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Abstract We discuss the formulation of the scattering asymptotic condition in a relativistic quantum theory
formulated in terms of reflection positive Euclidean Green functions.

1 Introduction

Schwinger [1] showed that the spectral condition implies that the Green functions of a local quantum field
theory have an analytic continuation to Euclidean times. This observation has motivated Euclidean formulations
of quantum field theory that have been used successfully in numerical lattice discretizations of the theory. One
difficulty with the Euclidean formulation is that the imaginary time leads to problems in formulating scattering
problems [2] that involve asymptotic time limits. Osterwalder and Schrader [3] proved a reconstruction theorem
that showed how to construct a relativistic quantum field theory from a set of Euclidean invariant Green functions
satisfying a condition called reflection positivity. The proof of the reconstruction theorem has three important
attributes. First, it is constructive, leading to an explicit representation of the physical Hilbert space and a set
of self-adjoint operators on that space satisfying the Poincaré Lie algebra. Second, the locality property is
logically independent of the other properties that are needed to construct a relativistic quantum theory. This
implies that it should be possible to make approximations or truncations of a local theory that still retain
all of the remaining properties of a relativistically invariant quantum theory. Third, the construction of the
relativistic quantum theory does not require explicit analytic continuation of the Euclidean times. This paper
is based on [4,5] where we argue that given a Hilbert space representation and a set of Poincaré generators on
that space that satisfy cluster properties, it should be possible to formulate scattering directly in the Euclidean
representation of the Hilbert space.

2 Reconstruction of Quantum Mechanics

A dense set of vectors in the Hilbert space consists of sets of normalizable functions of Euclidean space–time
variables,
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f = ( f0, f1(xe11), f2(xe21, xe22), . . .), (1)

with support for positive relative Euclidean times, 0 < x0
en1 < x0

en2 < x0
en3 . . ..

The Hilbert-space inner product of two such vectors is expressed in terms of a quadratic form involving
the Euclidean Green functions, Ge

n(xe1, . . . , xen), by

〈f |g〉 = (2)
∑

mn

∫
f ∗
m(xem1, . . . , xemm)Ge

m+n(Texemm, . . . , Texem1, yen1, . . . , yenn) ×

gn(yen1, . . . , yenn)d
4mxd4n y (3)

where Te is Euclidean time reflection. The collection of Euclidean Green functions are called reflection positive
if 〈f |f〉 ≥ 0 for all f satisfying the support condition. This represents the physical Hilbert space inner product,
even though all of the integrals in (3) are over Euclidean variables and there is no analytic continuation. This
inner product has zero norm vectors, so Hilbert space vectors are actually equivalence class of functions f
subject to the equivalence relation f ∼ g if and only if 〈f − g|f − g〉 = 0.

The infinitesimal generators of the Poincaré group are represented by the following self-adjoint operators
on this space

H fn(xen1, xen2, . . . , xenn) =
n∑

k=1

∂

∂x0
enk

fn(xen1, xen2, . . . , xenn) (4)

P fn(xen1, xen2, . . . , xenn) = −i
n∑

k=1

∂

∂xenk
fn(xen1, xen2, . . . , xenn) (5)

J fn(xen1, xen2, . . . , xenn) = −i
n∑

k=1

xenk × ∂

∂xenk
fn(xen1, xen2, . . . , xenn) (6)

K fn(xen1, xen2, . . . , xenn) =
n∑

k=1

(
xenk × ∂

∂x0
enk

− x0
enk

∂

∂xenk

)
fn(xen1, xen2, . . . , xenn). (7)

It is straightforward to show that these operators are Hermetian with respect to the inner product (3) and
satisfy the Poincaré commutation relations. They are also self-adjoint by virtue of being generators of unitary
one-parameter groups, contractive semigroups, or local symmetric semigroups [6–8] on this Hilbert space.
The Hamiltonian H also satisfies a spectral condition as a consequence of reflection positivity [9].

If the Euclidean Green functions satisfy cluster properties,

lim
a→∞(Ge

m+n(Xem + a,Yen) − Ge
m(Xem)Ge

n(Yen)) → 0 (8)

Xem = (xem1, . . . , xemm) (9)

then the Poincaré generators defined by (4–7) also satisfy cluster properties.

3 Formulation of Scattering

Scattering matrix elements, S f i = 〈f+|f−〉, are defined as the inner product of initial and final states at a given
time that asymptotically look like systems of non-interacting particles long before and long after a collision.
The relation between these states and the corresponding asymptotic states is given by the scattering asymptotic
condition, which replaces the initial condition on the initial or final states by the scattering asymptotic conditions

lim
t→±∞ ‖e−i Ht |f±〉 − Φe−i H f t |χ〉‖ = 0. (10)

The quantity |χ〉 on the right describes free-particle wave packets. For a two-particle final state it has the form

Φe−i H f 12t |χ12〉 :=
∑

μ1μ2

∫
|φb1,p1, μ1, φb2,p2, μ2〉︸ ︷︷ ︸

Φ

(11)
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× e−i(E1(p1)+E2(p2))t
︸ ︷︷ ︸

e−i H f 12 t

dp1dp2 χ1(p1, μ1)χ2(p2, μ2)︸ ︷︷ ︸
wave packets

(12)

where
Mbi |φbi 〉 = mbi |φbi 〉 Ei (pi ) =

√
m2

bi
+ p2

i (13)

and mbi is in the point-spectrum of the subsystem mass operator. It follows that the operator Φ is a mapping
from a two-particle asymptotic Hilbert space of square integrable functions of p1, μ1,p2, μ2, to the physical
Hilbert space with inner product (3).

A sufficient condition for the existence of these limits is the Cook condition, which in this notation has the
form ∞∫

a

‖(HΦ − ΦH f )e
∓i H f t |χ〉‖dt < ∞ (14)

where (HΦ − ΦH f ) replaces the short-range potential in the original formulation of Cook’s method [10].
This condition can be formulated in the Euclidean representation. Two conditions are needed to establish

convergence in the Euclidean case. First, the Green functions need to satisfy cluster properties. Second, the
operator Φ must eliminate the contribution from the disconnected parts of the Green function in (10).

To illustrate how this works consider the case of 2–2 scattering. Cluster properties lead to a four-point
Green function that can be expressed as the sum of products of two-point functions and a connected fourpoint
function:

G4 = G2eG2e + G4ec. (15)

In general there will be additional disconnected terms—the analysis below can be easily extended to treat these
cases.

In the Euclidean representation the square of integrand of (10) for the case of 2–2 scattering has the form

‖(HΦ − ΦH f )e
−i H f t |χ0±(0)〉‖2 = (χ f , e

iH f t (Φ†H − H f Φ
†), Te(G2eG2e + G4ec)(HΦ

−ΦH f )e
−i Hi tχi ) =

∫
χ∗

1 (p1)χ
∗
2 (p2)e

i(Em1 (p1)+Em2 (p2))t dp1dp2

×
(

∂

∂x0
1

+ ∂

∂x0
2

− Em1(p1) − Em2(p2)

)
〈p1,p2|Φ†|x1, x2〉

×d4x1d
4x2(G2e(Tex1, y1)G2e(Tex2, y2) + G4ec(Tex1, Tex2, y2, y1))d

4y1d
4y2

×
(

∂

∂y0
1

+ ∂

∂y0
2

− Em1(p
′
1) − Em2(p

′
2)

)
〈y1, y2|Φ|p′

1,p
′
2〉

×e−i(Em1 (p′
1)+Em2 (p′

2))tχ1(p′
1)χ2(p′

2)dp
′
1dp

′
2 (16)

where Emi (p) =
√
m2

i + p2 are the energies of the outgoing particles, and G4ec is the connected part of the
Euclidean 4-point Green function.

We expect that the contribution to this expression from the connected Green functions will fall off like
1/t3 for large time, as it does in the Minkowski case (see [11, p. 132]). For the disconnected terms it is
necessary to study the contribution from two-point Green functions. These can be expressed in terms of the
Kallën–Lehmann representation of the Euclidean two-point function:

〈ξ |ψ〉 =
∫

ξ∗(xe)G2e(Texe − ye)ψ(ye)d
4xed

4ye

=
∫

d4 ped4xed4ye
(2π)4 ξ∗(xe)

eip
0
e (−x0

e−y0
e )+ip·(x−y)ρ(m)

(p0
e )

2 + p2 + m2 ψ(ye)dm

=
∫

ξ∗(xe)
d4xe

(2π)3/2 e
−Em(p)x0

e+ip·x
︸ ︷︷ ︸

ξ̃∗(p,m)

ρ(m)dmdp
2Em(p)

e−Em(p)y0
e−ip·y d4ye

(2π)3/2 ψ(ye)
︸ ︷︷ ︸

ψ̃(p,m)

(17)
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The Euclidean time support condition of the wave functions ψ(ye) and ξ∗(xe) allows the p0 integral to be
computed by contour integration.

The subsystem mass operator can be seen to be the Euclidean 4-Laplacian by integration by parts in (17):
∫

ρ(m)

2Em(p)
e−Em(p)y0

e−ip·y d4ye
(2π)3/2 ∇2

yeψ(ye) (18)

=
∫

ρ(m)

2Em(p)
e−Em(p)y0

e−ip·y d4ye
(2π)3/2m

2ψ(ye) (19)

The problem is to find subsystem point mass eigenstates ψ(ye) and ξ(xe) with the mass of the asymptotic
particle that are also consistent with the Euclidean time-support condition.

The spectrum of the subsystem mass operator is identical to the support of the Lehmann weight, ρ(m).
The Lehmann weight is assumed to have the form

ρ(m) =
∑

ziδ(m − mi ) + ρac(m) (20)

where the support of the continuous part, ρac(m) of ρ(m) is a half line that starts at the sum of the masses of
the lightest possible intermediate particles.

In order to select the desired asymptotic particle it is necessary to choose wave functions ψ(xe) that only
get contributions from the Lehmann weight corresponding to mass of the asymptotic particle. This corresponds
to one of the delta functions in (20).

One way to do this, motivated by the method used by Haag and Ruelle [11–13], is to multiply the wave
function by a function h(m2) that is 1 when m2 is the square of the mass of the asymptotic particle and 0 on the
rest of the Lehmann weight, ρ(m2). Since the square of the cluster mass operator is the Euclidean Laplacian,
a wave function of the form

ψ(xe) = h(∇2)g(xe) (21)

has the desired properties provided it satisfies the support condition. Here g(xe) is another function satisfying
the support condition. The simplest choice of g(xe) satisfying the support condition is a function of the form

g(xe) = δ(x0
e − τ)g̃(x). (22)

It is interesting that in spite of the presence of the delta function that enforces the support condition, this is a
normalizable vector with respect to the scalar product (3).

The question is whether the support conditions on h(m2) and h(∇2)g(xe) are compatible. The concern is
that on one hand an infinite series of derivatives, like a translation operator, can change support conditions. On
the other hand h(m2) cannot even be analytic if the Lehmann weight has any continuous spectrum because
h(m2) must vanish on the continuous support of the Lehmann weight.

In the unphysical situation, where the support of the Lehmann weight consists of a finite number of discrete
points, a finite-degree polynomial h(∇2) can be constructed that selects the desired mass and automatically
preserves the support condition. Also, in the case where the support of the continuous portion of the Lehmann
weight is compact, the Weierstrass approximation theorem implies that h(∇2) can be uniformly approximated
by a polynomial. While both cases are unphysical, both preserve the support condition of the wave function.

This leads to the question of whether it is possible to make a polynomial approximation to h(m2) that
converges to any continuous function of the half line. It turns out that there is a sufficient condition called the
Carleman condition that provides a suitable sufficient (but not necessary) condition.

The concern is that applying h(∇2) to g(xe) does not automatically preserve the positive Euclidean-time
support condition of g(xe).

The Carleman condition [14,15] gives a sufficient condition

∞∑

n=1

γ
− 1

2n
n > ∞ (23)

on an infinite collection of moments γn on the half line

γn =
∞∫

0

w(x)dxxn (24)
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to uniquely solve for the measure, w(x)dx .
When this condition is satisfied, multiplication by x has a unique-self adjoint extension on the Hilbert

space with weight w(x) and the orthogonal polynomials with respect to the weight w(x) are complete.
For the Euclidean two-point function the relevant moments are

γn := (ψ, TeG2e(∇2)nψ) =
∞∫

0

w(m)m2n . (25)

For the scattering application we actually need the completeness of polynomials in m2 rather than m which is
why the nth moment involves m2n .

For the two-point example above the relevant moments are

γn :=
∞∫

0

e−
√

m2+p2τ

2
√
m2 + p2

ρ(m)m2ndm (26)

In order to estimate these moments we assume (see Theorem 6.2.4 in [9]) that the continuous part of the
Lehmann weight is polynomially bounded. In this case it is sufficient to replace the moments by

γn → γ ′
n =

∞∫

0

e−
√

m2+p2τ

2
√
m2 + p2

m2n+kdm. (27)

where k is a constant (the polynomial bound). With some algebra it is possible to prove the inequality

∞∑

n=1

γ
′− 1

2n
n >

∞∑

n=0

c

2n + k − 2
> ∞ (28)

which is sufficient to show that h(∇2) can be approximated by a polynomial, thus ensuring that it is possible
to construct point-spectrum mass eigenstates that satisfy the Euclidean time support condition.

Returning to Eq. (16) it is now possible to see how the condition above eliminates the disconnected terms
in this equation. The first step is to replace the wave packets χ(xe) by hn(∇2)g(xe), where hn is a polynomial
approximation to h(m2). Integrating the Laplacians by parts means that they can be replaced by hn(m2),
where m2 is integrated over the support of the Lehmann weight. The completeness of the polynomials in m2

means that we can make the contribution from the continuous part of the Lehmann weight as small as desired.
Integrating the Euclidean time derivatives by parts in the two-point functions leads to replacements of the
form ∂

∂x0 → ωm(p). When this is integrated over m the only term that is picked up is the m = mi selected by

h(m2). This term cancels the energy factors that come from ΦH f . What remains is just the contribution from
the connected four-point Green function, which is expected to vanish at t gets large.

This shows that it is possible to compute S-matrix elements in the Euclidean representation. As a practical
matter eiHt is not easy to compute in the Euclidean representation. There are a number of approaches that
can be used given a representation for H . One that we have tested makes use of the fact that given a set of
reflection positive Green functions, matrix elements of polynomials in (e−βH ) are easy to calculate using the
inner product (3).

To take advantage of this note that the invariance principle [16,17] implies

lim
t→±∞ eiHtΦe−i H f t |χ〉 = lim

n→±∞ e−ine−βH
Φeine

−βH f |χ〉 (29)

Because the spectrum of e−βH is compact, for any fixed n, e−ine−βH
can be uniformly approximated by

a polynomial in e−βH . Matrix elements of e−βmH simply translate the argument of the Euclidean wave
functions by −βm. In principle β is any positive number; in practice it sets the energy scale of the problem. We
have demonstrated in a solvable model that these methods can be applied to calculate sharp momentum cross
sections over a wide range of energies [18]. There are many other possibilities given that the reconstruction
theorem provides all of the elements necessary to formulate the scattering problem.
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