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Abstract Anomalous magnetic moment of the muon, aμ = (gμ −2)/2, is one of the most precisely measured
quantities in particle physics and it provides a stringent test of the Standard Model. The planned improvements
of the experimental precision at Fermilab and at J-PARC propel further reduction of the theoretical uncer-
tainty of aμ. The hope is that the efforts on both sides will help resolve the current discrepancy between the
experimental measurement of aμ and its theoretical prediction, and potentially gain insight into new physics.
The dominant sources of the uncertainty in the theoretical prediction of aμ are the errors of the hadronic
contributions. I will discuss recent progress on determination of hadronic contributions to aμ from lattice
calculations.

1 Introduction

The contributions of new physics (NP) beyond the Standard Model (SM) to the anomalous magnetic moment
of a lepton, a� = gl−2

2 , are expected to scale as a� − aSM
� ∝ (m2

�/Λ
2
NP) for leptons � = e, μ, τ and some new

physics scale ΛNP. The muon magnetic moment, aμ, is therefore m2
μ/m2

e times more sensitive to NP than the
one of the electron, while the magnetic moment of τ is not yet experimentally accessible. Additionally, aμ can
be obtained with high precision both from the experiment [6], as well as from the SM prediction [26,42] and
as such serves as one of the most sensitive tests of the SM.

The experimental measurement of aμ currently shows a 3σ to 4σ deviation from the SM estimate [26,42].
The summary of various SM contributions to aμ given in Table 1 shows that the dominating uncertainty
comes from the hadronic contributions. The value of the hadronic vacuum polarization (HVP) entering the
theoretical average in Table 1 is obtained via a dispersion integral of the total hadronic e+e− annihilation and
τ -decays cross sections (for comprehensive reviews see [42,51]), while the value of hadronic Light by Light
contribution (HLbL) quoted in Table 1 is purely based on low energy effective QCD hadronic models. Due to
the plans of Fermilab [57] and J-PARC [55] experiments to reduce the experimental uncertainty by a factor
of four, performing an independent check of the phenomenological estimate of the hadronic contributions is
of crucial importance in order to confirm or resolve current discrepancy between theory and experiment, and
potentially gain insight into new physics beyond the SM. Lattice discretization of gauge theories provides a
way to compute the contributions to aμ with prevailing uncertainties, HVP and HLbL, from first principles. We
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Table 1 Comparison between a SM prediction and the experimental result for aμ. The last column contains example Feynman
diagrams for the individual contributions to the total theoretical estimate

Contribution Value Uncertainty Sample diagrams

QED O(α) 116,140,973.21 0.03
μ μ

γ

QED O(α2) 413,217.63 0.01
μ μ μ μ

QED O(α3) 30,141.90 0.00 .
.
.

QED O(α4) 381.01 0.02

QED O(α5) 5.09 0.01
QED, total [2] 116,584,718.95 0.04

Electroweak, total [34] 153.6 1.0
μ μ

Z0, H

W W

ν

HVP (LO) [39] 6949.9 43.0

HVP (NLO) [39] −98.0 1.0

HLbL [43] 116.0 40.0

HVP(NNLO) [46] 12.4 0.1

HLbL(NLO) [22] 3.0 2.0
Theory, total 116,591,855.0 59.0
Experiment [50] 116,592,089.0 63.0

will present in the following sections the ongoing progress of these calculations, aiming to achieve sub-percent
precision for the HVP and ≈10% precision for HLbL.

2 Hadronic Vacuum polarization in Euclidean Space–Time

Ever since the first attempt to perform a lattice QCD computation of the HVP is made by T. Blum [7], a precise
computation of this quantity has become one of the long-standing goals of the lattice comunity. The leading
order HVP correction to aμ at Euclidean space–time is obtained as [7,47]:

aHVP
μ =

(α

π

)2
∫ ∞

0
dQ2 f (Q2) × Π̂(Q2), (1)

where Π̂(Q2) = Π(Q2)−Π(0) is the renormalized scalar vacuum polarization, α is the fine structure constant,
mμ is the muon mass and f (Q2) is analytically known1 function. Gauge and Lorentz invariance relate scalar
hadronic vacuum polarization function and vacuum polarization tensor Πμν(Q) = (Q2δμν − QμQν)Π(Q2),
which can be computed using a lattice discretization of the vector current J emμ :

Πμν(Q) = a4
∑
x

eiQx 〈J emμ (x)J emν (0)〉. (2)

The vector two-point correlator in Eq. 2 consists of the quark-connected and quark-disconnected contributions
illustrated in the leftmost panel of Fig. 1, whose continuum and infinite volume limits are usually computed
independently.

1 f (Q2) = m2
μQ

2Z3(Q2)
1−Q2Z(Q2)

1+m2
μQ

2Z2(Q2)
, where Z(Q2) =

√
(Q2)2+4m2

μQ
2−Q2

2m2
μQ

2 .
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Fig. 1 Left panel Connected HVP (up) and disconnected HVP contribution (down). The dots represent the insertion of the con-
served and/or local vector currents.Central panel Strange HVP function (Πμν(Q) = a4 ∑

x e
iQx 〈J em,s

μ (x)J em,s
ν (0)〉) reproduced

from Ref. [8], measured on N f = 2 + 1 configurations with Domain Wall fermions. Right panel The strange quark contribution
to the integrand of Eq. 1, reproduced from the strange HVP study of Ref. [8]

The integrand of Eq. 1 is strongly peaked at Q2 ≈ m2
μ

4 and the integral corresponding to the aHVP
μ is

therefore dominated by the low momentum region (see Fig. 1). Lattice computation is in practice performed
in a finite box, with time and spatial extents Lμ and periodic boundary conditions. The lattice momenta are
thus quantized: Qμ = 2π

Lμ
nμ, nμ = 0, . . . , Lμ − 1, μ = 0 . . . 3, and this condition leaves us with few lattice

points in the most important region for the evaluation of the HVP integral: around and bellow the peak of the
integrand. The latter calls for the usage of models or parametrizations that would estimate the value of Π(Q2)
in the low momentum region. Moreover, the signal to noise ratio worsens at small Q2. For all these reasons,
a number of tricks for noise reduction and control of the systematic uncertainties needed to be developed in
order to bring the accuracy of the lattice computation of aHVP

μ closer to the precision of the estimates coming
from the phenomenology and experiment.

2.1 Strategies for the Evaluation of the HVP on the Lattice

Initially, computing aHV P
μ in lattice QCD required performing a fit of the lattice data in order to obtain the

renormalized amplitude Π̂(Q2) [4,7,15]. The fits were introducing model dependence that made systematics
difficult to control. We discuss several recent proposals for the non-perturbative determinations of the HVP,
whose development was motivated by overcoming the aforementioned difficulty of model-dependent extraction
of the additive renormalization Π(0) and a slope of the HVP near Q2 = 0.

Padé Approximants In order to avoid uncontrolled systematics originating from performing model dependent
fits of the HVP (usually based on Vector Meson Dominance), a model independent approach for constructing
the functional form of Π(Q2) has been proposed by the authors of Ref. [4]. The suggested method is based
only on known mathematical properties of the vacuum polarization, and consists of fitting a sequence of Padé
approximants to the lattice data. The Padés are such that the full sequence converges to the actual polarization
for any compact region in the complex plane excluding the cut along the negative real axis. Increasing the order
of the Padé approximation allows for testing the stability of the fits and guarantees a more reliable estimate of
the systematics that come mainly from the decreasing precision of lattice data at low Q2.

Time Moments Recently proposed approach by the HPQCD collaboration [19] obtains the HVP by recon-
structing the Adler function from its derivatives. From the space-averaged current-current correlator G(x0) =
− a3

3

∑
x〈J emμ (x)J emν (0)〉, one computes the time-moments of the renormalized HVP by taking the Q2-

derivatives at zero spatial momenta: G2n = (−1)n ∂2n

∂Q2n {Q2Π̂(Q2)}|Q2=0 = a
∑

x0
x2n

0 G(x0). The relation
of the HVP form factor with the constructed time-moments allows us to determine the coefficients of a given
HVP function parametrization (Padé approximants, conformal polynomials etc.). Further developments of this
idea, which replace continuous time-moments with discrete- and/or spatial-moments, have been applied in
more recent works by RBC/UKQCD, Mainz group and BMW collaboration [8,14,41].

Time-Momentum Representation An approach revived in many recent HVP computations [10,30,33] proposes
an alternative to the computation of the HVP in momentum space captured in Eq. 2. One starts from the spatially
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summed vector correlator G(x0), and writes a renormalized HVP as Π̂(Q2) = 1
Q2

∫ ∞
0 dx0G(x0)[Q2x2

0 −
4 sin2( 1

2 Qx0)]. The challenge is here transferred to understanding the large time behavior of G(x0). It can be
shown that the TMR representation is equivalent to the previously discussed Time Moments approach [58].

Analytic Continuation The method discussed in Ref. [30] computes the aHVP
μ at small space-like momenta,

simultaneously with the time-like momenta. This is achieved by keeping the spatial Fourier transform of Eq. 2
and only integrating in the time direction with a factor ewt , such that continuous values of Q2, Q=(q,-iw), are
accessed: Π̄(Q2)(δμνQ2 −QμQν) = ∫

dt ewt
∫
d3x eiqx 〈J emμ (x, t)J emν (0, 0)〉. w is a continuous parameter,

and Π̄(Q2) is a modified HVP form factor, which has been proven to lead to an evaluation of the physical
aHVP
μ . The integration range is divided into two parts: the interval [0, Qmax ], where the analytic continuation is

applied and the integration range [Qmax ,∞) that is treated in a standard way. An advantage of this approach is
that the model dependence comes only from the region [Qmax , ∞). Unfortunately, the method does not seem
to lead to an increased precision in the overall calculation of aHVP

μ . The described approach is utilized in the
computation of aHVP

μ for N f = 2 + 1 + 1 QCD with twisted mass fermions by ETMC [17].

Hybrid Method The approach proposed in Ref. [35] allows for better control of the systematics arising from
the decreasing precision of lattice data in the range of low-Q2. The integral that gives aHVP

μ is this time divided
into three non-overlapping regions: [0, Q2

low],[Q2
low, Q2

high] and [Q2
high, ∞) (cf. Fig. 2). One then applies

different fits/moment methods in the range [0, Q2
low], and performs a simple numerical integration in the

region [Q2
low, Q2

high]. Taking into account that roughly 80% of the contribution to the HVP integral comes

from Q2 < 0.2GeV2 domain [35], this approach helps us give a better estimate of the systematics in the
computation of aHVP

μ by probing different integration boundaries Q2
low and Q2

high . In the application of this

method by RBC/UKQCD [8], the parametrization in the low-Q2 region is varied, alongside the method used to
match the parametrization in this region and the numerical methods used to integrate the mid-Q2 region. This
allowed obtaining a reliable estimate of the overall systematic error, which for the strange quark, interestingly,
came out to be smaller than the statistical error.

2.2 Summary of Current Lattice Evaluations of the Connected HVP

Figure 2 shows the summary of the determinations of different contributions to the HVP by several lattice
collaborations previously presented at Lattice 2016 [58]. In the left panel the strange contributions by Mainz
group on CLS ensembles [41], RBC/UKQCD [8], ETM [17] and HPQCD [19] collaborations are compared
and the results are mutually consistent. The right panel contrasts the PDG estimate of the HVP with the results
by various lattice collaborations, which are treating two, three or all four (u,d,s,c) quark flavors dynamically.
Lattice estimates agree with the PDG value, although the accuracy is still several times lower than the one
from non-lattice methods that are the sole contributors to the PDG result.

Recent lattice works on the connected HVP front that are not covered in this review include the computation
of the HVP by introducing a background magnetic field [5], a suggestion to perform a subtraction of Π(0)

Fig. 2 Left panel Illustration of the hybrid method [35] reproduced from Ref. [8]. Vertical dashed lines represent the integration
boundaries: Qlow , a variable frontier between the parametrization of the low-Q2 region and the intermediate numerical integration
region; and the second boundary Qhigh , where the contact with perturbation theory is made. Center and right panels show the
summary of strange quark and light quark HVP results by several collaborations using methods described in Sect. 2.1. The two
figures are reproduced from the plenary talk by H. Wittig at Lattice 2016 [58]
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using the derivative of the twisting angle [29], computing HVP directly at an arbitrary momentum and in a finite
volume (FV) [54], as well as a systematic study of the FV effects on the BMW ensembles [49]. Additionally,
Ref. [3] gives an estimate of FV effects for the connected HVP from chiral perturbation theory (ChPT) and an
interesting proposal to reduce FV effects by twist averaging has been described in Ref. [48]. The most recent
addition to the rapidly growing literature on lattice determinations of the HVP is the systematic study of the
slope and curvature of the HVP by the BMW collaboration [14], where for the first time continuum limit of
these quantities is performed using six different lattice spacings.

2.3 Disconnected HVP Contribution

Quark-disconnected contributions to vector correlation functions (see Fig. 1) are known to have a bad signal to
noise ratio, and represented one of the main sources of unquantified uncertainties in the earlier computations
of the HVP from the lattice [15,27]. An estimate of the disconnected HVP from one-loop FV lattice ChPT [28]
and an earlier ETMC work [31] that included the disconnected contribution for almost half of the ensembles
used in the study, have been followed by several contemporary computations of this quantity [5,20,38,56].
The latter have rendered this contribution relevant in achieving the aimed sub-percent precision for the total
HVP from the lattice. Recent work by RBC/UKQCD [9] is the first to statistically resolve the signal of the
disconnected HVP with physical light quarks. The success of the latter is due to pinpointing the mechanisms
related solely with the nature of the disconnected contribution, in addition to the application of the noise
reduction techniques such as all-mode-averaging strategy [13], all-to-all quark propagators [32], and sparse
random sources. Moreover, light-strange quark difference is computed directly, as previously proposed in Ref.
[38], and a result for the disconnected HVP amounting to ≈1.5% of the total HVP at 3σ level is obtained [9].

2.4 Isospin Breaking Correction to the HVP

Similarly to the disconnected piece, the isospin breaking corrections to the HVP are expected to be at a few
percent level. However, the goal precision for the HVP from the lattice cannot be achieved before we control
the effect of performing the lattice computation in the isosymmetric limit: with up ad down quark masses
degenerate and no electromagnetic effects taken into account. Up to now, only a limited number of efforts
have been invested in lattice community, in order to determine the isospin breaking effects to the hadronic
observables in high precision lattice simulations (for a recent review see [52]). The existing estimates of the
isospin breaking corrections to the HVP based on phenomenological input [21,44], speak in favor of the
importance of this correction for reaching a sub-percent precision of the HVP from the lattice. In particular,
the error budget of [21] quotes precisely the unaccounted isospin breaking effects as the largest contribution
to the total uncertainty. The definite answer regarding the significance of these effects can be obtained only by
carrying out a lattice calculation and several such studies are on the way [16,45].

2.5 HVP from New Experiments Combined with Lattice QCD

Note that an alternative way to write Eq. 1 features the running of the fine structure constant: aHVP
μ =

( α
π
)
∫ 1

0 dx(1 − x)Δαhad(−Q2) [47], where Q2 = x2m2
μ

1−x . Recently, a couple of novel approaches to perform
a direct space-like measurement of the hadronic contributions to the running of the fine structure constant,
Δαhad(−Q2), have been proposed [1,18]. A precise value of Δαhad(−Q2) could be obtained either in Bhabha
scattering with a small modification of the existing experiments [18], or in the recently proposed measurement
of the scattering of the high-energy muons on the fixed electron target [1]. The statistical precision of the value
of aHVP

μ obtained from the latter of the two proposed experiments is estimated to be O(0.3%) after two years
of data taking, while the systematics still need to be accounted.

The original proposals assume using time-like dispersive data and/or perturbation theory beyond the max-
imal space-like momenta that can be achieved in space-like scattering experiments, Q2

exp. Similarly to the
Hybrid Method described in Sect. 2.1, one could instead combine the input from the newly proposed exper-
iments in some low momentum integration range [0, Q2

exp] with lattice QCD calculation of the contribution
to the aHVP

μ from the region [Q2
exp, Q

2
high], and finally make contact with perturbation theory at some value
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Q2
high . Due to the complementarity of the integration ranges where the proposed space-like experimental mea-

surements and lattice QCD give precise results, the value of aHVP
μ obtained by combining the two methods is

expected to be comparable to the projected accuracy of the g − 2 experiments at Fermilab and J-PARC.

3 Hadronic Light by Light contribution

The value for the Hadronic Light by Light contribution entering the phenomenological estimate of aμ

[43] (cf. Table 1) is based on model calculations and lattice methods allow for the model indepen-
dent evaluation of these estimates. In the previously described HVP calculations, one would first sep-
arate QED and QCD contributions, such that only the QCD piece is computed on the lattice. Follow-
ing a similar approach for HLbL would require to resolve the four point correlation function aHLbL

μ ∝∫
dQ2 f ′(Q2)

∑
x1,x2,x3,x4

eiQx 〈Jμ(x1)Jν(x2)Jρ(x3)Jσ (x4)〉 from the lattice, which is computationally very
demanding. A feasible methodology to compute the HLbL contribution to aμ by factorizing the QED part
has been first proposed by T.Blum, T. Izubuchi and M. Hayakawa [40]. An original approach of combining
lattice QCD and stochastically generated photon propagators [10,40] has recently been superseded with a more
promising approach of replacing stochastic QED with the analytic photon propagators[11,12]. On the other
hand, recent progress in the dispersive-based analysis inspired by a data-driven HVP calculations [23–25,53]
has motivated lattice practitioners to revisit the mentioned approach of calculating HLbL by computing the
four-point correlator on the lattice. Its recent implementation by the Mainz group assumes the computation
of the multidimensional integral over a position-space QED kernel in the continuum [36]. This proposal has
recently been tested by evaluating the π0-pole contribution to the HLbL scattering amplitude [37] and a more
complete calculation is underway.

In the lattice calculation of the HLbL contribution, again both the connected and the disconnected pieces
have to be taken into account. Despite the tremendous advances the computations of connected HLbL have
seen in the previous years, the disconnected contribution still remains a challenge, particularly due to the
fact that unlike for the HVP, for the HLbL there is no reason to expect its suppression with respect to the
connected part. This concern has been confirmed in a recent calculation by RBC [11], which estimates the
leading disconnected piece for HLbL to be as as much as ≈50% of the connected one.

4 Summary and Outlook

Due to its high sensitivity to the potential physics beyond the Standard Model, muon magnetic moment is
an optimal channel to unravel new physics. The dominating uncertainties in the theoretical estimate of aμ

come from the hadronic contributions: the leading order HVP and HLbL. The computation of the connected
contribution to the HVP has become a mainstream calculation for lattice QCD by now, and it is particularly
encouraging to see that more and more lattice studies are focused on computing the disconnected and isospin
breaking corrections to the HVP, as well as the HLbL contributions. It is expected that once the effect of
the isospin breaking to the HVP is known with a precision of O(10%), the sub-percent accuracy of the HVP
contribution from the lattice will already be achieved. The experimental precision of the anomalous magnetic
moment will be improved four times in the next couple of years at the Fermilab new experiment E989 [57] and
at J-PARC, E34 [55], making the verification and improvement of the current theoretical prediction of aμ a
timely task. For all these reasons, it is crucial to invest in further development of the lattice methods described
in this review and to devise new methods, in order to take full advantage of the first principles calculations of
the hadronic contributions to aμ.
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