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Abstract A Coulomb equivalent screened Coulomb potential is proposed for solving the Schrödinger equation
and/or the Calogero first order differential equation, where some critical range bands are obtained. Phase shifts
for “any” two-charged particle system (from electron–electron to heavy ion–heavy ion) are reproduced by
using the universal critical range bands and the appropriate Sommerfeld parameter over a very wide energy
region. A Coulomb-like off-shell amplitude is introduced using two-potential theory without employing the
usual Coulomb renormalization method.

1 Introduction

Obtaining an accurate method for treating charged particle scattering is one of the more important problems in
nuclear reactions. Almost all approaches in the past half century use a screened Coulomb potentials. However,
precise three-body calculations require a more accurate solution for the Coulomb problem. In the three-body
configuration (r -) space calculation, the three-body wave function [Ψ (x, y) with the Jacobi coordinates x and y]
is approximately expanded in a separable manner

∑
i ψ

i
x (x)ψ

i
y(y). In the p-space calculation, the three-body

equations, with the nuclear potential and the screened Coulomb potential, are solved assuming convergence is
achieved by increasing the range. However, we still have a concern as to whether those converged values exist
or not, or whether the method can be used to predict a physical properties.

Usually, in order to obtain the LS equation from the Schrödinger equation, the boundary condition:

lim
r→∞ rV (r) → 0 (1)
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must be satisfied. The nuclear potential satisfies this condition, but the Coulomb potential does not because
the Coulomb potential is

VC (r) = 2kη(k)/r (2)

so that

lim
r→∞ rVC (r) → 2kη(k) �= 0, (3)

where η(k) = νZ Z ′e2/k is the Sommerfeld parameter, with the reduced mass ν = m1m2/(m1 + m2) and
charges Ze and Z ′e in units of h̄ = c = 1, and k = √

2νE denotes the on-(energy-)shell momentum.
On the other hand, for the p-space approach, the “usual Fourier transform” of the Coulomb potential is

performed by using a screened Coulomb potential such as a Yukawa-type potential with a dimension-less
“universal range”: R = kR,

VR(r; k) = 2kη(k)

r
e−kr/R. (4)

The Fourier transform of Eq. (4) is given by

VR(p,p′; k) = 8πkη(k)

(p − p′)2 + (k/R)2 . (5)

Because the Coulomb potential in r -space is obtained in the limit R → ∞ in Eq. (4), we expect that the
Coulomb potential in momentum space is obtained by taking R → ∞ in Eq. (5),

VC (p,p′; k) = lim
R→∞

VR(p,p′; k) = 8πkη(k)

(p − p′)2 , (6)

where VR(p,p′; k) and VC (p,p′; k) are the screened Coulomb and the Coulomb potentials in momentum
space, respectively.

The screened Coulomb potential VR(p,p′; k) satisfies the Lippmann–Schwinger (LS) equation condition
as required by Eq. (1),

tR(p,p′; E) = VR(p,p′; k)
+

∫

VR(p,p′′; k)G0(p′′; E)tR(p′′,p′; E)
dp′′

(2π)3 . (7)

However, by increasing the range R (having 1/k � R), the kernel suffers an overlapping singularity between
the Green’s function and the potential of Eq. (6). In other words, Eq. (6) has a serious divergence at p = p′′ =
k ≡ √

2νE in the kernel. We conclude that such a long range limit for the screened Coulomb potential does
not converge Eq. (7) to the LS equation for the Coulomb problem or to the Coulomb solution. A condition
similar to Eq. (1) in p-space is given by

lim
p′→p

V (p,p′) < ∞. (8)

It should be noted that both of a long range and the short range potentials can not be calculated in the same bases
in the LS equation.

Recently, we introduced a new method for solving the proton-deuteron three-body problem with a rig-
orous treatment of the Coulomb interaction [1]. To accomplish this the most important breakthrough was
demonstrated in the two-charged particle problem for the proton–proton system (using the LS equation) [2–4].

In order to verify the condition Eq. (8), we introduced a modified Coulomb potential V MCP in [3,4] which
is defined by using the Eq. (6)-type Coulomb potential and a screened Coulomb potential VR(p,p′; k) with
a finite universal range R,

V MCP(p,p′; k) = VC (p,p′; k)δ p,p′ + VR(p,p′; k)δp,p′, (9)

where we define the delta function δp,p′ = 1 for p = p′, and 0 for p �= p′, and δ p,p′ = (1−δp,p′) = 1 for p �=
p′ and 0 for p = p′, respectively. The new potential has no diagonal divergence in p-space; therefore V MCP



A New Feature of the Screened Coulomb Potential Page 3 of 15 80

satisfies the condition in Eq. (8). Furthermore, it was proved that the Fourier transform of V MCP becomes
the pure Coulomb potential in r -space [2], which means that the V MCP potential is equivalent to the pure
Coulomb potential when it serves as an integrand in momentum space. Therefore, V MCP is an alternative
Coulomb potential in the integral sense. The kernel of the LS equation for V MCP is free from the overlapping
singularity in principle, where the screening range of V MCP in Eq. (9) defined by a critical range R = eaγ /2k
for energy larger than 1 keV in the proton-proton case [1–4] and a is defined in “Appendix A”.

In order to solve the problem, we required an auxiliary potential: V φ ≡ VC − VR and a Lemma in ref.
[5,6]. Using the Lemma is the only way to obtain a “critical range (or decisive range)” [2–4], and the LS
equation for the auxiliary potential was numerically solved by two methods, the first one adopted “special
Gaussian points” with a critical range [7], and the second one solved by a contour deformation method with
the critical range [2,8].

The above mentioned critical range should be generalized to the wider energy region: 0 < E < ∞,
especially for the very low energy region of less than 1 keV for the proton-proton case. In this paper for
convenience, we obtain a critical range which represents the auxiliary phase shift becoming zero (or the Lemma
in terms of the phase shift): φ(k) = σl(k) − δRl (k) → 0 to high accuracy using the r -space calculation.

On the other hand, we can choose a screening range for the Coulomb potential which can directly determine
the Coulomb phase shift by solving a differential equation for the phase shift [9–11] or also by solving the
Schrödinger equation. We obtain a very high precision with more than six digits. In momentum space, the LS
equation gives the same accurate phase shift.

In our past several papers, we demonstrated that two potentials: VC = VR + V φ can be summarized by
selecting V φ to obtain TC = TRφ + T φ where T φ is the LS amplitude, and TRφ is a modified amplitude
with respect to the VR by T φ . Let us call it the Lemma method where we require a Lemma: T φ(k, k) =
T φ(k, p′) = T φ(p, k) = 0 for the on- and half on-shell amplitudes which is proved in our papers. In this
paper, we present another method which is given in “Appendix B” by using the GSE method [12–17]. For
this purpose, we have to introduce an innocuous range parameter R′, which is very close to the critical range
R′ ≈ R. The details are shown in “Appendix B”.

As a summary, we assert that the Coulomb problem in momentum space is solved by using the Coulomb
phase shift “renormalization” method which was introduced firstly by W. Tobocman et al. in the 1950s [18],
by A. M. Veselova in early 1970s [19–24] and by E. O. Alt et al in late 1970s [25–28]. Some improvements
have been proposed by A. Deltuva, et al with a benchmark test [29–33], and also by ourselves[34]. However,
our method is not the same as the renormalization method, but requires “zero renormalization” to obtain a
critical range (to solve the LS equation) which is presented in the references [1–5,7,8].

Unfortunately, almost all approaches can not be solved analytically. Our former method [5,6] analytically
reaches this goal only by assistance of the Lemma. In order to obtain good accuracy, the renormalization
method requires a numerical calculation with many digit precision to avoid a loss of trailing digits (or a
cancellation of significant digits). Such a loss of information in the trailing term could propagate to the leading
term through the renormalization, and finally affect the higher wave interactions in the three-body problem.
We have emphasized, in three-body problems, that the reproduction of the two-body Coulomb phase shifts is
important, because the Coulomb higher waves do not converge and interfere with the non-Coulomb higher
waves. Therefore, we have to take care regarding the propagation of errors in the “renormalization” method
in the three-body problem.

In this context, we found a counterpart of the two-potential formalism by selecting VR instead of V φ to
make TC = T φR + TR where TR is the LS amplitude for VR, and the remainder term is an amplitude for
V φ modified by the distortion of TR. Let us call this case a direct method.

In this paper, we will investigate the “direct” method in the Sect. 2. The numerical calculation for the LS
equation is done by using the GSE method [12–17] in momentum space: the Schrödinger equation and the
phase shift differential equation are solved in r -space. The calculated results for the universal critical range
bands are shown together with the Coulomb phase shifts for scattering from “electron–electron” to “heavy
ion–heavy ions” in Sect. 3. Our conclusion and a discussion will be given in Sect. 4.

2 A New Direct Method to Obtain a Coulomb Equivalent Phase Shift

In this paper, we would like to present a new method which is practical and applicable to few-body problems
and in general.
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Let us start from Eq. (9), that is,

V MCP
l (p, p′) = VR

l (p, p′) + V
φ

l (p, p′)

=
{
VR
l (p, p′) (p = p′)

VC
l (p, p′) (p �= p′). (10)

Contrary to two-potential theory for the Lemma method which is “selecting T φ
l ”, and we adopt the two-

potential theory for the direct method: “selecting TR
l ”, we obtain the off-shell Coulomb amplitude which is

given in “Appendix C”,

TC
l (p, p′; E) =

∞∫

0

∞∫

0

p′′2 p′′′2dp′′dp′′′

(2π2)2 ωR
l (p, p′′; E)

× tφRl (p′′, p′′′; E)ωR
l (p′′′, p′; E) + TR

l (p, p′; E) (11)

with the core amplitude,

tφRl (p, p′; E) = V φ
l (p, p′) +

∞∫

0

∞∫

0

p′′2 p′′′2dp′′dp′′′

(2π2)2

× V φ
l (p, p′′)GR

l (p′′, p′′′; E)tφRl (p′′′, p′; E). (12)

The Møller functions for the screened Coulomb potential,

ωR
l (p, p′′; E) = 2π2

p2 δ(p − p′′) + TR
l (p, p′′; E)G0(p

′′; E), (13)

ωR
l (p′′′, p′; E) = 2π2

p′2 δ(p′′′ − p′) + G0(p
′′′; E)TR

l (p′′′, p′; E), (14)

the Green’s function for the screened Coulomb potential,

GR
l (p′′, p′′′; E) = 2π2

p′′2 δ(p′′ − p′′′)G0(p
′′; E)

+G0(p
′′; E)TR

l (p′′, p′′′; E)G0(p
′′′; E), (15)

and the screened Coulomb amplitude,

TR
l (p, p′; E) = VR

l (p, p′) + 1

2π2

∞∫

0

p′′2dp′′

× VR
l (p, p′′)G0(p

′′; E)TR
l (p′′, p′; E). (16)

TR
l is the dominant term in Eq. (11), and the first term of the r.h.s. in Eq. (11) is a secondary term with a small

auxiliary potential, although Eq. (12) may produce a numerical difficulty in the kernel V φ(p, p′′)G0(p′′; E) ≡
V

φ
(p, p′′)G0(p′′; E). However, the kernel is regular at p = p′ = k by Eq. (10). Since we can obtain the

on-shell TR
l precisely by using the universal range R in Eq. (50), then the amplitude tφRl could be minimized.

The universal range is obtained through the r space calculation with the Schrödinger equation in “Appendix A”.
Therefore TR

l can represent the on- and half-off Coulomb amplitude; however, the off-shell part of TC
l could

be compensated by the first term of the r.h.s. in Eq. (11).
Therefore, we confirm that if the secondary term T φR

l is obtained, then the off-shell amplitude
TC
l (p′, p′′; E) can be calculated together with TR

l . This result guarantees the existence of the off-shell
Coulomb-like t-matrix by Eq. (11) [35], which was not defined in Ref. [36].
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Table 1 The parameters am and bm (with m = 0, 1, 2, . . .) in Eq. (17) for five bands: R = Rn(η) (with n=0, 1, 2,…) are shown
as calculated by the direct method

Rn m 0 1 2 3 4

R0 am −0.122527 67.0542 33.4284 −33.6583
0.00353 ≤ η ≤ 1.58 bm −0.14194 90.8834 15.8711 12.7285
R1 am 5.57504 9.02951 12.9823 −3.20748
1.58 ≤ η ≤ 4.22 bm −0.731152 −0.925015 1.87304 0.68854
R2 am 1.04150 2.62713 5.58478 −0.64538
3.95 ≤ η ≤ 5.60 bm 2.11619 3.39619 3.91962 −2.57886 0.397671
R3 am 3.26102 12.2893 43.3765 −5.55534
5.60 ≤ η ≤ 7.90 bm 0.419669 −0.514822 −1.45874 0.924641 0.00556185
R4 am 1.1429 1.8394 3.89062 −0.245209 −0.0191509
7.07 ≤ η ≤ 9.13 bm 2.12168 3.59564 −1.4752 0.186987

3 Numerical Result for Screening Ranges

3.1 Universal Critical Range Bands

To obtain the rangeR by the direct-method, the Schrödinger equation and/or the Calogero differential equation
[9–11] can be used. We obtain a very accurate on-shell phase shift by Calogero’s differential equation with a
finite range potential; therefore, using the same range, the phase shift is reproduced by the LS equation with
high accuracy. It seems clear that a proper screening range is obtained by increasing the range in the potential:
limR→∞ e2e−r/R/r → e2/r ; in the two- and three-body problems, however, that idea is wrong. Because the
long range singularity can not be covered with a closed neighborhood in the potential theory, the limiting
procedure fails. It was confirmed that a critical screening range exists [2–4].

We found that five discrete screening range bands are necessary to reproduce the Coulomb phase shift for
σ0 ≤ 4π .

1. The first (lowest) band (black circle in Fig. 1) can represent the higher energy region better than the energy
which satisfies σ0(k) = 0, and the range should be R = R0(k) = 0 fm at σ0(k) = 0.

2. The second lower band (black nabla symbol) can be applied in the phase shift region: 0 ≤ σ0(k) ≤ π and
the range must be R = R1(k) = 0 fm at σ0(k) = π .

3. The next band (black square symbol) covers the phase shift region: π ≤ σ0(k) ≤ 2π , and the range should
be R = R2(k) = 0 fm at σ0(k) = 2π .

4. The next band (white circle symbol) applies for: 2π ≤ σ0(k) ≤ 3π , and the range R = R3(k) = 0 fm at
σ0(k) = 3π .

0.01 0.1 1 10
10 6

10 4

0.01

1

100

104

Fig. 1 The range bands by the direct fitting method. The universal ranges R(k) are denoted by five different symbols: black
circle, black nabla, black square, white circle, and black delta. The universal ranges R = R(k) = Rn(k) (n = 0, 1, 2, 3, 4) are
fitted as functions of η = η(k). 1) R0 = 0 at σ0(k) = 0, 2) R1 = 0 at σ1(k) = π , 3) R2 = 0 at σ2(k) = 2π , 4) R3 = 0 at
σ3(k) = 3π , 5) R4 = 0 at σ0(k) = 4π . All bands become zero at σ0(k) = nπ (n = 0, 1, 2, . . .); however, one could replace
them by the finite range of the upper band. Each band makes it possible to derive the Coulomb phase shifts for the corresponding
energy region



80 Page 6 of 15 T. Watanabe et al.

0.01 0.1 1 10
10 6

0.001

1

1000

106

η
Fig. 2 The direct fitting range bands and extension by our model range. The legends are the same as in Fig. 1. Dashed lines are
given by Eq. (50) in the case: m = 1 of the Yukawa type from the lowest line n = 0 to the highest line n = 5

5. The highest band (black delta symbol) applies for: 3π ≤ σ0(k) ≤ 4π and the range R = R4(k) = 0 fm
at σ0(k) = 4π .

We find that σ0(k) = nπ (n = 0, 1, 2, . . .) leads to Rn(k) = 0 which denotes VR(r) = 0. However, the
zero range screened Coulomb property seems to be unusual; then we adopt the finite range of the upper band
instead. These bands are fitted by the N/D form

R = a0 + a1η + a2η
2 + a3η

3 + · · ·
b0 + b1η + b2η2 + b3η3 + · · · (17)

with the universal ranges R ≡ kR, and the Sommerfeld parameter η = η(k). Parameters a0, a1, . . . and b0, b1,
. . . are shown in the Table 1. Therefore, the Coulomb phase shifts of the each system are obtained by taking
the individual range R = R/k and incorporating the individual values of the Sommerfeld parameters.

Especially for the cases: σl(k) = nπ (n = 0, 1, 2, . . .), the range converges to a zero value. The given
ranges provide the nine-digit results with the Calogero equation.

Obviously, the phase shifts for the higher partial waves require the individual range-bands for the higher
waves, because the screened Coulomb potential plus the centrifugal term l(l + 1)/r2 are used to obtain the
range. Therefore, Fig. 1 is available only for the S-wave. However, the longer range R which is given by
Eq. (50) is the partial wave independent, because it is satisfied in the asymptotic region where the centrifugal
potential is negligible.

Let us call the critical range bands which are defined by Eq. (50) “asymptotic” bands, while the former
critical range bands which are obtained numerically, “numerical” bands. Therefore, the universal critical range
bands are given by the smooth continuation between both range bands in Fig. 2. It is seen that universal critical
ranges of the asymptotic bands are generally very large except for n = 0, therefore it is rather difficult to
obtain the numerical solution by the LS equation because of cancellation of significant digits. On the other
hand, universal critical ranges within numerical bands are smaller, therefore the LS equation is successfully
solved.

3.2 Coulomb Phase Shifts

By using our universal critical range bands, we can easily obtain the Coulomb phase shifts by using the LS
equation in momentum space. We found that phase shifts for “any” two-charged particle systems (from electron-
electron to heavy ion-heavy ion) are automatically reproduced by using the universal critical range bands and
the appropriate Sommerfeld parameter over a very wide energy region. Figures 3 and 4 are the Coulomb phase
shifts for many different two-charged particle systems for S-wave. The higher partial waves are shown for
reference in Fig. 5. The Coulomb-like off-shell amplitude could be introduced using the two-potential theory.
The numerical results will be shown on another occasion.



A New Feature of the Screened Coulomb Potential Page 7 of 15 80

20

40

60

80

se
 S

hi
fts

 [d
eg
]

e-e
p-p
3He-p
α-α

-20

0

1.00E-07 1.00E-05 1.00E-03 1.00E-01 1.00E+01 1.00E+03

Ph
as

Ec.m. [MeV]

Fig. 3 The Coulomb phase shifts in the S-wave are illustrated for several systems from e−-e− to α − α by the diamond, triangle,
circle, and square symbols, respectively. The results are compared with the analytic solutions by the double-dashed, dotted-dashed,
dashed, and solid lines, respectively. These are calculated using the universal ranges which are given in Fig. 1. The present range
is obtained for the Yukawa-type screened Coulomb potential. The results are illustrated only for 0 ≤ σ0 ≤ π ; however, our results
are fitted with the analytic solution in an energy region greater than that
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Fig. 4 The Coulomb phase shifts in the S-wave are illustrated for 16O-16O and 208Pb-208Pb. Our calculated results are shown by
the solid-circle and the triangle. These are compared with the analytic results by the double-dashed, and the dashed-dotted lines,
respectively. The other aspects are the same as in Fig. 3
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Fig. 5 Our screened Coulomb potential in Eq. (4) which satisfies the Lemma is applicable for the higher partial wave cases. The
calculated results are fitted to the analytic partial wave phase shifts: σl(k) = arg Γ (l + 1 + iη(k))

4 Conclusion and Discussion

In this paper, we derived a critical screening range which is used to calculate the Coulomb phase shift in
the energy region: 0 < E < ∞ with high accuracy without using the Coulomb phase shift renormalization
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method but instead the direct method. The direct method gives not only the on- and half off-shell amplitudes
very accurately, but also the off-shell part is analytically generated where the same asymptotic behavior as the
Coulomb wave function is in effect.

In this paper, the quantized critical range in the V MCP -potential is introduced with the aid of the r -space
calculation for convenience in the relatively short range region, but in the longer range region with an analytic
form shown in “Appendix A”. The quantized critical range includes the long range Coulomb information as
shown in “Appendix A”. By using the critical range, we proposed a new direct method instead of the historical
renormalization method.

Our Coulomb treatment by the dimensionless universal range and appropriate Sommerfeld parameter
is general for any two-charged particle system from “electron”–“electron” to the “heavy ion”–“heavy ion”.
Because the Sommerfeld parameter, as a universal variable is determined by the charges and the reduced mass,
then our method may be applicable to systems with non-integer charges such as quarks.

Finally, we conclude that the Coulomb potential can be treated on the same basis of the usual scattering
theory for the short range potential by the aid of the critical range bands, where the pinching singularity, by
the dispersion theoretical terminology, does not occur in our theory. We believe that the two-body Coulomb
problems in momentum space can be solved not only theoretically but also numerically with high precision in
this paper. A partial wave-independent asymptotic critical range calculation is ready for performing with very
high precision. A practical three-body calculation is now in progress.

A An Auxiliary Phase Shift φ(k) and a Critical Range R

The auxiliary phase shift φ(k) was introduced in [5,6]. In order to obtain the phase shift, let us start from the
Schrödinder equation for the screened Coulomb potential and the pure Coulomb potential.

[
d2

dr2 − L(L + 1)

r2 − VC (r) + k2
]

w
(±)
L (r) = 0 (18)

[
d2

dr2 − L(L + 1)

r2 − VR(r) + k2
]

h(±)
L (r) = 0 (19)

Therefore in Eq. (18), using the auxiliary potential: V φ(r) = {VC (r) − VR(r)}, we have
[
d2

dr2 − L(L + 1)

r2 − VR(r) − V φ(r) + k2
]

w
(±)
L (r) = 0 (20)

The potentials are defined by using the two-body reduced mass and the charges with Ze and Z ′e,

VC (r) = 2ν
Z Z ′e2

r
= 2k

η(k)

r
(21)

VR(r) = 2ν
Z Z ′e2

r
e−(r/R)m = 2k

η(k)

r
e−(r/R)m (22)

with the Sommerfeld parameter η(k) = Z Z ′e2ν/k. The ratio between the Coulomb wave function w
(±)
L (r)

and the screened Coulomb wave function h(±)
L (r) is given by a new function y(±)

L (r),

h(±)
L (r) ≡ y(±)

L (r) · w
(±)
L (r). (23)

Substituting Eq. (23) into Eq. (19), we have the following relation by using Eq. (18),

y′′
L(r)

yL(r)
+ 2

w′
L(r)

wL(r)
· y

′
L(r)

yL(r)
= VR(r) − VC (r) ≡ −V φ(r); (24)

equivalently we have a differential equation for the auxiliary potential,

y′′
L(r) + 2

w′
L(r)

wL(r)
· y′

L(r) + V φ(r)yL(r) = 0. (25)
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The asymptotic wave functions based on these potentials are given by

w
(±)
L (r) ∼ exp

[

±i

(

kr − πL

2
− η(k) ln 2kr + σL(k)

)]

(26)

h(±)
L (r) ∼ exp

[

±i

(

kr − πL

2
+ δRL (k)

)]

(27)

where σL(k) and δRL (k) are the Coulomb and the screened Coulomb phase shifts, respectively. It is obvious that
the main difference in the asymptotic wave functions between the long range and the short range interactions
appears in the r dependent phase: ln 2kr in the Coulomb wave function Eq. (26).

By using the asymptotic forms of Eqs. (26), (27), the first and the second terms of Eq. (24) are given by
where the asymptotic form of the second term of Eq. (24) is given by

w′
L(r)

wL(r)
= d

dr
[ln wL(r)] =

(

k − η(k)

r

)

i ≈ ik (28)

y′
L(r)

yL(r)
= d

dr
[ln yL(r)] ≡ dYL(r)

dr
(29)

with a new function YL(r),

YL(r) ≡ ln yL(r), (30)

and with the asymptotic phase

y(±)
L (r) ∼ exp

[

±i

(

η(k) ln 2kr − σL(k) + δRL (k)

)]

. (31)

The first term of Eq. (24) is rewritten using Eq. (29) as

y′′
L(r)

yL(r)
= d

dr

[
y′
L(r)

yL(r)

]

+
[
y′
L(r)

yL(r)

]2

= d2YL(r)

dr2 +
[
dYL(r)

dr

]2

(32)

where the terms are assumed to be very small or vanishing in the asymptotic region. Because, yL(r) → 1,
or YL(r) → 0 is verified and are expected to be smooth function due to Eqs. (23) and (30). Consequently,
Eq. (24) is rewritten, by using (28) and (29), as a simple differential equation in the asymptotic region,

2ikY ′
L(r) = VR(r) − VC (r) = −V φ(r). (33)

Because the integral of Eq. (33) should be performed in the region between r and ∞, which is the Coulomb
boundary, then the solution is given by using an arbitrary constant b,

YL(r) =
r∫

b

{VR(r) − VC (r)}
2ik

dr = iη(k)

r∫

b

1 − e−(r/R)m

r
dr. (34)

Here, YL(r) could be separated by using the screening range R

YL(r) = iη(k)

[ 0∫

b

1 − e−(r/R)m

r
dr +

R∫

0

1 − e−(r/R)m

r
dr +

r∫

R

1 − e−(r/R)m

r
dr

]

= iη(k)

[

C +
{ R∫

0

1 − e−(r/R))m

r
dr +

r∫

R

1

r
dr −

r∫

R

e−(r/R)m

r
dr

}]

= iη(k)

[

C +
{ R∫

0

1 − e−(r/R)r)m

r
dr −

∞∫

R

e−(r/R)m

r
dr

}

+
r∫

R

1

r
dr +

∞∫

r

e−(r/R)m

r
dr

]

(35)
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with

C =
0∫

b

1 − e−(r/R)m

r
dr. (36)

The first part {} in Eq. (35) is the Euler constant γ = 0.57721 . . . which is defined by,

γ ≡
1∫

0

1 − e−t

t
dr −

∞∫

1

e−t

t
dt. (37)

That is, by putting (r/R)m = t and dt = m(r/R)m−1dr/R = mtdr/R, and also t = 1 at r = R, then we
obtain

{ R∫

0

1 − e−(r/R)m

r
dr −

∞∫

R

e−(r/R)m

r
dr

}

=
1∫

0

1 − e−t

t

dt

m
−

1∫

R

e−t

t

dt

m
=

{
γ

m

}

. (38)

Therefore, Eq. (35) becomes

YL(r) = iη(k)

[

C +
{

γ

m

}

+ (ln 2kr − ln 2kR) +
∞∫

r

e−(r/R)m

r
dr

]

= iη(k)

[

aγ + (ln 2kr − ln 2kR) +
∞∫

r

e−(r/R)m

r
dr

]

(39)

with a = (C/γ + 1/m), and YL(r) is an r -dependent function.
The asymptotic phase in Eq. (31) can be compared with Eq. (39) by neglecting the last term of Eq. (39),

and also by adopting b = 0 or C = 0. We obtain

η(k)

[{
γ

m

}

+ (ln 2kr − ln 2kR)

]

=
(

η(k) ln 2kr − σL(k) + δRL (k)

)

(40)

Therefore, we have

η(k)

[{
γ

m

}

− ln 2kR

]

= −σL(k) + δRL (k), (41)

and

σL(k) = δRL (k) + η(k)

(

ln 2kR −
{

γ

m

})

(42)

≡ δRL (k) + φ(k, R). (43)

If we can choose

φ(k, R) ≡ η(k)

(

ln 2kR −
{

γ

m

})

= 2nπ (44)

with n = 0, 1, 2, 3, . . ., then we have

ln 2kR = 2nπ

η(k)
+

{
γ

m

}

. (45)
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By substituting Eq. (45) into Eq. (39), YL(r) becomes

YL(r) = iη(k)

[{
γ

m

}

+ (ln 2kr − ln 2kR)

]

= iη(k)

[{
γ

m

}

+
(

ln 2kr − 2nπ

η(k)
−

{
γ

m

})]

= i

[

η(k) ln 2kr − 2nπ

]

. (46)

Therefore, Eq. (31) is given by

y(±)
L (r) ∼ exp

[

±i

(

η(k) ln 2kr − σL(k) + δRL (k)

)]

= exp

[

±i

(

η(k) ln 2kr − 2nπ

)]

. (47)

We can confirm that the long range property of the Coulomb wave function can be compensated by this phase
of Eq. (47) in the screened Coulomb wave function. Hence, by using Eqs. (47) and (26), Eq. (23) becomes

h(±)
L (r) = y(±)

L (r) · w
(±)
L (r)

= exp

[

±i

(

η(k) ln 2kr − 2nπ

)]

× exp

[

±i

(

kr − πL

2
− η(k) ln 2kr + σL(k)

)]

= exp

[

±i

(

kr − πL

2
+ σL(k) − 2nπ

)]

= exp

[

±i

(

kr − πL

2
+ δRL (k)

)]

. (48)

This result is equivalent to Eq. (27).
Finally, we can conclude that the energy dependent “critical range” parameter in the asymptotic region is

given by using Eq. (45),

R = 1

2k
exp

[
2nπ

η(k)
+

{
γ

m

}]

, (49)

and the universal range is

R = 1

2
exp

[
2nπ

η(k)
+

{
γ

m

}]

. (50)

B Proof of the Lemma for the Modified Coulomb Potential

The Lemma for the modified Coulomb potential will be proved. In order to satisfy the Lemma: T
φ

l (k, k; E) =
T

φ

l (p, k; E) = T
φ

l (k, p′; E) = 0 for V
φ

l (p, p′), we adopt the GSE method [12–17] where V
φ

l (k, k) should
not be zero, for this purpose, we use Eq. (9) by taking R′ ∼ R. Therefore Eq. (10) is rewritten by omitting
(; k) in the potentials for simplicity,

V
φ

l (p, p′) ≡
{
VR′
l (p, p′) − VR

l (p, p′) ∼ ε (p = p′)
VC
l (p, p′) − VR

l (p, p′) (p �= p′)
= V MCP

l (p, p′) − VR
l (p, p′), (51)
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where we can choose a very small number ε which verifies Eq. (51) for any partial waves. Therefore, the LS

equation for the potential V
φ

l becomes,

T
φ

l (p, p′; E) = V
φ

l (p, p′) + 1

2π2

∞∫

0

p′′2dp′′

× V
φ

l (p, p′′)G0(p
′′; E)T

φ

l (p′′, p′; E). (52)

The GSE method gives the solutions of T
φ

l (k, k; E), T
φ

l (p, k; E) and T
φ

l (k, p′; E), [12–16]

T
φ

l (k, k; E) = [V φ

l (k, k)]2

Aφ
l (k, k; E)

, (53)

T
φ

l (k, p′; E) = V
φ

l (k, k)ϕφ
l (k, p′; E)

Aφ
l (k, k; E)

, (54)

T
φ

l (p, k; E) = ϕ
φ
l (p, k; E)V

φ

l (k, k)

Aφ
l (k, k; E)

, (55)

with

ϕ
φ
l (p, k; E) = V

φ

l (p, k) +
∞∫

0

V
φ(2)

l (p, p′)G0(p
′; E)ϕ

φ
l (p′, k; E)

p′2dp′

2π2 (56)

A
φ

l (k, k; E) = V
φ

l (k, k) +
∞∫

0

V
φ

l (k, p′)G0(p
′; E)ϕ

φ
l (p′, k; E)

p′2dp′

2π2 (57)

and,

V
φ(2)

l (p, p′) =

∣
∣
∣
∣
∣
V

φ

l (k, k) V
φ

l (k, p′)
V

φ

l (p, k) V
φ

l (p, p′)

∣
∣
∣
∣
∣

V
φ

l (k, k)
. (58)

In Eq. (51), because of the relation,

|V φ

l (p, k)| ∼ |V φ

l (k, p′)| ∼ |V φ

l (p, p′)| > |V φ

l (k, k)|, (59)

and |V φ

l (k, k)| ∼ |ε|, we have

V
φ(2)

l (p, p′) ∼ |ε|−1, (60)

|ϕφ
l (p, k; E)| ∼ |ε|−1, (61)

|Aφ

l (k, k; E)| ∼ |ε|−1. (62)

Therefore, we obtain from Eqs. (53), (54) and (55),

T
φ

l (k, k; E) ∼ |ε|3, (63)

T
φ

l (k, p′; E) ∼ |ε|, (64)

T
φ

l (p, k; E) ∼ |ε|. (65)

Consequently, the Lemma is proven by taking the limit R′ → R which satisfies ε → 0 independent of the
partial wave.



A New Feature of the Screened Coulomb Potential Page 13 of 15 80

C Two-Potential Theory Regarding TR

The two-potential theory in operator form is introduced for the LS equation which is given by the potential
V MCP in Eq. (9); hereafter, we adopt simply the notation VC instead of V MCP ,

TC = (VR + V φ) + (VR + V φ)G0T
C (66)

TR = VR + VRG0T
R ≡ VRωR

= VR + TRG0V
R ≡ ωRVR (67)

ωR = 1 + G0T
R

ωR = 1 + TRG0. (68)

Let us define

TC ≡ T φR + TR. (69)

By using Eqs (66),(69)

T φR + TR = (VR + V φ)

+ (VR + V φ)G0(T
φR + TR)

= (VR + V φ)

+ V φG0T
C + VRG0(T

φR + TR). (70)

Multiply ωR from the left of Eq. (70),

(1 + TRG0)T
φR = ωRV φωR

+ (1 + TRG0)V
φG0T

φR

+ (1 + TRG0)V
RG0T

φR, (71)

T φR = ωRV φωR + ωRV φG0T
φR. (72)

Let us define

T φR ≡ ωRtφRωR, (73)

substituting Eq. (73) into Eq. (72), we obtain

tφR = V φ + V φ(G0 + G0T
RG0)t

φR

= V φ + V φGRtφR (74)

GR = G0ω
R = G0 + G0T

RG0. (75)

Therefore we have

TC = ωRtφRωR + TR. (76)

The momentum representations of these operator relations are given by the partial wave formula of Eq. (76)
(see also [35]),

TC
l (p, p′; E) =

∞∫

0

∞∫

0

p′′2dp′′

2π2

p′′′2dp′′′

2π2

×ωR
l (p, p′′; E)tφRl (p′′, p′′′; E)ωR

l (p′′′, p′; E) + TR
l (p, p′; E). (77)
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In order to verify the relation between the double integral and single integral, the following relations should
be defined,

GR
l (p, p′; E) = 2π2

p2 δ(p − p′)G0(p; E) + G0(p; E)TR
l (p, p′; E)G0(p

′; E) (78)

ωR
l (p, p′; E) = 2π2

p2 δ(p − p′) + TR
l (p, p′; E)G0(p

′; E) (79)

ωR
l (p, p′; E) = 2π2

p2 δ(p − p′) + G0(p; E)TR
l (p, p′; E). (80)

It should be noted that the volume factors 2π2/p2 and 2π2/p′2 are missing in our former articles [5,6] in
Gφ

l , ω
φ
l , ω

φ
l regarding T φ , because of the different definition of the free Green’s function. However, the final

results are not changed.
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