear trimers,
after transformations of the total wave function [12,13], is expressed in terms of the interparticle distances as:

Hvib =
3∑

i=1

[
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mi being the mass of each atom and U (R) the potential energy operator. On the other hand, the Ti jk operator,
with i �= j �= k, of Eq. (1), contains all crossed kinetic terms as follows:

Ti jk = R2
j + R2

k − R2
i

2R j Rk

(
∂2

∂R j∂Rk
− 1

2R j

∂

∂Rk
− 1

2Rk

∂

∂R j
+ 1

4R j Rk

)
(2)

For the rotational Hamiltonian the general case of an asymmetric top [14–16] is chosen:

Hrot = 1

2
(A + C)J2 + 1

2
(A − C)

(
J 2
A + κ J 2

B − J 2
C

)
(3)

where κ = (2B− A−C)/(A−C) is Ray’s asymmetry parameter [17] and A, B andC are rotational constants.
This Htot is solved by means of a total basis set constructed by means of the eigenstates of the vibrational

J = 0 case and standard rotational basis functions in terms of J and its projections on the z axis of the
body-fixed (Ω) and space-fixed (M) frames, | k; JMΩ〉. In order to describe the vibrational eigenstates we
initially construct a basis set by means of the product of ϕp(Ri ) Gaussian functions for each coordinate Ri
with center at the value Rp as:

G123
l1l2l3(R) = ϕl1(R1)ϕl2(R2)ϕl3(R3). (4)

Total symmetry of homonuclear three-particle systems corresponds to the D3h group, but in order to define
symmetry-adapted basis sets for the J = 0 case, we choose the permutation operators of the C3v symmetry
group: E , P12, P23, P13, P123, and P−1

123. Their action on the functions from Eq. (4) (see Table 1) leads to:

φ j (R) = 1√
6

{
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(R)
] }

(5)

After using the character table [14] for the C3v symmetry group for χ(E), χ(C3) and χ(σv), Eq. (5) leads to
the following expressions for each irreducible representation:

φ
A1
j (R) = 1√

6
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(6)

φ
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Table 1 Action of the symmetry operations of the C3v group (in the first column) on the vibrational functions of Eq. (4) (G123

in second column) and the rotational functions (DJ
MΩ in third column) of Eq. (9)

O O G123 O DJ
MΩ

E G123 DJ∗
MΩP12 G213 DJ∗
M−Ω

P23 G132 (−1)J−Ω DJ∗
M−Ω

P13 G321 (−1)J−Ω DJ∗
M−Ω

P123 G231 DJ∗
MΩ

P−1
123 G312 DJ∗

MΩ

The symmetry of the total wave function for the bound states is assumed to be the result of the product
Γ = Γ Ω�

vib ×Γrot between the symmetry for a strictly rotational part, Γrot, and a rovibrational part, Γ Ω�
vib , where

� refers to the vibrational angular momentum number [14].
The rotational functions expressed as a linear combination of rotation Wigner matrices:

DJ
MΩ(α, β, γ ) = AJ

MΩDJ∗
MΩ(α, β, γ ) + BJ

MΩDJ∗
M−Ω(α, β, γ ) (9)

where Ω ≥ 0 and the Euler angles α, β, γ relate main inertia axis with the SF system, can also be symmetry
adapted by means of the permutation operators in Table 1. The possible values of the coefficients of Eq. (9)
becomes: (i) AJ

MΩ = χ(E) + 2χ(C3) and BJ
MΩ = 3(−1)J−Ωχ(σv) if Ω �= 0 and (ii) AJ

MΩ = χ(E) +
2χ(C3)+3(−1)Jχ(σv) and BJ

MΩ = 0 if Ω = 0. As discussed in Ref. [1], these expressions are used to design
a recipe to assign the symmetry to the rovibrational spectrum. If Ω = 0, Γrot is equal to A1 (A2) for even (odd)
values of J , and can be either A1 or A2 for Ω �= 0. On the other hand, for the rovibrational part, a simple rule
in terms of the number η, defined as η = | ±2� − Ω |, with �, Ω ≥ 0, consists on: (i) Γ Ω�

vib = A1 for η = 0;
(ii) Γ Ω�

vib = A1, A2 for η multiple of 3; and (iii) Γ Ω�
vib = E if η is not multiple of 3. Finally, given that the

symmetry operations employed to adapt the basis function do not correspond to D3h but the C3v group, we
distinguish the ′ or ′′ character of the total symmetry Γ depending on whether Ω is even or odd, respectively.

The diagonalization in separate blocks corresponding to the A1, A2 and E representations allows a better
and faster description of the different rovibrational levels, using a larger number of DGF basis in Eq. (4) for
each symmetry group. In particular, for the present case of H+

3 , a set of 45 DGFs with equally spaced centers
from 0.31 Å with intervals of 0.04 Å were employed. A total number of 11,465; 9801 and 42,442 φ j functions
were generated according with Eqs. (6)–(8) for the A1, A2 and E representations, respectively. Each radial
basis function of Eq. (4) defines a triangle with values for each side given by the center of the DGF employed
in each Ri coordinate. Rotational constants are calculated in the reference system of main inertia axis with the
z axis perpendicular to the molecule plane. As in previous applications of the method [1,2] the integration in
the Ri coordinates in all Hamiltonian matrix elements between these basis functions was solved by invoking a
mean-value like approach with the corresponding DGF centers. Since it is not a good quantum number the Hrot
matrix contains non-diagonal term connecting Ω and Ω ± 2 values. In this study we have used the potential
energy surface by Aguado et al. [18].

3 Results

The first step is to solve the J = 0 vibrational problem. The results of the DGF calculation for the A′
1, E ′

and A′
2 are shown in Table 2, where energy levels reported in Ref. [18] are also included for comparison. The

differences between the energies obtained with the two methods, EHC and EDGF, remain below the ≈ 4 cm−1

cases, thus yielding an error always smaller than 0.03%. The comparison with the HC results also allows the
correspondence of the � number to the different vΓ states in the DGF spectrum, a requirement for the symmetry
assignment discussed in the previous section for the rovibrational spectrum for the J > 0 cases.

Rotational constants have been calculated for the first states of the A1 and E representations by means of
the DGF approach. The corresponding values in cm−1 are shown in Table 3 besides those from the ab initio
calculation by Carney and Porter [7]. It is worth mentioning that a proper comparison with results of Ref. [7]
requires dividing matrix elements for the rotational coefficients shown in Table I of that work by 2, since the
actual expression of the Hamiltonian employed by those authors includes a 1

2 factor in the coefficients for the
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Table 2 Vibrational states for J = 0 of H+
3

Γ (v1, v
�
2) EHC vΓ EDGF

A′
1 (0, 00) 0 1 0

(1, 00) 3179.08 2 3178.38
(0, 20) 4777.61 3 4775.79
(2, 00) 6263.57 4 6262.16
(0, 33) 7284.47 5 7281.73
(1, 20) 7769.27 6 7766.76
(0, 40) 8999.82 7 8996.52
(3, 00) 9253.95 8 9251.83
(1, 33) 9967.84 9 9964.50
(2, 20) 10,593.59 10 10,590.47
(0, 53) 10,920.06 11 10,917.27
(1, 40) 11,813.23 12 11,809.39

E ′ (0, 11) 2521.08 1 2520.10
(0, 22) 4997.53 2 4995.62
(1, 11) 5554.59 3 5552.93
(0, 31) 7004.97 4 7002.35
(1, 22) 7870.02 5 7867.45
(2, 11) 8488.87 6 8486.52
(0, 42) 9111.12 7 9107.77
(1, 31) 9652.54 8 9649.12
(0, 44) 9996.95 9 9993.57
(2, 22) 10,645.36 10 10,642.13
(1, 42) 10,859.62 11 10,856.68
(3, 11) 11,324.39 12 11,321.36
(1, 42) 11,656.24 13 11,652.49

A′
2 (0, 33) 7492.44 1 7489.65

(1, 33) 10,209.54 2 10,206.09
(0, 53) 11,527.62 3 11,523.51

HC levels (third column) are taken from Ref. [18] and DGF results (fifth column) are from this work. Energies are in cm−1 and
referred to the ground state. The symmetry group Γ is in first column, the (v1, v

�
2) numbers in the HC calculation are in the

second column and the vΓ number of the DGF calculation is in the fourth column

Table 3 Rotational constants in cm−1 for some of the bound states of H+
3 obtained with the present DGF values (last two columns)

in comparison with constants from Ref. [7] (from second to fifth columns) divided by 2 (see text for details)

k A′ B ′ B̄ C ′ vΓ B̄DGF CDGF

1 43.22 43.23 43.22 20.61 1A1 43.49 20.37
2 41.37 46.32 43.84 19.74 1E 44.08 19.18
3 46.25 41.42 43.84 19.74 1E 44.08 19.18
4 42.14 42.19 42.17 19.99 2A1 42.45 19.77

Average values B̄ = (A + B)/2 from both calculations are shown in fourth and sixth columns

different components of the total angular momentum (see Equation (1) of Ref. [7]). Despite the difference in
the potential energy in each calculation, values of C and the average B̄ = (A + B)/2 agree reasonably well.
Moreover, the corresponding eigenenergies for the pure vibrational elements given in Ref. [7] for the n = 1–3
states (2515.99, 2516.17 and 3185.32 cm−1) compare quite well with energies for the doubly-degenerated 1E

and the 2A1 states shown in Table 2: 2520.10, 2510.10 and 3178.38 cm−1, respectively.

The calculation of the rovibrational states for J = 1 yields the energy levels shown in Table 4. We have
also employed the HC method of Ref. [18] to complete the calculation to the case of J = 1, originally not
included in the work by Aguado et al. The comparison between both set of results reveals a remarkable finding:
whereas the agreement between the HC and DGF levels for the A′

2 and E ′ representations is as good as the
one we have seen for the pure vibration spectrum (see Table 2), noticeable differences are observed for the
entire set of states corresponding to the A′′

2 block and some cases from the E ′ group. Discrepancies can be
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Table 4 Rovibrational states of H+
3 for J = 1 obtained by means of the HC (fourth column) and DGF methods (sixth column)

are from this work

Γ (v1, v
�
2) Ω EHC vΓ EDGF | ΔE |

A′
1 (0, 00) 0 86.97 1A1 86.44 0.5

(1, 00) 0 3263.94 2A1 3262.71 1.2
(0, 20) 0 4869.57 3A1 4865.84 3.7
(2, 00) 0 6346.48 4A1 6344.66 1.8
(0, 33) 0 7379.96 5A1 7375.52 4.4
(1, 20) 0 7857.92 6A1 7853.89 4.0

A′′
2 (0, 11) 1 2616.35 1E 2583.30 33.1

(0, 22) 1 4994.29 2E 5053.29 59.0
(1, 11) 1 5645.02 3E 5614.76 30.3
(0, 31) 1 7081.82 4E 7069.06 12.8
(1, 22) 1 7872.36 5E 7923.68 51.3
(2, 11) 1 8575.07 6E 8547.18 27.9

E ′ (0, 11) 0 2609.21 1E 2607.12 2.1
(0, 22) 0 5087.09 2E 5083.74 3.4
(1, 11) 0 5640.80 3E 5638.06 2.7
(0, 31) 0 7101.85 4E 7097.38 4.5
(1, 22) 0 7958.52 5E 7954.52 4.0
(2, 11) 0 8573.50 6E 8570.20 3.3

E ′′ (0, 00) 1 64.13 1A1 63.78 0.4
(0, 11) 1 2547.83 1E 2581.45 33.6
(1, 00) 1 3241.56 2A1 3240.54 1.0
(0, 20) 1 4841.81 3A1 4840.43 1.4
(0, 22) 1 5124.75 2E 5062.29 62.5
(1, 11) 1 5584.53 3E 5612.65 28.1
(2, 00) 1 6324.47 4A1 6322.86 1.6
(0, 31) 1 7045.64 4E 7062.39 16.8
(0, 33) 1 7324.23 5A1 7364.88 22.7
(0, 33) 1 7571.37 1A2 7551.68 19.7
(1, 20) 1 7839.99 6A1 7833.36 6.6
(1, 22) 1 7989.16 5E 7933.40 55.8
(2, 11) 1 8520.62 6E 8544.74 24.1

Energies are in cm−1 and referred to the ground vibrational J = 0 state. Differences between HC and DGF energies, | ΔE | are
in the last column

larger than 60 cm−1 for some states (see for instance (0, 22), 2E of E ′′ in Table 4) which, despite it accounts
for an error of ≈ 1.2%, it clearly constitutes a significant deviation with respect to the HC calculation.

A close inspection reveals that these apparent deficiencies in the DGF estimation correspond to cases in
which both Ω and � are larger than 0. The reason for such coincidence can be in the existence of a Coriolis
term in the general expression of rotational Hamiltonians. Thus, as explained before [14,19] one of the terms
of order J4 which accounts for centrifugal distortion effects in asymmetric rotors can be expressed as:

HCor = −2CΩζ� (10)

where ζ is the Coriolis coupling coefficient between normal coordinates. This term appears in investigations
of the rotational–vibrational spectrum of molecular species [7,20–22] and seems to play a role in the case of
the H+

3 system. In an attempt to study the origin of the discrepancies here observed between the DGF and HC
energy levels structure for J = 1 we have tried to quantify the value of the term in Eq. (10) in our calculation.
The first estimate can be calculated by comparison with the results by Carney and Porter [7]. In their ab
initio prediction of the H+

3 rotation–vibration spectrum, the value of the Fnm terms accounting for the Coriolis
coupling that split levels with nonzero Ω for the case of the degenerated n = 2 and 3 states of their calculation
is 37.031 cm−1. That energy is close to the difference observed between the HC and DGF calculations for
the 1E levels in the A′′

2 and E ′′ representations (33.1 and 33.6 cm−1, respectively), thus suggesting that the
absence of such a HCor term in the Hamiltonian expressed in Eq. (3) can be certainly responsible of the above
mentioned discrepancies, at least for these (0, 11) states.
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By assuming a constant value ζ = 1 in Eq. (3) and calculating the rotational constantC for each vibrational
state vΓ of Table 2 we can estimate the Coriolis coupling term for some other states, HCor(v1, v

�
2) and compare

with the corresponding differences | ΔE | shown in Table 3. The thus obtained estimates, HCor(v1, 11) ∼
37 cm−1, HCor(v1, 22) ∼ 70 cm−1, HCor(v1, 31) ∼ 34 cm−1 and HCor(v1, 33) ∼ 102 cm−1, are in reasonable
agreement with the deviations between the HC and DGF energies for (v1, 11) and (v1, 22), but are probably
too large in the (v1, 31) cases.

A possible refinement for these estimations consists on the definition of the ζ coefficient according to the
existing relation between the v2 and � numbers and the degeneration of the corresponding rovibrational states.
Thus, letting ζ = 1 for v2 = � = 1; ζ = 1/2 for v2 = 3, � = 1; ζ = 2/3 for v2 = � = 2 and ζ = 1/4 for
v2 = � = 3, the values of the Coriolis term become HCor(v1, 22) ∼ 47 cm−1; HCor(v1, 31) ∼ 17 cm−1 and
HCor(v1, 33) ∼ 25 cm−1, which improves notably the comparison with the corresponding | ΔE | observed
in Table 3 between DGF and HC energies. This therefore seems to confirm the role played by the distorsion
Coriolis coupling effects. A proper description of the H+

3 rotation–vibration spectrum would then require
its inclusion in the corresponding Hamiltonian. This is not the case in the presently used DGF approach,
which among other things, does not explicitly consider the � number. Further work is needed to complete the
capabilities of such a method, possibly including these distorsion terms although retaining its simplicity.
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