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Abstract In this study, the information-theoretic measures of (1+1)-dimensional Dirac equation in both posi-
tion and momentum spaces are investigated for the trigonometric Rosen–Morse and the Morse potentials. The
solutions of the corresponding Dirac equation are obtained in an exact analytical manner in the first step. Next,
using the Fourier transformation, the position and momentum Shannon information entropies are obtained
and some features of the probability densities are analyzed. The consistency with Bialynicki-Birula–Mycielski
inequality and Heisenberg uncertainty is checked.

1 Introduction

Dirac equation connects the pure physics to many problems of modern technology including graphene systems
and information technology. Fortunately, the equation, in many cases, appears in Schrödinger form and has been
therefore been solved with the approaches of nonrelativistic quantum mechanics including Nikiforov -Uvarov
(NU) technique, perturbation, the polynomial solution, the wave function ansatz method, etc. [10,29,43].
Depending on the application of the equation, it has been considered with various interaction terms such
Morse, Kratzer, Harmonic, etc. [3,12,41]. On the other hand, the information entropies have become quite
interesting interdisciplinary concepts relating science and technology. In particular, the Shannon information
entropy, proposed in 1940s [33], provides us with invaluable source of knowledge on atomic, molecular and
nuclear systems and has been therefore investigated from various aspects [2,7,17,22,26,30]. In addition, the
entropic uncertainty proposed by Beckner, Bialynicki-Birula, and Mycieslki (named BBM equality after them)
[5] considers a stronger version of the Heisenberg uncertainty and appears as

Sx + Sp � D(1 + ln π) (1)

where D represents the spatial dimension and the position state (Sx ) and momentum (Sp) information entropies
are defined [9,18], respectively, by

Sx = −
∫ ∞

−∞
|ψ(x)|2 ln |ψ(x)|2 dx

Sp = −
∫ ∞

−∞
|φ(p)|2 ln |φ(p)|2 dp (2)
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where ψ(x) is the normalized eigenfunction in is spatial coordinate and φ(p) denotes its normalized Fourier
transform. Actually, the Shannon entropy provides a measure of information about the probability distribution
and shows the correlation between particles [1,25,34].

The concept has been studied for various interactions of physics including harmonic [23], Pöschl-Teller
(PT) [8,14], Morse [4], Coulomb [13], isospectral PT [21], etc. [15,20,21,31,32]. The Shannon entropy also
been studied with generalized non-central potentials such as the trigonometric Rosen–Morse [36,38], the PT-
like [35], squared tangent [16] and hyperbolic double-well potential [37]. The study within the framework of
position-dependent-mass Schrödinger equation has been considered with null [42] and hyperbolic potentials
[40]. The concept has also been studied within Dirac–Fock [19], Klein–Gordon frameworks [6,24] and for
Killingbeck and Kratzer potentials [27,28].

In the present work, we first solve Dirac equation for both Rosen–Morse and Morse potentials using the
Nikiforov-Uvarov (NU) method. In the next section, using the Fourier transformation, we obtain the momen-
tum space wave functions and as well as standard deviation and thereby report the position and momentum
information entropy densities, respectively denoted by ρs(x) and γs(p). The consistency with Bialynicki-
Birula-Mycielski inequality and standard deviation is also checked regarding the results.

2 Solution of Dirac Equation

The Dirac equation is written as [11] (
γ μ pμ − mcI − V

c

)
ψ = 0 (3)

with (
0 σμ

σμ 0

)
; pμ = −i�δμ (4)

where γ μ denotes he Dirac matrices and m represents the mass of the particle. The potential is considered in
the form

V = γ μAμ + I Vs (5)

where Aμ and Vs are the vector and scalar potentials, respectively. By choosing μ = 0, 1; the Hamiltonian in
(1 + 1)-dimensions is written as

H = γ 5c

(
p1 + A1

c

)
+ I A0 + γ 0(mc2 + Vs) (6)

where γ 5 = γ 0γ 1. By using

A1 = 0; ψ =
(

	+
	−

)
; γ 0 = σ1; p = −i�

d

dx
; A0 = Vs (7)

the equation appears in the coupled form

−i�c
d

dx
	− + (mc2 + 2Vs − E)	+ = 0 (8)

−i�c
d

dx
	+ − (mc2 − E)	− = 0 (9)

which give the relations between the upper and lower components as

	− = − i�c

(mc2 + E)

d

dx
	+ (10)

By substitution of Eq. (11) into Eq. (9), we obtain the Schrödinger-like equation

−�
2c2 d2

dx2 	+ + (mc2 + E)(mc2 + 2Vs − E)	+ = 0 (11)

In fact, our purpose in this article is the solution of Eq. (11) for the Rosen–Morse ans Morse potentials in two
position and momentum spaces by which we determine the two universal quantities, i.e. the Shannon entropy
and Heisenberg relations as well as related aspects.
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Trigonometric Rosen–Morse Potential

Here, we consider the trigonometric Rosen–Morse potential as

Vs = d cot2
(πx

a

)
− f csc2

(πx

a

)
; x ∈ [0, a] (12)

Choosing

ψ(x) = sin
(πx

a

)(−2λ)

u(x) (13)

the position part of the equation appears as
{

d2

dx2 − 4π

a
λ cot

(πx

a

) d

dx
+ 2π2(1 + 2λ)λ

a2 cot2
(πx

a

)
+ 2π2

a2 λ − 2d(1 + E) cot2
(πx

a

)
(14)

+(E2 − 1) + 2 f (1 + E) csc2
(πx

a

)}
u(x) = 0

Defining the new variables

λ = 1

4

⎛
⎝
√

1 + 8d(1 + E)a2

π2 − 1

⎞
⎠ (15)

ν =
√

a2

π2 ((E2 − 1) + 2d(1 + E)) (16)

δ = 1

4

⎛
⎝
√

1 − 8 f (1 + E)π2

a2 + 1

⎞
⎠ (17)

Eq. (14) reduces to
{

d2

dx2 − 4πλ

a
cot

(πx

a

) d

dx
+ π2

a2 (ν2 − λ2) + 4π2

a2 δ( 1
2 − δ) csc2

(πx

a

)}
u(x) = 0 (18)

Using the new change of variable y = cos2
(

πx
a

)
Eq. (18) can be rewritten as

{
d2

dx2 +
1
2 − (1 − 2λ)y

y(1 − y)

d

dy
+ ν2 − λ2

4y(1 − y)
+ δ( 1

2 − δ)

y2(1 − y)

}
u(y) = 0 (19)

Introducing the gauge transformation u(y) = y− 1
2 φ(y) Eq. (19) takes the form

⎧⎨
⎩

d2

dy2 + − 1
2 +2λy

y(1 − y)

d

dy
+

−
(

ν2

4 − λ2

4 − λ − 1
4

)
y2 +

(
ν2

4 − λ2

4 − λ − 3
4 − δ( 1

2 − δ)
)
y + 1

2 + δ( 1
2 − δ)

(y(1 − y))2

⎫⎬
⎭φ(y)=0 (20)

The latter can be simply solved using the NU method [39],with the required parameters being

α1 = −1

2
, α2 = −2λ, α3 = 1 α4 = 3

4
, (21)

α5 = −(λ + 1), α6 = 3

4

(
λ2 + 1 + ν2

3

)
+ λ,

α7 = 1

4
(λ2 − 2λ − 3 − ν2) + δ

(
1

2
− δ

)
,

α8 =
(

δ − 1

4

)2

, α9 =
(

λ + 1

4

)2

, α10 = 2δ + 1

2
,

α11 = 2(δ + λ + 1), α12 = δ + 1

2
, α13 = −(δ + 2λ + 1),
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With

ξ1 = 1

4

(
ν2 − λ2 − 4λ − 1

)
(22)

ξ2 = 1

4

(
ν2 − λ2 − 4λ − 3

)− δ

(
1

2
− δ

)

ξ3 = −1

2
− −δ

(
1

2
− δ

)

and possesses the solutions in terms of Jacobi polynomials as

	+(x) = cos
(πx

a

)2δ

sin
(πx

a

)2λ+1
P

(
2δ− 1

2 ,2λ+ 1
2

)
n

(
1 − 2 cos2

(πx

a

))
(23)

In the special case of f = 0

	+(x) = cos
(πx

a

)
sin
(πx

a

)2λ+1
P

(
1
2 ,2λ+ 1

2

)
n

(
1 − 2 cos2

(πx

a

))
(24)

for n = 0, the wave functions become

	+(x) = cos
(πx

a

)
sin
(πx

a

)2λ+1
(25)

	−(x) = iπ
[
λ + (1 + λ) cos

( 2πx
a

)]
sin
(

πx
a

)2λ

a(1 + E)
(26)

we obtain a relation for the energy spectrum in the special case as

n2 + 2n(λ + 1) + λ2

4
− ν2

4
+ 2λ + 11

8
= 0 (27)

where the two variables λ and ν , as indicated in Eqs. (15) and (16), include the energy and therefore the energy
corresponding to each state can be simply determined.

Hence, the total wave function for this system is obtained by having the two spinors and the normalization
constant determined from

∫ a
0 ψψ∗ dx = 1.

Morse Potential

The Morse potential possesses the form

Vs = V0(e
−2αx − e−αx ) (28)

where x is the distance between the particles, V0 represents the well depth and α controls the ’width’ of the
potential (the smaller α is, the larger the well we have).Using the transformation y = e−αx , we have

{
d2

dy2 + 1

y

d

dy
− (1 − E2)

α2y2 + 2V0(1 + E)

α2y
− 2V0(1 + E)

α2

}
	+(y) = 0 (29)

Introducing

β2 = (1 − E2)

α2 ; γ 2 = 2V0(1 + E)

α2 (30)

Eq. (29) is more neatly written as

{
d2

dy2 + 1

y

d

dy
+ −γ 2y2 + γ 2y − β2

y2

}
	+(y) = 0 (31)
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By using the NU method [39], the required parameters being

α1 = 1, α2 = α3 = α4 = α5 = 0, (32)

α6 = γ 2, α7 = −γ 2, α8 = β2,

α9 = γ 2, α10 = 1 + 2β, α11 = 2γ,

α12 = β, α13 = −γ,

With

ξ1 = −ξ2 = γ 2 (33)

ξ3 = β2

Therefore in the special case of α3 = 0, the upper spinor is obtained as

	+
n (x) = exp

[−αβx − γ e−αx]L2β
n

(
2γ e−αx) (34)

which simply gives

	−
n (x) = −iα exp

[−αβx − γ e−αx] (2γ L2β+1
n−1

(
2γ e−αx)− (

eαxβ − γ
)
L2β
n

(
2γ e−αx)) /(1 + En) (35)

In this case, we obtain a relation for the energy spectrum as

(2n + 1) + γ − 2β = 0 (36)

Therefore, the total form of the wave function is obtained from Eq. (7).
The analytical calculation of Shannon information is quite difficult for higher states. Therefore, we con-

centrate on the ground-state n = 0 and discuss the two higher states numerically.

3 Information Entropy

In this section we are going to obtain the position and momentum information entropies for the two potentials.
In the previous section we got the wave function in position space and now we use the Fourier transform to
calculate the corresponding momentum space wave functions.

Trigonometric Rosen–Morse Potential

We consider the lower states of n = 0, 1 due to the difficulty of the calculations and only report the numerical
results corresponding to n = 2 state. Using the Fourier transform as

φ±(p) = 1√
2π

∫ a

0
	±(x)e−i px dx (37)

we find for the ground-state n = 0

φ+(p) = −ap(1 + i)2− 5
2 −2λe

−i
(
ap+πλ−π

2

) (
1 − iei(ap+2πλ)

)
�
(− 1

4 − ap
2π

− λ
)

√
π cos (2πλ)�

( 1
2 − 2λ

)
�
(

5
4 − ap

2π
+ λ

) (38)

φ−(p) = −ap22− 7
2 −2λe−i(ap+πλ)

(−1 + ei(ap+2πλ)
)
�
(−1 − ap

2π
− λ

)
√

π(1 + E) sin (2πλ)�(−1 − 2λ)�
(
2 − ap

2π
+ λ

) (39)
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Fig. 1 Position and momentum space entropy densities for n = 0, 1 and d = 10

Thus, the position and momentum probability densities are

ρn=0(x) = N 2
x sin

(πx

a

)4λ
[

π2
(
λ + (1 + λ) cos

(
πx
a

))2
a2(1 + E)2 + 1

4
sin2

(πx

a

)]
(40)

γn=0(p) = 2−4λa2 p2N 2
p

π

⎡
⎣2− 3

2
(
1 − iei(ap+2πλ)

)
�
(− 1

4 − ap
2π

− λ
)

cos (2πλ)�
( 1

2 − 2λ
)
�
(

5
4 − ap

2π
+ λ

)

+ 2−3 p
(−1 + ei(ap+2πλ)

)
�
(−1 − ap

2π
− λ

)
sin (2πλ)(1 + E)�(−1 − 2λ)�(2 − ap

2π
+ λ)

]2

(41)

The position and momentum space information entropies for the one-dimensional Morse potential can be
calculated using Eq. (2). As already stated, in general, explicit derivations of the information entropy is not
simple. In some cases, even, the derivation of analytical expression is quite cumbersome, better say, impossible,
as shown in instructive works [36,38]. We represent the position and momentum information entropy densities
respectively by ρs(x) = |ψ(x)|2 ln |ψ(x)|2 and γs(p) = |φ(p)|2 ln |φ(p)|2 since they play a similar role to
the probability density ρ(x) = |ψ(x)|2 in quantum mechanics.

The characteristic features of the position and momentum information entropies ρs(x) and γs(p) are shown
in Figs. 1a–d for lowest states n = 0, 1 vs. the parameter a for constant d . The probability densities ρ(x)
and γ (p) are illustrated in Figs. 2a–d. We find that the density amplitudes of n = 0 are greater than those of
n = 1. It is seen that the quantity first decreases and then increases to zero vs. the momentum which implies
the local behavior of the momentum. In addition, the maxima of ρs(x) and γs(p) decreases with the parameter
d . However, the behavior of the maximum amplitude ρs(x) is reverse to |γs(p)| .

As seen in Figs. 1a, b, 2a, b, the wave function is symmetric around point x = a/2 and more generally in
points where x = ra/2 with r = 1, 2, . . . . However, in Figs. 1a, b, 2c, d the wave functions in momentum
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Fig. 2 Position and momentum space probability densities for n = 0, 1 and d = 10

Fig. 3 The Shannon entropy in position space for n = 0, 1 and d = 10, 20

space represent a symmetric behavior around point zero. The position probability density has a symmetric
shape and the position probability density has three peaks for n = 0, five peaks in the exited state n = 1 and
2n+3 peaks in the nth state as can be inferred from Fig. 2a, b. It is also noted that with increasing parameter
a, for constant d , Sx increases. For increasing potential depth, Sx decreases which implies the stability of
the system. And by reducing the amount of information entropy increases (information) or the accuracy in
predicting the localization of the particle. Also it should be noted behavior of Sp is contrary Sx . In the Fig. 3a,
b we see that Sx is negative for some given parameter values a. It might be understood that the moving particle
becomes condensed so that it does not move at all. The system becomes more stable at this moment.So we see
that negative Sx is physically meaningless.
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Table 1 Information entropy and the uncertainty relation of the eigenstates n = 0, 1, 2 for different a and d

n d a E 〈x〉 〈x2〉 〈p〉 〈p2〉 �x �p �x�p Sx Sp Sx + Sp

0 10 1 −0.7452 0.5 0.3002 −0.4916 81.7407 0.2241 9.0277 2.0231 −0.4119 3.0306 2.6187
2 −0.9361 1 1.1251 −0.1363 26.8827 0.3537 5.1831 1.8333 0.3193 2.2348 2.5596
3 −0.9716 1.5 2.4543 −0.0602 15.6649 0.4519 3.9574 1.7883 0.0692 2.2348 2.5541

20 1 −0.8744 0.5 0.2901 −0.2639 89.6232 0.2004 9.4633 1.8964 −0.5084 3.0873 2.5789
2 −0.9686 1 1.0953 −0.6667 33.7881 0.3086 5.8124 1.7937 −0.0626 2.6169 2.5543
3 −0.9860 1.5 2.4024 −0.0293 20.4187 0.3904 4.5186 1.7641 0.1742 2.3813 2.5555

30 1 −0.9167 0.5 0.2848 −0.1772 99.0354 0.1865 9.9500 1.8557 −0.5741 3.1396 2.5655
2 −0.9792 1 1.0805 −0.0439 39.2214 0.2838 6.2625 1.7773 −0.1452 2.6997 2.5545
3 −0.9907 1.5 2.3776 −0.0193 24.0997 0.3571 4.9091 1.7530 0.0855 2.4715 2.5570

1 10 1 0.0773 0.5 0.3054 −2.7938 243.261 0.2353 15.3446 3.6106 −0.3789 3.1124 2.7335
2 −0.7272 1 1.1560 −0.7137 72.7527 0.3950 8.4996 3.3573 0.1556 2.5073 2.6629
3 −0.8785 1.5 2.5222 −0.2999 40.3795 0.5217 6.3473 3.3114 0.4405 2.2373 2.6778

20 1 −0.4629 0.5 0.2971 −1.4649 251.753 0.2170 15.7989 3.4284 0.0532 2.6212 2.6701
2 −0.8653 1 2.6615 0.2152 2.6924 1.3440 1.6267 2.1863 1.2537 1.6921 2.9457
3 −0.7483 1.5 2.4631 −0.1410 50.5900 0.4617 7.1113 3.2833 0.3222 2.3775 2.6997

30 1 −0.6430 0.5 0.2923 −0.9559 272.984 0.2057 16.4945 3.3929 −0.5019 3.1642 2.6623
2 −0.9107 1 1.1096 −0.2162 99.4210 0.3310 9.9686 3.2996 −0.0128 2.6992 2.6864
3 −0.9603 1.5 2.4328 −0.2162 99.4210 0.4276 9.9687 4.2626 0.2474 2.6992 2.9466

2 10 1 1.5873 0.5 0.3110 −3.9738 291.251 0.2469 16.5969 4.0978 −0.3421 3.5421 3.2000
2 −0.3336 1 1.1851 −0.0682 21.9574 0.4302 4.6854 2.0156 0.2153 2.8877 3.1341
3 −0.7021 1.5 2.5235 −0.0345 20.8033 0.5808 5.7174 3.3207 0.5207 2.9188 3.4084

20 1 0.3123 0.5 0.3037 −1.0519 313.9150 0.7331 17.6864 12.9659 −0.4123 3.7929 3.3806
2 −0.6694 1 1.1549 −0.0065 20.2889 0.3935 4.5043 1.7724 0.1293 2.8785 3.0078
3 −0.8528 1.5 2.5235 −0.0345 20.8033 0.5230 4.5609 2.3853 0.4201 2.7999 3.2200

30 1 −0.1248 0.5 0.2993 −0.4049 286.8700 0.2221 16.9324 3.7607 −0.4527 3.8668 3.4141
2 −0.7804 1 1.1378 −0.0016 20.6915 0.3713 4.5488 2.6889 0.0740 2.9013 3.9753
3 −0.9023 1.5 2.4891 0.0091 18.5847 0.4889 4.3109 2.1067 0.3555 2.7462 3.1017

In Table (1), we present the numerical results of the information entropies Sx and Sp and their sum for
the lowest states n = 0, 1, 2 with the parameters a and d . It should be noted that the sum of the entropies, in
consistency with the BBM inequality, possesses the stipulated lower bound 1 + ln π .

Morse Potential

For simplicity, we study the n = 0, 1 cases in more details. We can derive the corresponding momentum
representation in analytical form for n = 0 as

φ+(p) =
γ − i p

α
−β�

(
i p
α

+ β
)

√
2πα

(42)

φ−(p) =
pγ − i p

α
−β�

(
i p
α

+ β
)

√
2πα(1 + E)

(43)

For the first exited state n = 1

φ+(p) =
(−2i p + α)γ − i p

α
−β�

(
i p
α

+ β
)

√
2πα2

(44)

φ−(p) =
p(−2i p + α)γ − i p

α
−β�

(
i p
α

+ β
)

√
2πα2(1 + E)

(45)

Hence, the position and momentum probability densities are respectively written for two lowing states n = 0, 1
as
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Fig. 4 The position and momentum space entropy densities for n = 0, 1 and V0 = 10

ρn=0(x) = N 2
x exp

[−2γ e−αx]
(
e−2αβx + α2(−βeαx + γ )2e−2α(1+β)x

(1 + E)2

)
(46)

γn=0(p) =
N 2

pγ
−2β

∣∣∣�
(
i p
α

+ β
)∣∣∣2

2πα2

(
1 + p

1 + E

)2

(47)

and

ρn=1(x) = N 2
x exp

[−2γ e−αx]

×
(
e−2αβx (1 + 2β − 2γ e−αx)2 + α2(β(1 + 2β)e2αx − eαx (3 + 4β) + 2γ 2)2e−2α(2+β)x

(1 + E)2

)

(48)

γn=1(p) =
N 2

pγ
−2β

(
4p2 + α2

) ∣∣∣�
(
i p
α

+ β
)∣∣∣2

2πα4

(
1 + p

1 + E

)2

(49)

Due to analytical limitations, we will use numerical method to show correct results.
Characteristic features of the position and momentum information entropies, ρs(x) and γs(p), are shown

in Figs. 4a, b, 5a, b for the lowest states n = 0, 1 vs. the parameter α . The probability densities ρ(x) and γ (p)
are illustrated in Figs. 4c„ d, 5c, d. We find that the density amplitudes of the ground state n = 0 are greater
than those of the exited states n = 1, 2, . . . . The forms mentioned show that there is no symmetry in such
cases. From Fig. 5a, b it can be inferred that the position probability density has only one peak for n = 0, two
peaks in the exited state n = 1 and n + 1 peaks in the nth state.
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Fig. 5 The position and momentum space probability densities for n = 0, 1 and V0 = 10

Fig. 6 The Shannon entropy in position space for n = 0, 1 and V0 = 10, 20

In Fig. 6a, b, we observe that the position entropy decreases with increasing α and with two different values
for parameter depth potential V0 = 10, 20 in the ground state at limit to zero and in the exited state n = 1
is reduced to less than one. With a little vision can see in Fig. 6a, b in n = 1 state of entropy, the greater the
potential depth V0 = 10, 20, the less energy and entropy is proportional to the it and decreases. Thus, here the
control system is stable and will be more accurately in predict the location of particle in front in momentum
entropy Sp acts quite the reverse.
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Fig. 7 The Shannon entropy in momentum space for n = 0, 1 and V0 = 10, 20

Table 2 Information entropy and the uncertainty relation of the eigenstates n = 0, 1, 2, 3 for different α and V0

n V0 α E 〈x〉 〈x2〉 〈p〉 〈p2〉 �x �p �x�p Sx Sp Sx + Sp

0 10 0.5 −0.9953 0.5610 25.1614 0.0094 0.2179 4.9846 0.4667 2.3263 2.4927 0.5528 3.0455
1 −0.9812 0.2899 6.3304 0.0376 0.8694 2.4993 0.4667 2.3286 1.5075 1.2434 2.7509
1.5 −0.9574 0.2038 2.8439 0.0846 1.9482 1.6740 1.3932 2.3322 1.1125 1.6445 2.7570
2 −0.9238 0.1643 1.6248 0.1507 3.4429 1.2640 1.8494 2.3376 0.8393 1.9260 2.7653

20 0.5 −0.9970 0.9688 31.3622 0.0059 0.2039 5.5157 0.4515 2.4903 2.2002 0.5289 2.7291
1 −0.9880 0.4902 7.8770 0.0239 0.8144 2.7635 0.9021 2.4929 1.5106 1.2208 2.7314
1.5 −0.9730 0.3332 3.5284 0.0538 1.8286 1.8486 1.3512 2.4978 1.1110 1.66242 2.7352
2 −0.9519 0.2568 2.0068 0.0957 3.2411 1.3932 1.7977 2.7405 0.8315 1.9089 2.8404

30 0.5 −0.9978 1.1800 36.0368 0.0045 0.1965 5.8859 0.4432 2.6086 2.1997 0.5159 2.7238
1 −0.9910 0.5942 9.0424 0.0179 0.7852 2.9477 0.8860 2.6117 1.5090 1.2082 2.7172
1.5 −0.9798 0.4009 4.0436 0.0403 1.7644 1.9705 1.3277 2.6162 1.1076 1.6124 2.7200
2 −0.9640 0.3057 2.2945 0.0717 3.1305 1.4836 1.7679 2.6228 0.8256 1.8982 2.7238

1 10 0.5 −0.9574 1.2909 7.5619 0.0845 0.7529 2.4280 0.8635 2.0965 1.8661 1.0366 2.9027
1 −0.8251 0.7119 2.0802 0.3386 2.9304 1.2543 1.6780 2.1047 1.2352 1.6997 2.9349
1.5 −0.5856 0.5640 1.1076 0.7633 6.2419 0.8885 2.3789 2.1136 0.9369 2.0491 2.9860
2 −0.1859 0.5628 0.8703 1.3540 9.9116 0.7440 2.8422 2.1146 0.8294 2.2363 3.0657

20 0.5 −0.9730 1.7732 10.0797 0.0537 0.6829 2.6335 0.8244 2.1710 1.9122 1.0132 2.9254
1 −0.8907 0.9246 2.6615 0.2152 2.6924 1.3440 1.6267 2.1863 1.2537 1.6921 2.9457
1.5 −0.7483 0.6633 1.3036 0.4852 5.8979 0.9293 2.3796 2.9787 0.9064 2.0723 2.9787
2 −0.5354 0.5564 0.8545 0.8642 10.0314 0.7382 3.0470 2.2492 0.7057 2.3204 3.0261

30 0.5 −0.9798 2.0348 11.8256 0.0402 0.6455 2.7722 0.8024 2.2244 1.9403 0.9994 2.9397
1 −0.9186 1.0442 3.0715 0.1612 2.5567 1.4075 1.5908 2.2390 1.2709 1.6837 2.9546
1.5 −0.8142 0.7282 1.4592 0.3632 5.6529 0.9638 2.3497 2.2646 0.9050 2.0737 2.9787
2 −0.6623 0.5841 0.9079 0.6470 9.7804 0.7528 3.0597 2.3033 0.6750 2.3381 3.0131

2 10 0.5 −0.8799 1.4327 6.6352 0.2347 1.7970 2.1406 1.3198 2.8252 1.8195 1.3354 3.1549
1 −0.4751 0.9383 2.3065 0.9399 6.5329 1.1942 2.3767 2.8382 1.3070 1.9680 3.2750

20 0.5 −0.9245 1.8971 8.8404 0.1493 1.6289 2.2894 1.2675 2.9018 1.8564 1.3220 3.1784
1 −0.6859 1.0620 2.6145 0.5984 6.2195 1.2193 2.4210 2.9519 1.2612 1.9892 3.2504

30 0.5 −0.9437 2.1555 10.3658 0.1119 1.5360 2.3915 1.2343 2.9518 1.8832 1.3133 3.1965
1 −0.7691 1.1546 2.8980 0.4482 5.9597 1.2509 2.3998 3.0019 1.2568 1.9907 3.2475

3 10 0.5 −0.7586 1.5719 6.9222 0.4602 3.2969 2.1098 1.7564 3.7056 1.8372 1.5597 3.3969
1 −0.2948 1.2018 4.7192 1.7623 9.1338 1.9179 2.4552 4.7088 1.6081 2.0656 3.6737

20 0.5 −0.8503 1.9866 8.8739 0.2927 3.0189 2.2197 1.7127 3.7026 1.8372 1.5597 3.3969
1 −0.3441 1.2657 3.2312 1.1687 10.7686 1.2764 3.0664 3.9139 1.3619 2.1885 3.5504

30 0.5 −0.8888 2.2278 10.2628 0.2193 2.8558 2.3021 1.6756 3.8574 1.8706 1.5556 3.3762
1 −0.5309 1.2841 3.2517 0.8778 10.6559 1.2661 3.1441 3.9807 1.3121 2.2109 3.5230

As clearly seen from Table 2, the BBM inequality and Heisenberg uncertainty relation hold for the Morse
potential and the sum of entropies Sx +Sp is higher than 1+ ln π value. The significance of the BBM inequality
is that it presents an irreducible lower bound to the entropy sum so that with increasing α, the entropy sum
Sx + Sp tends to be saturated to the boundary value defined by the BBM inequality for the different states n,
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i.e. their sum stays above the stipulated lower bound of 1 + ln π . It can also be found in the Shannon entropy
as a more powerful version of the Heisenberg uncertainty acts.

The other global measurements is check Heisenberg’s uncertainty relation. In fact, uncertainty relations
form the basic properties of quantum mechanics. Where The uncertainty principle is the product of the uncer-
tainty position and momentum as (�x)(�p) � 1

2 (� = 1). Numerical results are shown in Tables 1 and 2
that observe the behave similarly to entropy but with different accuracy .

4 Conclusion

We presented the information-theoretic measures, namely the Shannon information, of Morse and Rosen–
Morse interactions for relativistic fermions. We find that the position information entropy Sx decreases for
parameter α in the case of Morse potential, but the behavior of Sx is contrary to that of the Sp and Sx
increases with increasing a. The impact of parameters V0 and d on the stability of the systems were shown in
detail. Some interesting features of the information entropy densities, ρs(x) and γs(p) , were demonstrated via
various figures and tables. The consistency with Bialynicki-BirulaMycielski (BBM) inequality and Heisenberg
uncertainty were also verified for a number of states.
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Appendix

The following equation is a general form of second order differential equations written for any potentials

[
d2

ds2 + α1 − α2s

s(1 − α3s)

d

ds
+ −ξ1s2 + ξ2s − ξ3

[s(1 − α3s)]2

]
ψ = 0 (50)

That according to the NU method, the eigenfunctions and eigenenergies respectively are

ψ(s) = sα13(1 − α3s)
−α12− α13

α3 P

(
α10−1,

α11
α3

−α10−1
)

n (1 − 2α3s) (51)

and

α2n − (2n + 1)α5 + (2n + 1)
(√

α9 + α3
√

α8
)+ n(n − 1)α3 + α7 + 2α3α8 + 2

√
α8α9 = 0 (52)

where

α4 = 1

2
(1 − α1), α5 = 1

2
(α2 − 2α3), α6 = α2

5 + ξ1, (53)

α7 = 2α4α5 − ξ2, α8 = α2
4 + ξ3, α9 = α3α7 + α2

3α8 + α6,

α10 = α1 + 2α4 + 2
√

α8, α11 = α2 − 2α5 + 2
(√

α9 + α3
√

α8
)
,

α12 = α4 + √
α8, α13 = α5 − (√

α9 + α3
√

α8
)
,

In the special case α3 = 0,

lim
α3→0

P

(
α10−1,

α11
α3

−α10−1
)

n (1 − 2α3s) = L(α10−1)
n (α11s) (54)

lim
α3→0

(1 − α3s)
−α12− α13

α3 = eα13s (55)

So from Eq. (51),we have for the wavefunction

ψ(s) = sα12eα13s L(α10−1)
n (α11s) (56)
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