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Abstract In this paper, we present a new stable numerical approach based on the operational matrix of
integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational
matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is
obtained by solving the linear system. The error analysis of the proposed method is also established. Further,
a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying
the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to
the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind,
(3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum
absolute error and root mean square error are calculated for the illustrated examples and presented in form
of tables for the comparison purpose. Numerical stability of the presented method with respect to all four
kind of polynomials are discussed. Further, the obtained numerical results are compared with some known
methods from the literature and it is observed that obtained results from the proposed method is better than
these methods.

1 Introduction

The standard linear delay differential equation (DDE) is given by

y′(x) = f
(
x, y(x), y′(x), y(cx − τ(x)), y′(cx − τ(x))

)
, (1)

where C is a constant and τ(x) is delay and cx − τ(x) is delay argument. τ(x) is called constant or time
dependent delay depending on τ is constant or function of time variable x respectively. DDEs have many
applications in the field of life sciences [1] and in various mathematical model of biological systems for
example population dynamics and infectious diseases models [2], time-delay model of single-species growth
with stage structure [3], two- point bour problem in viscoelastic flows model [4], stage structured predator–prey
model [5], glucose-insulin regulatory system and ultradian insulin secretory oscillations model [6].

H. Singh · R. K. Pandey (B) · D. Baleanu
Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
E-mail: rkpandey.mat@iitbhu.ac.in

H. Singh
E-mail: harendra059@gmail.com

D. Baleanu
Department of Mathematics, Cankaya University, Ankara, Turkey

D. Baleanu
Institute of Space Sciences, Măgurele, Bucharest, Romania
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Due to non-local nature of fractional derivative it is physically important to study fractional differential
equations. Some physical quantity depends on the past so fractional model of such differential equation becomes
important to better understand the physical model. Fractional calculus has many real applications in science
and engineering such as biology [7], viscoelasticity [8–10], signal processing [11], bioengineering [12] and
control theory [13].

In this paper, we consider a more general form of FDDE by replacing integer order time derivative by
fractional order Caputo derivative as follows:

Dα
c y(x) = f

(
x, y(x), Dβ

c y(x), y(cx − τ(x)), Dγ
c y(cx − τ(x))

)
, α ≥ β, γ > 0. (2)

Recently, many authors solved FDDEs using numerous numerical techniques. In [14], authors used steps
method to solve DDEs of integer order and in [1] similar technique is used to solve FDDEs by converting
it into non-delay differential equation. Lv and Gao [15] used the reproducing kernel Hilbert space method
(RKHSM) for solving neutral functional differential equations with proportional delays. In [16], Wang used
the Runge–Kutta type method to obtain approximate solution of FDDE and discussed stability of the method.
Some researchers used wavelets to solve FDDEs. In [17,18], Hermite wavelets and Chebyshev wavelets method
are used to obtain approximate solution of FDDE. Some more papers for approximate solution of FDDE are
given in [19–24].

In present paper, we are using operation matrix of Jacobi polynomial to solve more general form of FDDE.
In this method by taking finite dimensional approximation of unknown function and using operational matrix
of integration in the FDDE, we obtain a set of linear algebraic equations whose solution gives approximate
solution of the FDDE. Stability of the proposed scheme is discussed numerically. A comparative study of
the presented scheme using different polynomials is presented for all the test examples. Numerical results
are discussed for each example varying the fractional order α, time delay τ and compared with the known
analytical solution.

2 Preliminaries

The fractional order differentiation and integration are defined as follows,

Definition 2.1 The Riemann–Liouville fractional order integral operator is given by

Jαg(y) = 1

|α
∫ y

0
(y − t)α−1g(t)dt α > 0, y > 0,

J 0g(y) = g(y).

For the fractional Riemann–Liouville integration

Jα yk =
∣
∣∣(k + 1)

∣
∣∣(k + 1 + α)

yk+α

Definition 2.2 The Caputo fractional derivative of order β are defined as

Dβ
c g(y) = J l−βDl

cg(y) = 1
∣∣
∣(l − β)

∫ y

0
(y − t)l−β−1 dl

dtl
g(t)dt,

l − 1 < β < l, y > 0.

In present paper we use the following property of fractional Caputo derivative,

Dβ
c A = 0 (A is a constant),

Dβ
c y

k =
⎧
⎨

⎩

∣∣
∣(k+1)

∣
∣
∣(k+1−β)

yk−β, for k ∈ N0 and k ≥ �β� ,

0, for k ∈ N0 and k < �β� ,

where symbols have their usual meanings, while N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .}.
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The shifted Jacobi polynomial of degree i on [0, 1] is given as,

μ
(u,v)
i (y) =

i∑

k=0

(−1)i−k

∣∣
∣(i + v + 1)

∣∣
∣(i + k + u + v + 1)

∣∣
∣(k + v + 1)

∣∣
∣(i + u + v + 1) (i − k)!k!

yk . (3)

and satisfies the following relation:

∫ 1

0
μ(u,v)
n (y)μ(u,v)

m (y)w(u,v)(y)dy = lu,v
n δnm, (4)

where δnm is Kronecker delta function and,

lu,v
n δnm =

∣∣n + u + 1
∣∣n + v + 1

(2n + u + v + 1)n! ∣∣n + u + v + 1
. (5)

A function g ∈ L2[0, 1], with bounded second derivative
∣
∣g′′(y)

∣
∣ ≤ K , can be expanded as,

g(y) = lim
n→∞

∑n

k=0
ckμ

(u,v)
k (y), (6)

where,

ck = 1

lu,v
k

1∫

0

μ
(u,v)
k (y)g(y)w(u,v)(y)dy, k = 0, 1, 2, . . . (7)

If the series is truncated at n = m, then we have,

g ∼=
∑m

k=0
ckμ

(u,v)
k (y) = CTφm(y), (8)

where C and φm(y) are (m + 1) × 1 matrices given by

C = [c0, c1, . . . , cm]T and φm(y) = [μ(u,v)
0 (y), μ(u,v)

1 (y), . . . , μ(u,v)
m (y)]T . (9)

3 Operational Matrix

Theorem 3.1 Let φm(y) = [μ(u,v)
0 (y), μ(u,v)

1 (y), . . . , μ(u,v)
m (y)]T , be the column vector consisting of the

shifted Jacobi polynomials and consider α > 0, then

Jαφm(y) = J (α)φm(y), (10)

where, J (α) = (ω(i, j)) , is (m + 1) × (m + 1) operational matrix of fractional integral of order α and its
entries are given by

ω(i, j, u, v) =
i∑

k=0

(−1)i−k

∣∣
∣(i + v + 1)

∣∣
∣(i + k + u + v + 1) )

∣∣
∣(k + v + 1)

∣∣
∣(i + u + v + 1) (i − k)!

∣∣
∣(k + α + 1)

×
j∑

l=0

(−1) j−l

∣∣
∣( j + l + u + v + 1)

∣∣
∣(u + 1)

∣∣
∣(k + l + α + v + 1) (2 j + u + v + 1) j !

∣∣
∣( j + u + 1)

∣∣
∣(l + v + 1) ( j − l)!(l)!

∣∣
∣(l + k + u + v + α + 2)

,

0 ≤ i ≤ m, 0 ≤ j ≤ m. (11)

Proof Pl. see [25–27].
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4 Method of Solution

The general form of the FDDEs is stated as

Dα
c y(x) = k1y(x) + k2D

β
c y(x) + k3y(cx − τ(x)) + k4D

γ
c y(cx − τ(x)) + k5D

δ
cu(x), (12)

where α ≥ β, γ > 0, with initial conditions yl(0) = dl , l = 0, 1, 2, . . . , k − 1; k − 1 < α ≤
k; k1, k2, k3, k4, k5, c are real constants, Dα

c , Dβ
c , Dγ

c are Caputo derivative of order α, β and γ respectively,
τ(x) and u(x) are delay and any known function respectively.

For solving Eq. (12), we take the following approximations,

Dα
c y(x) = CTφn(x), (13)

h(x) = Dδ
cu(x) ≈ BTφn(x), (14)

where C and φn(x) are (n + 1) × 1 matrices given by

C = [c0, c1, . . . , cn]T and φn(x) = [μ(u,v)
0 (x), μ(u,v)

1 (x), . . . , μ(u,v)
n (x)]T .

Taking integral of order α on both side of Eq. (13), we get

y(x) = CT J (α)φn(x) + ATφn(x), (15)

where,
∑k−1

l=0 y(l)(0) x
l

l! = ATφn(x) and J (α) is (n + 1) × (n + 1) operational matrix of integrations.
Using Eq. (15), approximation for the delay function is given as

y(cx − τ(x)) = CT J (α)φn(cx − τ(x)) + ATφn(cx − τ(x)), (16)

From Eq. (13), we can write,

Dβ
c y(x) = Jα−βDα

c y(x) ≈ Jα−β
(
CTφn(x)

)
= CT Jα−βφn(x) ≈ CT J (α−β)φn(x), (17)

From Eq. (17), we can write the following approximation,

Dγ
c y(cx − τ(x)) ≈ CT J (α−γ )φn(cx − τ(x)), (18)

Using Eqs. (13)–(18) in Eq. (12), we get

CTφn(x) = k1(C
T J (α) + AT )φn(x) + k2C

T J (α−β)φn(x) + k3(C
T J (α) + AT )φn(cx − τ(x))

+k4C
T J (α−γ )φn(cx − τ(x)) + k5B

Tφn(x), (19)

Further,

φn(cx − τ(x)) ≈ ETφn(x), where E is a square matrix of order (n + 1) × (n + 1). (20)

Now from Eqs. (19) and (20), we can write

CTφn(x) =
(
k1(C

T J (α) + AT ) + k2C
T J (α−β) + k3(C

T J (α) + AT )ET + k4C
T J (α−γ )ET + k5B

T
)

φn(x),

from the above equation, we can write,

CT =
(
k1A

T + k3A
T ET + k5B

T
) (

I − k1 J
(α) − k2 J

(α−β) − k3 J
(α)ET − k4 J

(α−γ )ET
)−1

, (21)

where I is an identity matrix.
Using the value of CT from Eq. (21) in (15), we get approximate solution for FDDEs given in Eq. (12).
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5 Error Analysis

Lemma 1 Let y ∈ C (n+1)[0, 1]withboundedderivatives of all order and Sn = Span{μ(u,v)
0 (x), μ(u,v)

1 (x), . . . ,

μ
(u,v)
n (x)}. If yn be the nth approximation of y then we have followings inequality,

‖y − yn‖L2[0,1] ≤ K

(n + 1)!
√
B(u + 1, v + 1), (22)

where K = max
x∈[0,1]

∣∣y(n+1)(x)
∣∣.

Proof see [28].

Theorem Let (Jα
n g)(y) be the nth approximation of Riemann–Liouville fractional integral operator (Jαg)(y)

then we have the followings upper bounds of absolute error in its nth approximation,

‖g(y) − gn(y)‖L2[0,1] ≤ K
∣
∣∣(α + 1) (n + 1)!

√
B(u + 1, v + 1). (23)

Proof By the definition of fractional integral operator, we can write

∥∥(Jαg)(y) − (Jα
n g)(y)

∥∥
L2[0,1] = 1

|α

y∫

0

(y − τ)α−1 |g(τ ) − gn(τ )|dτ, (24)

Using Eq. (22) in (24), we get,

∥∥(Jαg)(y) − (Jα
n g)(y)

∥∥
L2[0,1] ≤ 1

|α

y∫

0

(y − τ)α−1 K

(n + 1)!
√
B(u + 1, v + 1)dτ,

= K

|α (n + 1)!
√
B(u + 1, v + 1)

y∫

0

(y − τ)α−1dτ,

∥∥(Jαg)(y) − (Jα
n g)(y)

∥∥
L2[0,1] ≤ K

∣
∣∣(α + 1) (n + 1)!

√
B(u + 1, v + 1)yα. (25)

Since y ∈ [0, 1], Eq. (25) can be written as,

∥∥(Jαg)(y) − (Jα
n g)(y)

∥∥
L2[0,1] ≤ K

∣∣
∣(α + 1) (n + 1)!

√
B(u + 1, v + 1).

This completes the proof.

6 Numerical Stability

Here, we present the numerical stability in similar approach as described in [29]. To show the accuracy of
proposed method we have calculated absolute error and root mean square error (RMS). These errors are given
by the following equations,

	y(xi ) = |ye(xi ) − ya(xi )| , (26)

and

σ(N+1)2 =
⎧
⎨

⎩
1

(N + 1)

N∑

i=0

[ye(xi ) − ya(xi )]2

}1/2

, (27)

where ye(xi ) and ya(xi ) are the exact and approximate value of output function at point xi .
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Table 1 Noise reduction H(x) for N = 10 and n = 5 at different values of δ

x δ = 0.01 δ = 0.001 δ = 0.0001

0 0.0000 0.00000 0.000000
0.1 0.0020 0.00020 0.000020
0.2 0.0040 0.00040 0.000040
0.3 0.0060 0.00060 0.000060
0.4 0.0080 0.00080 0.000080
0.5 0.0100 0.00100 0.000100
0.6 0.0120 0.00120 0.000120
0.7 0.0140 0.00140 0.000140
0.8 0.0160 0.00160 0.000160
0.9 0.0180 0.00180 0.000180
1.0 0.0200 0.00200 0.000200

Fig. 1 The behaviour of solution for different values of α at u= 0, v= 0, Example 1

Fig. 2 The behaviour of solution for different values of α at u= 1/2, v= 1/2, Example 1
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From now wards, considering h(x) as input function. Adding random noise term in input function we
demonstrate the stability of the proposed method.

In all examples, h(x) and hδ(x), represent the exact and input function with noise respectively. The noise
function hδ(x) is obtained from h(x) by adding noise term, hδ(xi ) = h(xi ) + δθi , where xi = ih, i =
1, 2, . . . , N , Nh = 1; and θi ∈ [0, 1], is the uniform random variable such that,

max
1≤i≤N

∣∣hδ(xi ) − h(xi )
∣∣ ≤ δ. (28)

Reconstructed output function yδ
a(x) (with δ noise) and y0

a (x) (without noise) are obtained with and without
noise term in the input function h(x) and using Eq. (15) these are given by

yδ
a(x) ∼= CδT J (α)φn(x) + ATφn(x), (29)

y0
a (x) ∼= CT J (α)φn(x) + ATφn(x), (30)

Fig. 3 The behaviour of solution for different values of α at u= −1/2, v= 1/2, Example 1

Fig. 4 The behaviour of solution for different values of α at u= 1/2, v= −1/2, Example 1
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where CδT and CT are known matrices and they are given by

CδT =
(
k1A

T + k3A
T ET + k5B

δT
) (

I − k1 J
(α) − k2 J

(α−β) − k3 J
(α)ET − k4 J

(α−γ )ET
)−1

and

CT =
(
k1A

T + k3A
T ET + k5B

T
) (

I − k1 J
(α) − k2 J

(α−β) − k3 J
(α)ET − k4 J

(α−γ )ET
)−1

,

we approximate hδ(x) as
hδ(x) = h(x) + δθi ∼= Bδφn(x). (31)

From Eqs. (29) and (30)

yδ
a(x) − y0

a (x) ∼=
(
CδT − C

)
J (α)φn(x). (32)

Fig. 5 The behaviour of solution for different values of α at u= 0, v= 0, Example 2

Fig. 6 The behaviour of solution for different values of α at u= 1/2, v= 1/2, Example 2
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Let

H(x) = yδ
a(x) − y0

a (x) ∼=
(
CδT − CT

)
J (α)φn(x), (33)

then H(x) reflects the noise reduction capability of the method. Its values at various points are shown in
Table 1.

From Table 1, it is clear that there is a continuous variation in noise reduction capability which shows
that our method is stable in [0, 1]. In Sect. 7, we illustrate the stability of the proposed method by calculating
errors with and without noises. In last two examples, we add two different noises δ1 = σ(N+1)2 (root mean
square error), δ2 = E∞ (maximum absolute error) for N = 30. We plot absolute errors graph without and
with noises (δ1, δ2) taking n = 7, N = 30. Figs. 9, 10, 11, 12 and 17, 18, 19, 20 are plotted for Exp. 2 and 3
taking different cases of Jacobi polynomial and it is observed that the there is a very small change in absolute
error when we add noises in input function showing the stability of our method.

Fig. 7 The behaviour of solution for different values of α at u= −1/2, v= 1/2, Example 2

Fig. 8 The behaviour of solution for different values of α at u= 1/2, v= −1/2, Example 2
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7 Numerical Results and Discussions

In present section, we examine the accuracy and numerical stability of the presented method by testing it on
some numerical examples. We apply our algorithm on three test problem and compare the results from the
existing methods. In graphical presentation of absolute errors with and without noise term, the noises δ1 and
δ2 are denoted by delta1 and delta2 respectively.

Example 1 Consider the following fractional delay differential equation [15–23]

Dα y(x) + y(x) + y(x − τ) = 2
∣∣3 − α

x2−α − 1
∣∣2 − α

x1−α + 2τ x − τ 2 − τ, (34)

where, x > 0, 0 < α ≤ 1, with initial condition y(0) = 0 and the exact solution y(x) = x2 − x for α = 1.

We have discussed this problem by taking τ(x) = 0.01e−x . In particular, taking u = v = 0, u = v =
∓ 1

2 , u = −v = ± 1
2 , we get Legendre polynomial, Chebyshev polynomial of first, second, third and fourth

kind respectively.

Fig. 9 The absolute errors with and without noises for u= 0, v= 0, Example 2

Fig. 10 The absolute errors with and without noises for u= 1/2, v= 1/2, Example 2
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We have discussed Example 1 for different special cases and found numerical solution and exact solution
are identical in each cases. We need only three basis elements to achieve exact solution by our proposed
method.

Case 1: Taking u = v = 0, n = 2 then

CT = [0, 1, 0],CT J (1) =
[
−1

6
, 0,

1

6

]

and

y(x) = CT J (1)μ(0,0)(x) + ATμ(0,0)(x) = x2 − x,

is the exact solution.
Case 2: Taking u = v = 1

2 , n = 2 then

CT =
[

0,
2

3
, 0

]
,CT J (1) =

[
− 3

16
, 0,

1

10

]

Fig. 11 The absolute errors with and without noises for u= −1/2, v= 1/2, Example 2

Fig. 12 The absolute errors with and without noises for u= 1/2, v= −1/2, Example 2
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Table 2 Comparisons of MAE and RMSE for different value of u and v at n= 5 and 7 for Example 2

u v Maximum absolute error Root mean square error

n= 5 n= 7 n= 5 n= 7

0 0 4.5433 × 10−6 3.3418 × 10−8 4.5135 × 10−7 3.1685 × 10−9

1
2

1
2 4.6924 × 10−6 4.1223 × 10−8 4.8723 × 10−7 3.9907 × 10−9

− 1
2

1
2 6.8701 × 10−6 4.9867 × 10−8 6.5811 × 10−7 4.5774 × 10−9

1
2 − 1

2 3.1703 × 10−6 2.1755 × 10−8 3.1114 × 10−7 2.1670 × 10−9

Table 3 Comparison of results from our method and Chebyshev wavelet method in [18] for Example 2

x Present method for n= 7 Method in [18]

u = 0, v = 0 u = 1/2, v = 1/2 u = −1/2, v = 1/2

0.01 4.7358 × 10−10 1.2151 × 10−9 2.2825 × 10−9 8.2000 × 10−9

0.02 1.1806 × 10−11 4.9038 × 10−10 1.0753 × 10−9 6.6800 × 10−8

0.03 3.0801 × 10−10 2.5593 × 10−12 2.2410 × 10−10 2.2880 × 10−7

0.04 4.6179 × 10−10 3.1563 × 10−10 3.4405 × 10−10 5.5050 × 10−7

0.05 5.1227 × 10−10 4.9312 × 10−10 6.9183 × 10−10 1.0913 × 10−6

0.06 4.9187 × 10−10 5.7193 × 10−10 8.7258 × 10−10 1.9142 × 10−6

0.07 4.2707 × 10−10 5.8270 × 10−10 9.3126 × 10−10 3.0852 × 10−6

0.08 3.3915 × 10−10 5.5051 × 10−10 9.0544 × 10−10 4.6741 × 10−6

0.09 2.4489 × 10−10 4.9557 × 10−10 8.2607 × 10−10 6.7542 × 10−6

0.10 1.5714 × 10−10 4.3385 × 10−10 7.1834 × 10−10 9.4026 × 10−6

Table 4 Comparison of results from our method and Laguerre wavelet method in [24] for Example 2

x Present method for n=5 Method in [24] M=5

u = 0, v = 0 u = 1/2, v = 1/2 u = −1/2, v = 1/2

0.1 3.8435 × 10−7 3.6604 × 10−7 5.9004 × 10−7 2.1700 × 10−8

0.2 5.5264 × 10−8 5.9731 × 10−8 2.6351 × 10−7 1.4823 × 10−6

0.3 4.8734 × 10−8 1.2034 × 10−7 9.8401 × 10−8 6.5389 × 10−6

0.4 7.1498 × 10−7 7.2015 × 10−7 7.6043 × 10−7 9.9500 × 10−6

0.5 1.3449 × 10−6 1.3479 × 10−6 1.7396 × 10−6 8.5111 × 10−6

0.6 1.6621 × 10−6 1.7520 × 10−6 2.5392 × 10−6 9.1161 × 10−5

0.7 1.9793 × 10−6 2.2126 × 10−6 3.1933 × 10−6 3.0880 × 10−4

0.8 2.8579 × 10−6 3.2043 × 10−6 4.1752 × 10−6 7.6648 × 10−4

0.9 4.2169 × 10−6 4.5101 × 10−6 5.7570 × 10−6 1.6087 × 10−3

1 3.9441 × 10−6 3.8363 × 10−6 6.8701 × 10−6 3.0244 × 10−3

and

y(x) = CT J (1)μ

(
1
2 , 1

2

)

(x) + ATμ

(
1
2 , 1

2

)

(x) = x2 − x,

is the exact solution.
Case 3: Taking u = − 1

2 , v = 1
2 , n = 2 then

CT =
[

1

2
, 1, 0

]
,CT J (1) =

[
−1

8
,

1

8
,

1

6

]

and

y(x) = CT J (1)μ

(
− 1

2 , 1
2

)

(x) + ATμ

(
− 1

2 , 1
2

)

(x) = x2 − x,

is the exact solution.
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Table 5 Comparison of results from our method (u = 0, v = 0) and Chebyshev wavelet method in [18] for Example 2 at different
values of α = 2.25, 2.5 and 2.75

X α = 2.25 α = 2.5 α = 2.75
Present method Method in [18] Present method Method in [18] Present method Method in [18]

0.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.01 0.99004 0.99005 0.99005 0.99001 0.99004 0.99004
0.02 0.98014 0.98020 0.98018 0.98020 0.98020 0.98020
0.03 0.97031 0.97046 0.97041 0.97045 0.97044 0.96079
0.04 0.96053 0.96083 0.96071 0.96080 0.96077 0.95123
0.05 0.95080 0.95131 0.95108 0.95125 0.95119 0.94176
0.06 0.94112 0.94191 0.94154 0.94180 0.94170 0.93239
0.07 0.93148 0.93263 0.93206 0.93245 0.93230 0.92311
0.08 0.92190 0.92346 0.92266 0.92321 0.92299 0.91392
0.09 0.91236 0.91442 0.91333 0.91406 0.91375 0.90482
0.10 0.90286 0.90552 0.90407 0.90501 0.90461 1.00000

Fig. 13 The behaviour of solution for different values of α at u= 0, v= 0, Example 3

Fig. 14 The behaviour of solution for different values of α at u= 1/2, v= 1/2, Example 3
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Fig. 15 The behaviour of solution for different values of α at u= −1/2, v= 1/2, Example 3

Fig. 16 The behaviour of solution for different values of α at u= 1/2, v= −1/2, Example 3

Case 4: Taking u = 1
2 , v = − 1

2 , n = 2 then

CT =
[
−1

2
, 1, 0

]
,CT J (1) =

[
−1

8
, −1

8
,

1

6

]

and

y(x) = CT J (1)μ

(
1
2 ,− 1

2

)

(x) + ATμ

(
1
2 ,− 1

2

)

(x) = x2 − x,

is the exact solution.

From cases 1–4, it is observed that proposed method provides exact solution for the DDE given by Example 1.
Whereas using existing methods [15–23], it is difficult to get exact solution. Therefore the proposed method
is more accurate than the methods discussed in [15–23].

From Figs. 1, 2, 3 and 4, it is shown how the solution varies continuously for different values of fractional
order derivative α for different particular cases of Jacobi polynomials respectively.



Stable Numerical Approach for Fractional Delay Differential Equations Page 15 of 18 156

Fig. 17 The absolute errors with and without noises for u= 0, v= 0, Example 3

Fig. 18 The absolute errors with and without noises for u= 1/2, v= 1/2, Example 3

Example 2 Consider the FDDE [18,24]

Dα y(x) + y(x) + y(x − 0.3) = e−x+0.3, 0 ≤ x ≤ 1, 2 < α ≤ 3, (35)

Subject to the initial condition y(0) = 1, y′(0) = −1, y′′(0) = 1, and having exact solution as y(x) = e−x at
α = 3.

From Figs. 5, 6, 7 and 8, it is shown that solution varies continuously for Legendre polynomial, Chebyshev
polynomial second kind, Chebyshev polynomial third kind, Chebyshev polynomial fourth kind respectively
with different values of fractional order. For integer order solution coincide with the exact solution in all the
cases.

We have taken to different random noises for stability of the method. In Figs. 9, 10, 11 and 12, we
have plotted MAE with and without noises for Legendre polynomial, Chebyshev polynomial second kind,
Chebyshev polynomial third kind, Chebyshev polynomial fourth kind respectively and it is observed that our
approximating method is stable due to small changes in MAE.
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Fig. 19 The absolute errors with and without noises for u= −1/2, v= 1/2, Example 3

Fig. 20 The absolute errors with and without noises for u= 1/2, v= −1/2, Example 3

In Table 2, we have compared results for different polynomials and it is detected that results from Legendre
polynomial and Chebyshev polynomial of fourth kind are quite better than the Chebyshev polynomial of
second and third kind. The comparison of absolute errors from proposed method with the Chebyshev wavelets
method [18] and Laguerre wavelets method [24] are shown in Tables 3 and 4 respectively.

From Tables 3 and 4, it is observed that our proposed method is more accurate.
In Table 5, we have listed the approximate solutions by our proposed method and Chebyshev wavelets

method [18] for different values of α.
From Table 5, it is observed that our method shows good agreement with method in [18] for different

fractional order.

Example 3 Consider the FDDE [15,16],

Dα y(x) = −y(x) + 0.1y(0.8x) + 0.5Dα y(0.8x) + (0.32x − 0.5)e0.8x + e−x ,

x ≥ 0, 0 < α ≤ 1, (36)

Subject to the initial condition y(0) = 0 and having exact solution as y(x) = xe−x at α = 1.
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Table 6 Comparisons of MAE and RMSE for different value of u and v at n= 5 and 7 for Example 3

u v Maximum absolute error Root mean square error

n= 5 n= 7 n= 5 n= 7

0 0 4.9897 × 10−6 9.5177 × 10−9 3.7229 × 10−7 6.4802 × 10−10

1
2

1
2 7.8676 × 10−6 1.5915 × 10−7 4.5137 × 10−7 1.1596 × 10−8

− 1
2

1
2 1.3898 × 10−5 4.3297 × 10−8 7.6121 × 10−7 2.3553 × 10−9

1
2 − 1

2 1.5160 × 10−5 4.6848 × 10−8 3.2932 × 10−7 6.1652 × 10−10

Table 7 Comparison of results from our method and methods in [15,16] for Example 3

x Present method for n= 7 Method in [15] Method in [16]

u = 0, v = 0 u = 1/2, v = 1/2

0.1 2.60 E−10 5.63 E−08 1.42 E−4 8.68 E−4
0.2 1.67 E−09 3.13 E−08 1.17 E−4 1.49 E−3
0.3 2.27 E−09 4.71 E−08 9.45 E−4 1.90 E−3
0.4 7.86 E−11 4.73 E−08 7.59 E−4 2.16 E−3
0.5 2.36 E−09 2.52 E−08 6.03 E−4 2.28 E−3
0.6 6.12 E−10 1.09 E−08 4.73 E−4 2.31 E−3
0.7 2.28 E−09 2.07 E−08 3.64 E−4 2.27 E−3
0.8 2.06 E−09 2.38 E−08 2.75 E−4 2.17 E−3
0.9 3.66 E−10 4.95 E−09 2.03 E−4 2.03 E−3
1.0 9.52 E−09 1.28 E−07 1.43 E−4 1.86 E−3

From Figs. 13, 14, 15 and 16, it is shown that solution varies continuously for different cases of Jacobi
polynomial with different values of fractional order and for α = 1, the approximate solution coincides with
the exact solution in all the cases.

For Example 3, as similar in two we have taken to different random noises for stability of the method. In
Figs. 17, 18, 19 and 20, we have plotted MAE with and without noises for all four kind of polynomials and it
is observed that our approximating method is stable due to small changes in MAE.

In Table 6, we have compared results for different polynomials and it is noticed that results from Legendre
polynomial are better than the Chebyshev polynomials. The comparison of absolute errors from proposed
method with the Reproducing kernel Hilbert space method (RKHSM) [15] and Runge–Kutta type method
(RKTM) [16] are provided in Table 7.

From Table 7, it is observed that obtained numerical results using proposed are comparatively better than
RKHSM and RKTM.

8 Conclusions

It is shown that results obtained from proposed method are attractive and comparatively better to the existing
numerical methods [15–23] discussed in literature. The presented method has also been found stable even
through high noise level. We observed that the obtained approximate solution varies continuously from frac-
tional order DDEs to integer order DDEs. The results obtained using proposed method are found more accurate
in comparison to results obtained from other methods (shown in Tables 3, 4 and 7). Further, it is also observed
that the proposed method works well and produces comparatively better results using only few number of bases
elements approximating the unknown function. For each test problem four polynomials are used and obtained
results are compared in Tables 2 and 6. We observe that the choice of Legendre polynomial and Chebyshev
polynomial of fourth kind approximating the unknown function performs better than the Chebyshev second
and third kind polynomials.
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