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Abstract In this exploratory study, final state interactions are considered to formulate the B meson decay
amplitude for the Kππ channel. The Faddeev decomposition of the Bethe–Salpeter equation is used in order
to build a relativistic three-body model within the light-front framework. The S-wave scattering amplitude
for the Kπ system is considered in the 1/2 and 3/2 isospin channels with the set of inhomogeneous integral
equations solved perturbatively. In comparison with previous results for the D meson decay in the same
channel, one has to consider the different partonic processes, which build the source amplitudes, and the larger
absorption to other decay channels appears, that are important features to be addressed. As in the D decay
case, the convergence of the rescattering perturbative series is also achieved with two-loop contributions.

1 Introduction

Heavy quark decays are largely explored in the literature. Due to the large B meson mass (mb), there are several
approaches for B decays based on QCD effective field theories within heavy quark expansions [1–4]. They are
based on factorization of the hadronic matrix elements and mainly consider short-distance physics. The weak
effective Hamiltonian is constructed based on tools from quantum field theory, such as the operator product
expansion to separate the problem in the long-distance and short-distance physics. The perturbative treatment
is justified by the fact that the strong coupling constant αs is small in high energy short-distance processes. The
long-distance physics and its non-perturbative nature leads to divergent amplitudes that are complicated to deal
with and requires care. The called soft final state interactions (FSI) shows to be essential in studies involving
B meson decays, since it does not disappear for large mb [5]. However, within the QCD factorization approach
it was shown that type of effects are suppressed in the heavy quark limit in the case of two-body decays [1,2].
Contributions coming from long-distance inelastic rescattering is expected to be the main source of soft FSI
and can be substantial in charge-parity (CP) violation distributions [6,7]. Rescattering effects can also explain
the appearance of events in very suppressed decay channels. A recent experimental study of the charmless Bc
decay to the KKπ channel, which within the Standard Model can only occur by weak annihilation diagrams,
shows some events in the phase space of this channel [8]. This can be related with hadronic rescattering
inelastic transitions to that final decay channel. QCD factorization calculations of two-body Bc decays, also
suppressed, can explain that small branching ratios [9]. Contributions coming from final state interaction for
the B+ → J/ψπ+ decay within the QCD factorization approach was further considered in [10].
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FSI play an important role in heavy meson weak decays. This interactions usually appears as suppressed
non-factorizable effects in QCD factorization, but even within this approach it is shown that in the center
of the Dalitz plot physical values of mb seem not to be large enough to suppress significantly that power-
corrections [11]. As a test of CP violation, FSI are essential to guarantee CPT invariance [6,7]. A practical
theoretical approach was used to study these three-body charmless B± decays in [6]. A more general for-
mulation, including resonances and its interferences, applied for four B decay channels is found in Ref. [7].
CP violation in the low invariant mass of the ππ system of the B → πππ decay channel is also studied in
Ref. [12,13], where contributions from scalar and vector resonances are considered. The S-wave ππ elastic
scattering in the region below the ρ mass has also the important contribution from the f0(600) resonance, as
showed in Ref. [14] for a four-body semileptonic decay.

Our goal in the present work is to address the issue of three-body FSI in the specific B+ → K−π+π+
decay, with emphasis in the S-wave K−π+ amplitude, as an exploratory first approach study. In order to
proceed in such direction, we closely follow the formalism developed for the D decay in Ref. [15].

Our study is based in a relativistic model for the three-body FSI that was applied to the D+ → K−π+π+
decay [15–17]. In Ref. [15], the isospin projection of the decay amplitude was performed to study different
isospin state contributions to the K−π+ rescattering. In that model, by starting from a Bethe–Salpeter like
equation and using the Faddeev decomposition, the decay amplitude was separated into a smooth term and a
three-body fully interacting contribution. Moreover, the amplitude was factorized in the standard two-meson
resonant amplitude times a reduced complex amplitude for the bachelor meson, that carries the effect of the
three-body rescattering mechanism. The off-shell bachelor amplitude is a solution of an inhomogeneous Fad-
deev type integral equation, that has as input the S-wave isospin 1/2 and 3/2 K−π+ transition matrix. In the
Faddeev formulation, the integral equation has a connected kernel, which is written in terms of the two-body
amplitude. The light-front (LF) projection of the equations [18] was performed to simplify the numerical
calculations, and interactions between identical charged pions were neglected. A different coupled-channel
framework, considering both ππ and Kπ empirical scattering amplitudes, was used in Ref. [19] to study the
D+ → K−π+π+ Dalitz plot.

Here we discuss the perturbative solutions of the LF integral equations for the bachelor amplitude in the
B meson decay. To check the convergence of the series expansion, we go up to terms of third order in the
two-body transition matrix. The numerical results for the B+ → K−π+π+ decay with three-body FSI and
Kπ interactions in I = 1/2 and 3/2 states are presented. The S-wave Kπ amplitude depends on the isospin
of the system. There are two isospin states possible for this system, namely, I = 1/2 and I = 3/2. The LASS
experimental data [20] shows resonances and the corresponding scattering amplitude poles only in the isospin
1/2 channel. This feature is used here to model the Kπ S-matrix used in the B decay amplitude.

In the recent paper of Nakamura [19], it is discussed that the effect of the π+π0 p-wave (I = 1) interaction
can contribute to the D+ → K−π+π+ decay only through the rescattering, with this contribution being a pure
coupled-channel effect. Our model is a single channel model for B+ → K−π+π+. It is well known that the
effect of coupled channels in single channel model, like the present one, is represented by effective absorptive
interaction. In our single channel model, this will correspond to a three-body absorptive interaction. Indeed, the
coupling to other channels is introduced by the ε parameter in the three-body propagator, and, as we will show,
this parameter is important for the resulting three-body decay amplitude. From this point of view, other channels
can have important consequences on the form of B-meson decay amplitude. The loss of flux in our three-body
model corresponds to the presence of other channels. As one introduce explicitly all the coupled channels, three-
body unitarity has to be satisfied. A single channel representation of the rescattering process has to include the
loss of probability flux given in our case by the finite width given in the three-body propagator. Physically, this
finite width has to be associated with the transition to different channels and the channel formed by the neutral
kaon, neutral pion and charged pion, is particularly important, since it allows the π+π0 p-wave (I = 1) inter-
action that generates ρ(770), and plays a major role in the FSI in the D+ → K−π+π+ decay. The same effect
is possibly present also in the B+ → K−π+π+ decay. However, effectively the coupling to other channels in
our approach is taken into account qualitatively by allowing to a finite width (ε) to the three-body propagator.

2 Decay Amplitude for B+ → K−π+π+ Decay with FSI

2.1 S-wave Kπ Scattering Amplitude

The three-body rescattering model used here to study the decay amplitude with FSI, requires a two-body
transition matrix as input. In the same way we have done in the D+ → K−π+π+ decay in Ref. [15], the Kπ
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S-wave elastic scattering amplitude is introduced in the resonant IKπ = 1/2 and non-resonant IKπ = 3/2
isospin states. We use the same parametrization fitted to the LASS data [20] including two resonances above
K ∗

0 (1430), namely K ∗(1630) and K ∗
0 (1950). The main reason to use the additional K ∗

0 (1630) and K ∗
0 (1950)

resonances is the LASS data, where the whole kinematical range up to 1.89 GeV is fitted. We choose here to
not introduce new resonances in the K−π+ I = 1/2 channels as it seems that no higher mass resonances are
present in this channels, according to the PDG. In addition, the I = 3/2 channels seem to be a simple S-wave
scattering parametrized by the first two terms in the effective range expansion. In order to not introduce more
assumptions, we prefer to be conservative and keep what was used in the previous paper [15]. In our analysis, we
also neglect the ππ interaction. The same approximation was also considered in the D decay case of Ref. [15].

The parametrized S-matrix (S1/2

Kπ ) is written as:

S1/2

Kπ = k cot δ + i k

k cot δ − i k

3∏

r=1

M2
r − M2

Kπ + i zr Γ̄r

M2
r − M2

Kπ − i zrΓr
(1)

where zr = k M2
r /(kr MKπ ) and k is the c. m. momentum of each meson of the Kπ pair. Following this

S-matrix, the scattering amplitude reads

τIKπ

(
M2

Kπ

) = 4π
MKπ

k

(
S
IKπ

Kπ − 1
)

. (2)

The parameters associated to the K ∗
0 (1430), K ∗

0 (1630) and K ∗
0 (1950) resonances are (Mr , Γr , Γ̄r ) given by

(1.48, 0.25, 0.25), (1.67, 0.1, 0.1) and (1.9, 0.2, 0.14), respectively [16].
The non-resonant part of the scattering amplitude is parameterized by an effective range expansion as

k cot δ = 1
a + 1

2r0 k2 using a = 1.6 GeV−1 and r0 = 3.32 GeV−1. By using such a model, the S-wave Kπ

amplitude in the I = 3/2 state is given by S3/2

Kπ = k cot δ+i k
k cot δ−i k , with the effective range expansion parameters

a = −1.00 GeV−1 and r0 = −1.76 GeV−1 taken from Ref. [21].
The parametrization from the three-resonance model and the IKπ = 1/2 S-wave phase-shift compared

to the LASS data shows good agreement. The results of the parametrization for |S1/2

Kπ − 1|/2 are shown and
discussed in more details in Ref. [15].

2.2 Three-Body Rescattering Bethe–Salpeter Model

The full decay amplitude including the rescattering series and the 3 → 3 transition matrix is written as [15]:

A(kπ , kπ ′) = B0(kπ , kπ ′)

+
∫

d4qπd4qπ ′

(2π)8 T (kπ , kπ ′ ; qπ , qπ ′)Sπ (qπ ) Sπ (qπ ′)SK (K − qπ ′ − qπ )B0(qπ , qπ ′), (3)

where the momentum of the pions are kπ and kπ ′ and K is the total momentum of the system, which is used
to write the two-body invariant mass of the Kπ system as M2

Kπ = (K − kπ ′)2.
The short-distance physics resides in the B0(kπ , kπ ′) amplitude, which represents the quark level amplitude.

The sum of rescattering diagrams, considered in the ladder approximation, is in the second term of Eq. (3) and
composes the long range physics. This term is composed by the 3 → 3 transition matrix T (kπ , kπ ′ ; qπ , qπ ′)
with the source term and the meson propagators Si (qi ) = i(q2

i −m2
i +iε)−1, where self-energies are neglected.

The Kπ transition matrix sum all 2 → 2 collision terms. The full transition matrix with the FSI is a solution
of the Bethe–Salpeter equation, used with its Faddeev decomposition.

2.3 Decay Amplitude

The full three-body T-matrix gives the final state interactions between the mesons in the decay channel and
it is a solution of the Bethe–Salpeter equation. Here we follow the formalism developed in Ref. [15], where
the Faddeev decomposition including only two-body irreducible diagrams for spinless particles without self-
energies is considered. Only two body interactions are considered, involving all three-particles except between
the equal charged pions.
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The two-body transition matrix written with a four-conservation delta factorized out reads

Ti
(
k′
j , k

′
k; k j , kk

)
= (2π)4τi (si ) S

−1
i (ki ) δ

(
k′
i − ki

)
, (4)

where the Mandelstam variable si = (k j + kk)2 is the only dependence considered and τi (si ) is the unitary
S-wave scattering amplitude of particles j and k. Using the separable form of Eq. (4) the problem is reduced
to a four-dimensional integral equation in one momentum variable for the Faddeev components of the vertex
function.

The full decay amplitude considering interactions between all the final states mesons reduces to

A0(ki , k j ) = B0(ki , k j ) +
∑

α

τ(sα)ξα(kα) , (5)

where the subindex in A0 denotes the S-wave two-meson scattering and the bachelor amplitude ξ(ki ) carries
the three-body rescattering effect and is represented by the connected Faddeev-like equations

ξ i (ki ) = ξ i0(ki )

+
∫

d4q j

(2π)4 S j (q j )Sk(K − ki − qk)τ j (s j )ξ
j (q j ) +

∫
d4qk
(2π)4 S j (K − ki − qk)Sk(qk)τk(sk)ξ

k(qk).

(6)

with qk = K − ki −q j . In Eq. (6), both, amplitude and phase, depending on the bachelor meson on-mass-shell
momentum and τ(si ), can take into account two-meson resonances. The parameterized Kπ scattering ampli-
tude τi (M2

Kπ) reproduces the LASS experimental [20] S-wave phase-shift in the isospin 1/2 and 3/2 channels.
By taking into account all the model assumptions, the decay amplitude for the B+ → K−π+π+ process

is given by

A0(kπ , kπ ′) = B0(kπ , kπ ′) + τ(M2
Kπ )ξ(kπ ′) + τ(M2

Kπ ′)ξ(kπ) , (7)

where M2
Kπ = (K − kπ ′)2, M2

Kπ ′ = (K − kπ)2 and the bachelor pion on-mass-shell momentum is given by

|kπ | =
⎡

⎣
(
M2

B + m2
π − M2

Kπ ′
2 MB

)2

− m2
π

⎤

⎦

1
2

. (8)

The rescattering series comes from the solution of Eq. (9), where the second and third terms in Eq. (6) corre-
spond to higher order loop diagrams.

The inhomogeneous integral equation for the spectator amplitude in the three-body collision process is a
function only of the bachelor momentum (see [15]),

ξ(k) = ξ0(k) +
∫

d4q

(2π)4 τ
(
(K − q)2) SK (K − k − q) Sπ (q) ξ(q), (9)

where the first term is

ξ0(k) =
∫

d4q

(2π)4 Sπ (q)SK (K − k − q)B0(k, q), (10)

with the partonic decay amplitude described by B0(k, q).
The two basic contributions for the decay amplitude are the well behaved function B0(kπ , kπ ′) and three-

body rescattering term τ
(
M2

Kπ ′
)
ξ(kπ ). The operator τ acts on the isospin states 1/2 and 3/2. The complex

decay amplitude can be decomposed in terms of phase and amplitude as

A
(
M2

Kπ ′
) = 1

2
〈Kππ |B0〉 + 〈Kππ |τ (

M2
Kπ ′

) |ξ(kπ )〉 = a0
(
M2

Kπ ′
)
e
iΦ0

(
M2

Kπ ′
)

, (11)

which is a function of only M2
Kπ ′ and |Kππ〉 represents the state in isospin space.



B+ → K−π+π+: Three-Body Final State Interactions and Kπ Isospin States Page 5 of 12 98

3 FSI Light-Front Equations

The equations presented for the decay processes considering FSI effects are simplified when treated in light-
front dynamics. The light-front (LF) projection of the four-dimensional coupled equations presents a three-
dimensional form. Such a technique was successfully applied for the heavy meson decays presented in Ref. [15]
and will also be used here to treat the B → Kππ decay problem.

The light-front projection performed in the field-theoretical inhomogeneous three-body BS equation to
build the integral equations used in our work, corresponds to the truncation of the light-front Fock-space
to the three-meson valence component in the intermediate. The advantages of performing the LF projection
is that Z-diagrams are in general suppressed [22]. In addition, the integral equations with only the valence
three-meson state are covariant under seven LF kinematical transformation, namely, the ones that keep the
null-plane invariant, which includes three translations, rotation around the z-direction, two other kinematical
boosts, and the boost along the z-direction. The truncation of the LF Fock-space is stable under the kinematical
boosts [23]. In contrast, the Fock-space truncation in the instant form has only three translations and three
rotations and no-boosts.

After all manipulations, discussed in details in [15], the integral equation in terms of the LF variables reads

ξ i (y,k⊥) = ξ i0(y,k⊥)

+ i

2(2π)3

∫ 1−y

0

dx

x(1 − x − y)

∫
d2q⊥

[
τ j

(
M2

ik(x, q⊥)
)
ξ j (x,q⊥)

M2 − M2
0 (x,q⊥; y,k⊥) + iε

+ ( j ↔ k)

]
, (12)

where M2 = KμKμ, y = k+
i /K+, x = q+

j /K+ or x = q+
k /K+ in the first or second integral in the right-hand

side of the equation. The free three-body squared mass is

M2
0 (x,q⊥; y,k⊥) = k2⊥ + m2

i

y
+ q2⊥ + m2

j

x
+ (k⊥ + q⊥)2 + m2

k

1 − x − y
. (13)

The argument of the two-body amplitude τ j
(
M2

ik(x, q⊥)
)

should be understood as

M2
ik(x, q⊥) = (1 − x)

(
M2 − q2⊥ + m2

j

x

)
− q2⊥. (14)

The driven term in Eq. (12) is rewritten as

ξ i0(y,k⊥) = i

2(2π)3

∫ 1−y

0

dx

x(1 − y − x)

∫
d2q⊥

B0(x,q⊥; y,k⊥)

M2 − M2
0 (x,q⊥; y,k⊥) + iε

= B0 ξ0(y, k⊥) (15)

where B0(x,q⊥; y,k⊥) = B0 is the short-distance amplitude, taken as a constant in this work.
Since the integral over q⊥ is divergent, a regularization procedure is needed. Here we use a finite subtraction

constant λ(μ2), and a subtraction point within the integration kernel of Eq. (15). This method leads to the
following driven term

ξ0(y, k⊥) = λ(μ2)

+ i

2

∫ 1

0

dx

x(1 − x)

∫ 2π

0
dθ

∫ ∞

0

dq⊥q⊥
(2π)3

[
1

M2
Kπ(y, k⊥) − M2

0,Kπ (x, q⊥) + iε
− 1

μ2 − M2
0,Kπ(x, q⊥)

]

(16)

with the Kπ system free squared-mass given by M2
0,Kπ(x, q⊥) = q2⊥+m2

π

x + q2⊥+m2
K

1−x . After integration over θ
and q⊥, Eq. (16) is finally written as

ξ0(y, k⊥) = λ(μ2) + i

4

∫ 1

0

dx

(2π)2 ln
(1 − x)

(
xM2

Kπ(y, k⊥) − m2
π + i xε

) − xm2
K

(1 − x)
(
xμ2 − m2

π

) − xm2
K

. (17)



98 Page 6 of 12 J. H. A. Nogueira et al.

4 Application in the B+ → K−π+π+ Decay

The model for the B+ → K−π+π+ decay with FSI is based on an inhomogeneous integral equation for the
spectator meson, with the meson-meson scattering amplitude as input. Isospin states of the ππ interaction
are disregarded here, unlike the IKπ = 1/2 and IKπ = 3/2 states for the K∓π± channel, consider in our
calculations. Our parametrization for the Kπ amplitude follows the experimental results of [20], where the
resonant IKπ = 1/2 channel below K ∗

0 (1430) dominates and the IKπ = 3/2 amplitude is comparable. This
model is the same used in Ref. [15] to study the D+ → K−π+π+ decay. A calculation up to two loops for
this same decay was performed in Ref. [17] bellow K ∗

0 (1430).
Here the LF model is applied to the B decay and the calculations are performed up to three-loops in

order to check the numerical convergence of the integrals. There are two possible total isospin states, namely,
IT = 5/2 and 3/2. In our notation, the bachelor amplitude has the total isospin index and the one related with

the interacting pair ξ
I zT
IT ,IKπ

(y, k⊥), where we also consider the isospin projection index. The source amplitude
written in terms of the Kπ isospin state reads

|B0〉 =
∑

IT ,IKπ

α
I zT
IT ,IKπ

∣∣IT , IKπ , I zT
〉 +

∑

IT ,IKπ ′
α
I zT
IT ,IKπ ′

∣∣IT , IKπ ′, I zT
〉
, (18)

which has no dependence on the momentum variables and has an arbitrary normalization, since we are not con-
sidering explicitly short-distance processes in our calculations. For sake of simplicity we define the recoupling

coefficients as R
I zT
IT ,IKπ ,IKπ ′ = 〈

IT , IKπ , I zT |IT , IKπ ′, I zT
〉
. This allows us to write the set of isospin coupled

integral equations as

ξ
I zT
IT ,IKπ

(y, k⊥) = 〈
IT , IKπ , I zT |B〉

ξ0(y, k⊥) + i

2

∑

IKπ ′
R
I zT
IT ,IKπ ,IKπ ′

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3

×KIKπ ′ (y, k⊥; x, q⊥) ξ
I zT
IT ,IKπ ′ (x, q⊥), (19)

where the free squared mass of the Kππ system is

M2
0,Kππ(x, q⊥, y, k⊥) = k2⊥ + m2

π

y
+ q2⊥ + m2

π

x
+ q2⊥ + k2⊥ + 2q⊥k⊥ cos θ + m2

K

1 − x − y
, (20)

with the squared-mass of the virtual Kπ system M2
Kπ(z, p⊥) = (1 − z)

(
M2

B − p2⊥+m2
π

z

)
− p2⊥. The kernel

carrying the Kπ scattering amplitude is

KIKπ ′ (y, k⊥; x, q⊥) =
∫ 2π

0
dθ

q⊥ τIKπ ′
(
M2

Kπ ′(x, q⊥)
)

M2
B − M2

0,Kππ(x, q⊥, y, k⊥) + iε
. (21)

Isospin 2 states of pion-pion interactions are not considered in the model, which will be explored as a single
channel model, with the Kπ S-wave interaction in the resonant I = 1/2, and as a coupled channel model with
both I = 1/2 and 3/2 Kπ S-wave interactions.

The symmetrized decay amplitude with respect to the identical pions is written as

A0 = A0
(
M2

Kπ ′
) + A0

(
M2

Kπ

)
. (22)

The isospin projection on each term leads to

A0
(
M2

Kπ ′
) =

∑

IT ,IKπ ′ ,I zT

〈
K−π+π+∣∣ IT , IKπ ′, I zT

〉 [1

2

〈
IT , IKπ ′, I zT

∣∣ B0〉 + τIKπ

(
M2

Kπ ′
)
ξ
I zT
IT ,IKπ ′ (kπ )

]

= a0
(
M2

Kπ ′
)
e
iΦ0

(
M2

Kπ ′
)

. (23)
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5 Numerical Perturbative Solutions

The problem is solved by integrating the terms starting from the driving term and iterating as a perturbative
series. The integrations are done up to three loops in order to check the convergence. In the coupled-channel
calculations, the total isospin states I = 3/2 are performed coupling IKπ = 1/2 or IKπ = 3/2 states. We also
consider the IT = 5/2 with its single contribution in the Kπ interaction for the isospin 3/2 states.

For the single channel case we consider only Kπ interaction in the resonant isospin 1/2 states and the
perturbative solution of the equation up to three-loops reduces to

ξ 3/2
3/2,1/2(y, k⊥) = 1

6

√
2

3
ξ0(y, k⊥) − i

3

(
1

6

√
2

3

)∫ ∞

0

dq⊥
(2π)3

∫ 1−y

0
dx K1/2(y, k⊥; x, q⊥) ξ0(x, q⊥)

−1

9

(
1

6

√
2

3

) ∫ ∞

0

dq⊥
(2π)3

×
∫ 1−y

0
dx K1/2(y, k⊥; x, q⊥)

∫ ∞

0

dq ′⊥
(2π)3

∫ 1−x

0
dx ′ K1/2(x, q⊥; x ′, q ′⊥) ξ0(x

′, q ′⊥)

+ · · · (24)

where we compute driving term considering α
3/2
3/2,1/2 = 1 and the kernel K1/2 is defined by Eq. (21). This

equation has an arbitrary normalization factor, coming from the source partonic amplitude, which we assume
to be constant.

The numerical integration over the radial variable is computed introducing a momentum cut-off Λ =
0.8 GeV. This is smaller than in the D decay case, but in that case the change of the cutt-off parameter from
2.0 to 0.8 GeV practically does not alter the results. In the B case, the use of Λ = 2.0 GeV is very expensive
numerically, and probably this is related to the large non-physical region accessed.

The finite value of the momentum cut-off represents roughly the two-meson interaction range, that is some-
what related to the size of the mesons itself. If the Kπ model interaction had a finite range, naturally a cut-off
in the hadronic loop would appear and, in our case, it is brought by the momentum cut-off.

Concerning the ε parameter, the value used here was ε = 0.5 GeV2, which is larger than the one used
in the D decay case. In fact, since the B phase space is very large, we know that the absorption is higher
comparing with the D decay. Here we mimic this effect by using a larger value for the ε parameter. We have
tested different values of ε (close to ε = 0.5 GeV2), obtaining a small difference in the results. The subtraction
constant in the driving term is chosen to be zero.

Regarding the convergence of the loop expansion, we have studied it up to three-loops. The results con-
cerning phase and modulus of the bachelor function is depicted in Fig. 1.
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It was used μ2 = (0.4,−0.1) GeV2, in order to verify the effect of the subtraction point in the calcula-
tions. We have also used ε = 0.5 GeV2. For a fixed value of μ2 it is clear that the two-loop solution already
present convergence and is enough for practical applications. This finding is similar to that observed in the D
decay case, but now the results are even better concerning the convergence. The phase is always positive for
μ2 = 0.4 GeV2, but can be either positive or negative for μ2 = −0.1 GeV2. The phase variation is large for
μ2 = −0.1 GeV2 and presents a minimum increasing again for μ2 = 0.4 GeV2. In both cases the modulus
increases for larger two-body invariant masses.

5.1 Interaction for Coupled Channels in IKπ = 1/2 and 3/2 States

In the coupled channels case the set of integral equations obtained from Eq. (19) reads

ξ 3/2
3/2,1/2(y, k⊥) = Aw ξ0(y, k⊥)

+ i R3/2
3/2,1/2,1/2

2

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3 K1/2(y, k⊥; x, q⊥) ξ 3/2

3/2,1/2(x, q⊥)

+ i R3/2
3/2,1/2,3/2

2(2π)3

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3 K3/2(y, k⊥; x, q⊥) ξ 3/2

3/2,3/2(x, q⊥), (25)

ξ 3/2
3/2,3/2(y, k⊥) = Bw ξ0(y, k⊥)

+ i R3/2
3/2,3/2,1/2

2

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3 K1/2(y, k⊥; x, q⊥) ξ 3/2

3/2,1/2(x, q⊥)

+ i R3/2
3/2,3/2,3/2

2

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3 K3/2(y, k⊥; x, q⊥) ξ 3/2

3/2,3/2(x, q⊥). (26)

and for IT = 5/2:

ξ 3/2
5/2,3/2(y, k⊥) = Cw ξ0(y, k⊥)

+ i R3/2
5/2,3/2,3/2

2

∫ 1−y

0

dx

x(1 − y − x)

∫ ∞

0

dq⊥
(2π)3 K3/2(y, k⊥; x, q⊥) ξ 3/2

5/2,3/2(x, q⊥), (27)

where the isospin states related to the projection of the partonic amplitude (18) brings the weights Aw,
Bw and Cw, given by Aw = 〈

IT = 3/2, IKπ = 1/2, I zT = 3/2
∣∣ B0〉, Bw = 〈3/2, 3/2, 3/2| B0〉 and

Cw = 〈5/2, 3/2, 3/2| B0〉 where the isospin coefficients are Aw = α3/2
3/2,1/2(1 + R3/2

3/2,1/2,1/2) + α3/2
3/2,3/2R

3/2
3/2,1/2,3/2,

Bw = α3/2
3/2,3/2(1 + R3/2

3/2,3/2,3/2) + α3/2
3/2,1/2R

3/2
3/2,3/2,1/2 and Cw = α3/2

5/2,3/2(1 + R3/2
5/2,3/2,3/2). The coefficients α come from the

partonic decay amplitude (18) projected onto the isospin space and are defined as α3/2
3/2,1/2 = W1

2 C 1/2 1 3/2
1/2 1 3/2 C

1 1/2 1/2
1 -1/2 1/2,

α3/2
3/2,3/2 = W2

2 C 3/2 1 3/2
1/2 1 3/2 C

1 1/2 3/2
1 -1/2 1/2 and α3/2

5/2,3/2 = W3
2 C 3/2 1 5/2

1/2 1 3/2 C
1 1/2 3/2
1 -1/2 1/2 and the Clebsch-Gordan and recoupling coefficients

C 1/2 1 3/2
1/2 1 3/2 = 1 , C 1 1/2 1/2

1 -1/2 1/2 = √
2/3 , C 3/2 1 3/2

1/2 1 3/2 = −√
2/5 , C 1 1/2 3/2

1 -1/2 1/2 = 1/
√

3 , C 3/2 1 5/2
1/2 1 3/2 = √

3/5 , R3/2
3/2,1/2,1/2 = −2/3 ,

R3/2
3/2,1/2,3/2 = √

5/3 , R3/2
3/2,3/2,3/2 = 2/3 , R3/2

3/2,3/2,1/2 = √
5/3 , and R3/2

5/2,3/2,3/2 = 1 . With all these manipulations the

weights Aw, Bw, and Cw reads Aw =
√

1
54 (W1 − W2), Bw =

√
5

54 (W1 − W2) and Cw = W3√
5
.

Also in this coupled channels case, the bachelor amplitude is computed to check the convergence. The
coupled equations of Eq. (25) appear in the case IT = 3/2. For IT = 5/2, it is a single channel equation
Eq. (27). The results are shown in Fig. 2, using ε = 0.5 GeV2 and μ2 = −0.1 GeV2, with the parameters
from the expansion of the source term given by W1 = 1, W2 = 2 and W3 = 0.2.

Again, the convergence is clear and the two-loop result is already enough for practical applications. Both,
phase and modulus of the bachelor amplitudes increases with MKπ and changes considerably along the large
phase space available. In the channel IT = 3/2, both components have similar magnitudes for the phase and
are larger than that from the IT = 5/2 case, same pattern observed in the D decay.

6 Results for the Phase and Amplitude in the B+ → K−π+π+ Decay

Since the two-loop result presents already a good convergence for the bachelor amplitudes, we restrict our
calculations hereafter to decay amplitude up to two-loops in Eq. (24). For the moment, there is no experimental
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data available to perform a comparative analysis as done for the D meson decay in [15]. For the single channel
calculations we consider only the S-wave Kπ scattering amplitude in the isospin 1/2 state, which is fitted to
the LASS data [20]. The reduced form of the decay amplitude, that will give us both phase and modulus by
means of Eq. (23), reads

A0(M
2
Kπ) =

√
2

3

[
1

12

√
2

3
+ τ1/2

(
M2

Kπ

)
ξ 3/2

3/2,1/2 (kπ ′)

]
. (28)

The iteration of the coupled equations (25)–(26) gives the results for the channel IT = 3/2. For the
the IT = 5/2 state, the amplitude is given by the single expression in Eq. (27). We also consider for these
calculations the results up to two loops, since the convergence is verified. The S-wave decay amplitude is

A0
(
M2

Kπ

) = C1

[
Aw

2
+ τ1/2

(
M2

Kπ

)
ξ 3/2

3/2,1/2 (kπ ′)

]
+ C2

[
Bw

2
+ τ3/2

(
M2

Kπ

)
ξ 3/2

3/2,3/2 (kπ ′)

]
+

+C3

[
Cw

2
+ τ3/2

(
M2

Kπ

)
ξ 3/2

5/2,3/2 (kπ ′)

]
(29)

where the constants Ci come from the isospin projection onto the state Kππ , Eq. (23). There are two free
parameters related with the projected partonic amplitude, namely, W1 − W2 and W3. If the first is zero and
the second nonzero, only total isospin 5/2 appears and there is no structure in the decay amplitude, as shown
in Ref. [15]. This shows that it is not a good physical solution, since the isospin state contributions are not
being taken into account in a reasonable way. A more detailed study of the correct weights using the LF model
would be guided by experimental data, as done for the D+ → K−π+π+ decay in [15]. Here we just follow
that study, where the authors found a small mixture of the total isospin 5/2 state.

In Fig. 3, we observe that the amplitude approaches a constant as MKπ increases. This behavior appears
because the two-body amplitude of Eq. (2) damps fast at large MKπ , and only the constant partonic amplitude
[first term in Eq. (3)] remains. This behavior of the two-body amplitude in the dominant I = 1/2 channel is
traced back to the inclusion of resonances below 2 GeV, as suggested by the known resonances given in PDG.
Thus, by considering the current available experimental information from LASS and D+ → K−π+π+ decay,
we opted to be conservative, however, this may be not realistic but only further experiments can decide. Still
regarding Fig. 3, we show a comparison between modulus and phase of decay amplitudes for the B+ and D+
mesons, both decaying to the same final state K−π+π+. The subtraction scale is fixed in μ2 = −0.1 GeV2,
the ε parameter was chosen to be ε = 0.5 GeV2, and W1 − W2 = −1 and W3 = 0.2 were used. All these
parameters are kept the same for both cases. In order to test the effect of the constants W1 − W2 and W3, we
have tried a second set of parameters, namely, W1 − W2 = 1 and W3 = 0.3, which was used in Ref. [15] to
study the experimental data for the D+ → K−π+π+ decay amplitude, but the results are very similar and
with only a change of sign in the phase.



98 Page 10 of 12 J. H. A. Nogueira et al.

1 2 3 4 5

0.03

0.06

0.09

0.12

0.15

am
pl

itu
de

 m
od

ul
us

B decay
D decay

1 2 3 4 5
Mkπ (GeV)

-150

-100

-50

0

am
pl

itu
de

 p
ha

se
 (d

eg
re

es
)

ε = 0.5 GeV22 loops

(a)

W1-W2 = -1, W3 = 0.2

(b)

μ2 = -0.1 GeV2

Fig. 3 Comparison of a modulus and b phase between D+ → K−π+π+ and B+ → K−π+π+ amplitudes for a initial state in
which W1 − W2 = −1 and W3 = 0.2

1 2 3 4 5

0.03

0.06

0.09

0.12

0.15

a 0

without K*
0 (1950)

without K*
0 (1950) and K*

0 (1630)
all resonances

1 2 3 4 5
Mkπ (GeV)

-150

-100

-50

0

Φ
0 (d

eg
re

es
) ε = 0.5 GeV22 loops

(a)

(b)

μ2 = -0.1 GeV2

Fig. 4 Modulus (a0) and phase (Φ0) of the B+ → K−π+π+ amplitude, in the notation of Eq. (23), comparing cases with all
resonances, without K ∗

0 (1950) and without both K ∗
0 (1950) and K ∗

0 (1630)

In Fig. 4 we compare both modulus and phase of the B+ → K−π+π+ decay amplitude with and without
the resonant structure, which incorporates K ∗

0 (1630) and K ∗
0 (1950).

For this study, we also fix the subtraction point at μ2 = −0.1 GeV2 and the other parameters with the
same values as before. The figure shows that the inclusion of the resonances produces more bands in both
modulus and phase. This is clearly related with the resonances, since the peaks are around its masses and bellow
K ∗

0 (1430) the effect is small. All the cases have the same tail when the two-body invariant mass increases. In
amplitude analysis of the three-body B decay to the Kππ channel the K ∗

0 (1630) resonance is usually included
explicitly in the fit, insofar the K ∗

0 (1950) is more complicated to claim that exists in the channel, therefore it
appears indirectly in experimental analysis.

7 Summary and Conclusions

In this exploratory and simplified work, we have used a light-front framework to compute off-shell decay
amplitudes starting from the four-dimension Bethe–Salpeter equation decomposed in the Faddeev form. The
contribution of final state interactions to the B+ → K−π+π+ decay is obtained. This approach can be applied
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for charged three-body heavy meson decays, and was used before for the D meson decay, and the calculations
were compared to the experimental data expressed in terms of the modulus and phase-shift [15]. Here, we
have used the same three-body rescattering model in the final state for the B → Kππ decay, considering the
S-wave Kπ interactions in the resonant 1/2 state, the K ∗

0 (1430), K ∗
0 (1630) and K ∗

0 (1950) resonances and
the non-resonant 3/2 isospin states. The scattering matrix was parametrized and fixed with the requirement of
fitting the LASS data [20], as done in the D decay case [15].

In the light-front, the inhomogeneous integral equations reduce to three-dimensional ones, solved here
with a perturbative series up to three-loops and with the accuracy of the solution checked. The convergence
of the series is clear and the two-loop results shows up enough for practical applications, as happened in the
D meson decay case of Ref. [15]. In comparison with the decay of the lighter D meson, we needed to use a
larger imaginary part for the propagators of the mesons by increasing the ε parameter. Since this parameter
mimics the absorption to other decay channels, it is expected that in the B decay, ε increases due to the much
larger phase space available. The momentum cut-off was chosen smaller in the B case than in the D decay,
in order to have a good convergence. Such a decrease seems reasonable as B is much more massive than D.
The heavier particle should have a larger number of decay channels, meaning larger absorption, and therefore
the wave function of the particular decay channel at short-distances, where the absorption takes place, is sup-
pressed. The result is that the outgoing state is more concentrated at large distances, which corresponds to the
low-momentum region. The smaller cut-off in the B decay with respect to the D one, can be understood as an
effective way to parametrize the physics of the larger number of open channels.

The resonant structure above the K ∗
0 (1430) resonance is also a question that deserves a detailed analysis

in face of future experimental data. While the presence of the K ∗
0 (1630) resonance is expected, and this is

in fact used in our amplitude analysis, the K ∗
0 (1950) influence must be better understood. Other aspect that

requires more study are the real weights of the three isospin components of the source amplitudes at the quark
level. Three-body rescattering effects are also important because they distribute CP violation to different decay
channels, since it is one of the mechanisms allowed by the CPT constraint [24]. In the near future, this light-
front approach will be generalized in order to study CP violation in three-body charmless B decays, taking
into account the unitarity of the S-matrix, and the CPT constraint, exactly as done in Refs. [6,7].

Acknowledgements We thank the Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). J.H.A.N. also acknowledges the support of Grant
No. 2014/19094-8 from FAPESP.

References

1. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, QCD factorization for B → ππ decays: strong phases and CP violation
in the heavy quark limit. Phys. Rev. Lett. 83, 1914–1917 (1999)

2. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, QCD factorization for exclusive non-leptonic B-meson decays: general
arguments and the case of heavylight final states. Nucl. Phys. B 591, 313–418 (2000)

3. Y.Y. Keum, H. Li, A.I. Sanda, Fat penguins and imaginary penguins in perturbative QCD. Phys. Lett. B 504, 6–14 (2001)
4. C.W. Bauer, I.W. Stewart, Invariant operators in collinear effective theory. Phys. Lett. B 516, 134–142 (2001)
5. J.F. Donoghue, E. Golowich, A.A. Petrov, J.M. Soares, Systematics of soft final-state interactions in B decays. Phys. Rev.

Lett. 11, 2178–2181 (1996)
6. I. Bediaga, T. Frederico, O. Lourenço, CP violation and CPT invariance in B± decays with final state interactions. Phys. Rev.

D 89, 094013 (2014)
7. J.H.A. Nogueira, I. Bediaga, A.B.R. Cavalcante, T. Frederico, O. Lourenço, CP violation: Dalitz interference, CPT, and final

state interactions. Phys. Rev. D 92, 054010 (2015)
8. R. Aaij, LHCb Collaboration et al., Study of B+

c decays to the K+K−π+ final state and evidence for the decay B+
c → χc0π

+.
Phys. Rev. D 94, 091102(R) (2016)

9. N. Wang, Charmless Bc → PP, PV decays in the QCD factorization approach. Adv. High Energy Phys. 2016, 6314675
(2016)

10. B. Mohammadi, H. Mehraban, Final state interaction effects on the B+ →J/ψρ+ decay. Adv. High Energy Phys. 2012,
203692 (2012)

11. S. Kränkl, T. Mannel, J. Virto, Three-body non-leptonic B decays and QCD factorization. Nucl. Phys. B 899, 247–264 (2015)
12. Z.H. Zhang, X.H. Guo, Y.D. Yang, CP violation in B± → π±π+π− in the region with low invariant mass of one π+π−

pair. Phys. Rev. D 87, 076007 (2013)
13. Zhang, Z.H., Guo, X.H., Yang, Y.D., CP violation induced by the interference of scalar and vector resonances in three-body

decays of bottom mesons. arXiv:1308.5242 [hep-ph]
14. X.W. Kang, B. Kubis, C. Hanhart, U.G. Meiner, Bl4 decays and the extraction of |Vub|. Phys. Rev. D 89, 053015 (2014)
15. K.S.F.F. Guimarães, O. Lourenço, W. de Paula, T. Frederico, A.C. dos Reis, Final state interaction in D+ →K−π+π+ with

Kπ I = 1/2 and 3/2 channels. J. High Energy Phys. 08, 135 (2014)

http://arxiv.org/abs/1308.5242


98 Page 12 of 12 J. H. A. Nogueira et al.

16. K.S.F.F. Guimarães, I. Bediaga, A. Delfino, T. Frederico, A.C. dos Reis, L. Tomio, Three-body model of the final state
interaction in heavy meson decay. Nucl. Phys. B Proc. Suppl. 199, 341–344 (2010)

17. P.C. Magalhães, M.R. Robilotta, K.S.F.F. Guimarães, T. Frederico, W. de Paula, I. Bediaga, A.C. dos Reis, C.M. Maekawa,
G.R.S. Zarnauskas, Towards three-body unitarity in D+ →K−π+π+. Phys. Rev. D 84, 094001 (2011)

18. J.H.O. Sales, T. Frederico, B.V. Carlson, P.U. Sauer, Light front Bethe–Salpeter equation. Phys. Rev. C 61, 044003 (2000)
19. S.X. Nakamuram, Coupled-channel analysis of D+ →K−π+π+ decay. Phys. Rev. D 93, 014005 (2016)
20. D. Aston, N. Awaji, T. Bienz, F. Bird, J. D’Amore, W.M. Dunwoodie, R. Endorf, K. Fujii et al., A study of K−π+ scattering

in the reaction K− p →K−π+n at 11 GeV/c. Nucl. Phys. B 296, 493–716 (1988)
21. P. Estabrooks, R.K. Carnegie, A.D. Martin, W.M. Dunwoodie, T.A. Lasinski, D.W.G.S. Leith, Study of Kπ scattering using

the reactions K− + p →K− + π+n and K− + p →K− + π−Δ++ at 13 GeV/c. Nucl. Phys. B 133, 490–524 (1978)
22. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light-cone. Phys. Rep. 301,

299–486 (1998)
23. R.J. Perry, A. Harindranath, K.G. Wilson, Light front Tamm–Dancoff field theory. Phys. Rev. Lett. 65, 2959–2962 (1990)
24. J.H.A. Nogueira, I. Bediaga, T. Frederico, P.C. Magalhães, J.M. Rodriguez, Suppressed B→ PV CP asymmetry: CPT

constraint. Phys. Rev. D 94, 054028 (2016)


	B+toK-π+π+: Three-Body Final State Interactions and Kπ Isospin States
	Abstract
	1 Introduction
	2 Decay Amplitude for B+toK-π+π+ Decay with FSI
	2.1 S-wave Kπ Scattering Amplitude
	2.2 Three-Body Rescattering Bethe–Salpeter Model
	2.3 Decay Amplitude

	3 FSI Light-Front Equations
	4 Application in the B+toK-π+π+ Decay
	5 Numerical Perturbative Solutions
	5.1 Interaction for Coupled Channels in IKπ=1/2 and 3/2 States

	6 Results for the Phase and Amplitude in the B+toK-π+π+ Decay
	7 Summary and Conclusions
	Acknowledgements
	References




