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Abstract We examine the extent to which the properties of three-nucleon bound states are well-reproduced
in the limit that nuclear forces satisfy Wigner’s SU(4) (spin–isospin) symmetry. To do this we compute the
charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/a,
with R the range of the nuclear force and a the nucleon–nucleon (NN ) scattering lengths. In the Wigner-SU(4)
limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm.
Adding the first-order corrections due to the breaking of Wigner symmetry in the NN scattering lengths gives
a 3H point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978±0.040 fm
(Angeli and Marinova in At Data Nucl Data Tables 99:69–95, 2013). For the 3He point charge radius we find
1.70 fm, about 4% away from the experimental value of 1.77527 ± 0.0054 fm (Angeli and Marinova 2013).
We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion
of them in powers of the symmetry-breaking parameter converges rapidly. Wigner’s SU(4) symmetry is thus
a useful starting point for understanding tri-nucleon bound-state properties.

1 Introduction

Quantum-mechanical systems in which the two-particle potential is short-ranged, and the two-body scattering
length is large compared to that range, share “universal” features [2]. The most striking of these is the Efimov
effect; the existence of an infinite series of three-body bound states . In the “unitary limit” the scattering length
|a| → ∞, and the three-body problem exhibits discrete scale invariance, with states in the Efimov tower related
to one another through a rescaling of co-ordinates by a factor that is eπ/s0 = 22.7 [3,4] for the equal-mass
case. The existence of two states related by this Efimov ratio has recently been demonstrated for Cesium atoms
near a Feshbach resonance—i.e., essentially in the unitary limit [5]—and for clusters of Helium atoms that
have a large, but finite, two-body scattering length [6].

Both of these systems consist of bosons, whereas the particles that make up nuclei are spin one-half fermions
of two different isospins. This means that—even in the approximation that S-wave interactions dominate the
formation of the three-nucleon bound state—nucleon–nucleon (NN ) interactions in two different channels, the
1S0 and the 3S1, contribute to the binding of the three-nucleon system. Nevertheless, the Efimov [7] effect also
occurs for three nucleons: the virtual state in doublet S-wave neutron-deuteron scattering becomes an excited
Efimov state of the triton in appropriate limits [8–10]. Most recently, Kievsky and Gattobigio [10] studied the
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physics of the three-nucleon bound state with model Gaussian potentials, showing that Efimov states appear in
the three-nucleon spectrum as the 1S0 and 3S1 scattering lengths tend towards the unitary limit. They argued
that this means the triton is inside the “Efimov window” in that its structure is governed by ‘a few control
parameters, [such] as the two-body energies and scattering lengths’, i.e., it can be described within the context
of few-body universality.

An effective field theory (EFT) with only short-range interactions provides a systematic way to organize
the treatment of three-body states in this universal/Efimov-window regime. It exploits the hierarchy of scales
R � |a|, and in nuclear physics it is known as the pionless EFT (EFT(/π)) [11–14]. At leading order (LO) in
EFT(/π) the particles interact via zero-range forces, whose strengths are tuned to reproduce, e.g. the 1S0 and
3S1 scattering lengths. At higher orders corrections to two-body observables due to the finite effective ranges,
r , can be computed in perturbation theory [15], with a nominal expansion parameter of r/a ≈ 30% in the 3S1
channel.

The leading-order equations for the triton in this EFT were worked out in Ref. [16], and it was quickly
apparent that those equations are equivalent to the (single) equation for bosons [17,18] in the limit that the
3S1 and 1S0 scattering lengths are equal, i.e., if the NN interaction displays a Wigner-SU(4) spin–isopsin
symmetry [16,19]. That equation, known as the Skornyakov–Ter–Martirosian (STM [20]) equation, must be
regulated. Using a momentum-space cutoff � its solution is sensitive to the value of �, i.e., to short-distance
physics in the three-body system; the STM equation does not posses a unique solution in the limit � → ∞ [21].
These problems can be removed by adding a three-body force to the EFT at leading order [18]. The three-body
force prevents Thomas collapse [22].

The leading-order EFT calculation recovers the prediction of the Efimovian spectrum in the unitary limit
and also permits straightforward extension of that result to finite scattering lengths—and to finite, and different,
S = 0 and S = 1 scattering lengths in the nuclear-physics case. This reproduces findings of Efimov [3,4,7]
and others [8,9] for zero-range forces. Crucially, the LO three-body force in the three-nucleon problem is
Wigner-SU(4) symmetric [19]—even for the situation where the S = 0 and S = 1 channels exhibit a different
scattering length; Wigner-SU(4)-anti-symmetric three-body forces do not enter the EFT until much higher
orders in the expansion [23–25]. Higher orders in the R/a expansion are calculated by considering perturbative
corrections to three-body observables due to the finite range of the nuclear force. EFT calculations at next-to-
leading (NLO) and next-to-next-to-leading-order (NNLO) in the range appeared in Refs. [26–29] (for three
bosons) and [30–32] (for the three-nucleon system). Most recently, Vanasse has shown that the triton point
charge radius is well described within EFT(/π), obtaining 〈r2

3H
〉pt = 1.14 + 0.45 + 0.03 = 1.62 fm at leading

order and for NLO and NNLO corrections [33]. The NLO and NNLO results agree with the experimental
value of 1.5978 ± 0.040 fm [1]. While the NLO correction is sizable, the excellent agreement and reasonable
convergence pattern support the contention of Ref. [10] that the triton is within the purview of few-body
universality.

In this paper we use EFT(/π ) to answer the question of how relevant Wigner-SU(4) symmetry is to the physics
of both the triton and 3He. Naively the NN system seems far from the Wigner-SU(4) limit: the deuteron binding
momentum is 45 MeV, while the corresponding scale in the 1S0 channel, the inverse of the 1S0 neutron-proton
(np) scattering length, is 1/aS=0

np = −8.3 MeV. Thus the parameter that governs Wigner-SU(4) breaking:

δ ≡ 1

2

(
1/aS=1

np − 1/aS=0
np

)
(1)

is not small compared to the average of 1/aS=1
np and 1/aS=0

np . However, we shall see that an expansion around
the Wigner-SU(4) limit, where δ = 0, converges well. The triton binding energy changes by only 0.8 MeV
due to Wigner-SU(4) breaking, and the triton charge radius in the Wigner-SU(4) limit is 1.66 fm at NLO in
EFT(/π), quite close to the average of the experimental 3H and 3He point charge radii. Perhaps most tellingly,
the Wigner-SU(4)-odd component of the triton wave function is <10% the size of the SU(4)-even part, which
implies that an expansion around the Wigner-SU(4) limit will be successful for all trinucleon bound-state
observables—or at least for all observables that do not vanish in that limit.

Wigner-SU(4) (spin–isospin) symmetry has had considerable phenomenological success in nuclear physics,
ever since, in 1937, Wigner classified nuclear states according to their SU(4) representation in order to explain
the pattern of nuclear masses up to A ≈ 40 [34]. Subsequently he worked out the consequences of such a
symmetry for nuclear beta decays [35]. The “Wigner super-multiplet theory” was later applied to inelastic
electron scattering from, and muon capture on, 12C and 16O [36–38]; the particle-hole states were usefully
classified according to Wigner-SU(4), thereby explaining the existence of a family of giant resonances in these
nuclei.
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We note that the presence of Wigner-SU(4) symmetry in the three-nucleon problem is a weaker condition
than that the three-nucleon problem exhibit the unitary (|a| → ∞) limit. The unitary limit may be relevant
for few-nucleon systems in large magnetic fields [39] or in a version of QCD with slightly larger and unequal
up- and down-quark masses [40]. Recently, König et al. have argued that the binding energies of the A = 3
and A = 4 systems can be understood both qualitatively and quantitatively via an expansion around the
unitary limit. We will comment specifically on this idea in Sect. 7. In the Wigner-SU(4) limit the four NN
scattering lengths ann , app, aS=0

np , and aS=1
np are all equal, but could be finite. Efimovian towers can still

occur for finite scattering lengths (e.g. the helium trimers), but they are related by a scaling factor which is
smaller than the 22.7 that applies for equal masses when |a| → ∞. In this situation the equations for the
triton are those for a two-neutron halo with a neutron-core scattering length equal to the neutron–neutron
scattering length [41]. Therefore the Wigner-SU(4) limit not only connects the trinucleons to the three-boson
systems being investigated experimentally in Innsbruck [5], Frankfurt [6], and elsewhere, it also permits us to
understand the triton as the lightest two-neutron halo.

Our discussion of this connection proceeds as follows. In Sect. 2 we introduce the basic formalism for
Wigner-SU(4) symmetry and its breaking in the two-body sector, while Sect. 3 introduces this formalism in
the three-body sector. Sections 4–6 discuss the effects of Wigner-SU(4) symmetry and its breaking on binding
energy, charge and matter radii, and triton vertex functions. In Sect. 7 we examine the values obtained for
three-nucleon charge radii in the unitary limit and in Sect. 8 we conclude.

2 Wigner-SU(4) Symmetry in the Two-Body Sector

The LO NN interaction in EFT(/π) can be written as [42]

L2 = −1

2
CT

0 N̂ †σ i N̂ N̂ †σ i N̂ − 1

2
CS

0 N̂
† N̂ N̂ † N̂ . (2)

A Wigner transformation N̂ → Û N̂ is a simultaneous transformation under spin and isospin given by the
operator Û = eiαμνσμτν , where σμ = {1, σ i } and τν = {1, τ a} are four vectors with μ, ν = 0, 1, 2, 3 and
i, a = 1, 2, 3. The determinant of Û is equal to one and αμν is a 4 × 4 matrix of real numbers [19,34], with
α00 = 0. It is immediately obvious that the CS

0 term is invariant under a Wigner transformation while the CT
0

term is not. Thus EFT(/π) is Wigner symmetric at LO if and only if CT
0 = 0. The LO NN interaction can also

be written in the partial-wave basis yielding

LPW
2 = −C (3S1)

0

(
N̂ T Pi N̂

)† (
N̂ T Pi N̂

)
− C

(1S0
)

0

(
N̂ T P̄a N̂

)† (
N̂ T P̄a N̂

)
, (3)

where Pi = 1√
8
σ2σiτ2

(
P̄a = 1√

8
σ2τ2τa

)
projects out the spin-triplet iso-singlet (spin-singlet iso-triplet)

combination of nucleons. Parameters in Eq. (2) can be related to parameters in the partial wave basis via [19]

C
(

1S0
)

0 = CS
0 − 3CT

0 , C
(

3S1
)

0 = CS
0 − CT

0 , (4)

so the condition CT
0 = 0 for Wigner-SU(4) symmetry is equivalent to C (1S0)

0 = C (3S1)
0 in the partial-wave

basis. At LO in the EFT(/π) power counting the NN scattering amplitude is given by an infinite sum of bubble
diagrams [12,13]. Fitting to the 3S1 (1S0) bound (virtual bound) state pole gives

C
(3S1
)

0 = 4π

MN

1

γt − μ
, C

(1S0
)

0 = 4π

MN

1

γs − μ
, (5)

for the low-energy constants (LECs) in the partial-wave basis. (The scale μ comes from using the power
divergence subtraction scheme with dimensional regularization [12,13].) If μ 
 γt , γs then Wigner-SU(4)
symmetry is approximate in the NN system. However, if γt = γs then Wigner-SU(4) symmetry is exact for
the NN system at LO. γt = 45.7025 MeV and γs = −7.890 MeV [43] correspond to the momenta at which
poles of the NN scattering amplitude occur in the 3S1 and 1S0 channels, respectively. At LO in the EFT(/π)
expansion they are equal to 1/aS=1

np and 1/aS=0
np [15,43,44]. Since γs �= γt Wigner-SU(4) symmetry is not

exact. We will explore the extent to which an expansion in powers of γs − γt gives access to the properties of
three-nucleon bound states.
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Fig. 1 Set of coupled integral equations for the LO tri-nucleon vertex function. Single lines are nucleons, double lines 3S1
dibaryons, double dashed lines 1S0 dibyarons, and triple lines tri-nucleons

Up to NLO in the EFT expansion the Wigner-SU(4) symmetric limit is attained if all effective-range
expansion parameters occurring up to that order are equal in the 3S1 and 1S0 channels. This results in equal
Lagrangian parameters in the 1S0 and 3S1 channels, thus guaranteeing symmetry of the Lagrangian under
Wigner-SU(4) transformations. Tensor interactions complicate the definition at higher orders. But at NLO this
means that Wigner-SU(4) symmetry is satisfied if and only if the 1S0 and 3S1 channels have equal scattering
lengths and effective ranges.

3 Wigner-SU(4) Symmetry in the Three-Body Sector

The LO triton vertex function is the solution to a set of coupled integral equations shown in Fig. 1 [33].
The coupled set of integral equations can be written as

G(LO)
t (p) = 1 + 1

π

�∫

0

dqq2R(LO)(q, p, E)
{
Dt (q, E)G(LO)

t (q) + 3Ds(q, E)G(LO)
s (q)

}

G(LO)
s (p) = 1 + 1

π

�∫

0

dqq2R(LO)(q, p, E)
{

3Dt (q, E)G(LO)
t (q) + Ds(q, E)G(LO)

s (q)
}

, (6)

where

R(LO)(q, p, E) = 1

qp
Q0

(
q2 + p2 − MN E

qp

)
, (7)

and the dibaryon propagators are defined by

D{t,s}(q, E) = 1√
3
4q

2 − MN E − γ{t,s}
. (8)

Vertex functions are equivalent to Faddeev components. From them, the triton wave function can be recon-
structed. For further details see Refs. [33,46,47]. The superscripts designate that we refer here to quantities
that are LO in the EFT(/π) power counting. Q0(a) is a Legendre function of the second kind given by

Q0(a) = 1

2
ln

(
1 + a

a − 1

)
. (9)

The binding energy, E = −B, where the numerical value chosen for B is discussed in the next section. In
order to investigate the consequences of the Wigner-SU(4) limit in the three-body system it is convenient to
rewrite the LO triton vertex function in a Wigner-SU(4) basis, which is defined by

G(LO)
+ (p) = G(LO)

t (p) + G(LO)
s (p), G(LO)

− (p) = G(LO)
t (p) − G(LO)

s (p). (10)
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In this basis it is necessary to take the sum and difference of the 3S1 and 1S0 dibaryon propagators of Eq. (8).
Defining γAVE = (γt + γs)/2 and δ = (γt − γs)/2 the sum of dibyaron propagators is

1√
3
4q

2 − MN E − γt

+ 1√
3
4q

2 − MN E − γs

= 2√
3
4q

2 − MN E − γAVE

∞∑
n=0

δ2n

(√
3
4q

2 − MN E − γAVE

)2n (11)

and the difference

1√
3
4q

2 − MN E − γt

− 1√
3
4q

2 − MN E − γs

= 2√
3
4q

2 − MN E − γAVE

∞∑
n=0

δ2n+1

(√
3
4q

2 − MN E − γAVE

)2n+1 ,

(12)

where we have expanded in powers of δ which parametrizes the distance from the Wigner-SU(4) limit. In
addition to expanding the dibaryon propagators in powers of δ, the triton vertex functions are also expanded
in powers of δ via

G(LO)
+ (p) =

∞∑
n=0

G(2n)
+ (p)δ2n, G(LO)

− (p) =
∞∑
n=0

G(2n+1)
− (p)δ2n+1. (13)

Equations (10)–(13) can then be used in Eq. (6), and equating terms order-by-order in δ yields the set of
coupled integral equations

G̃(2n)
+ (p) = 2δ0n + D(p, E)G̃(2n−1)

− (p) + 4

π

�∫

0

dqq2D(q, E)R(LO)(q, p, E)G̃(2n)
+ (q)

G̃(2n+1)
− (p) = D(p, E)G̃(2n)

+ (p) − 2

π

�∫

0

dqq2D(q, E)R(LO)(q, p, E)G̃(2n+1)
− (q), (14)

where

D(q, E) = 1√
3
4q

2 − MN E − γAVE

. (15)

The functions G̃(n)
± (p) are defined by

G̃(2n)
+ (p) = G(2n)

+ (p) + D(p, E)G̃(2n−1)
− (p)

G̃(2n+1)
− (p) = G(2n+1)

− (p) + D(p, E)G̃(2n)
+ (p). (16)

Writing things in terms of G̃’s, rather thanG’s, means that the equations simplify considerably and the correction
at a given order only depends on the order immediately preceeding it, and not all orders preceeding it. For
n = 0 we note that G̃(2n−1)

− (p) = 0 and therefore G̃(0)
+ (p) = G(0)

+ (p). Also in the limit δ = 0 only the G(0)
+ (p)

term gives a non-zero contribution and its integral equation is equivalent to that for three bosons [16].
In order to properly normalize the triton vertex function it must be multiplied by the triton wavefunction

renormalization which is given by

Zψ = 1

�′(E)
, (17)
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where �(E) is the triton self energy

�(E) = 1

2π

�∫

0

dqq2

⎧⎨
⎩

1√
3
4q

2 − MN E − γt

Gt (q) + 1√
3
4q

2 − MN E − γs

Gs(q)

⎫⎬
⎭ . (18)

Again expanding the dibaryon propagators and the triton vertex functions in powers of δ we find that only even
powers of δ enter in the expansion of �:

�(E) =
∞∑
n=0

�(2n)(E)δ2n, (19)

where

�(2n)(E) = 1

2π

�∫

0

dqq2D(q)G̃(2n)
+ (q). (20)

Thus the triton wavefunction renormalization in the δ expansion is given by

Zψ = 1

�′(E)
= 1

�(0)′(E)
− �(2)′(E)(

�(0)′(E)
)2 + · · · (21)

3.1 Range Corrections

The O(r) (NLO in the nuclear-force’s range) correction to the triton vertex function in the Z -parametrization
is given by [33]

G(NLO)
t (p) = G(LO)

t (p)R(NLO)
t (p, E) + 1

π

�∫

0

dqq2Dt (q, E)R(LO)(q, p, E)G(NLO)
t (q)

+ 3

π

�∫

0

dqq2Ds(q, E)R(LO)(q, p, E)G(NLO)
s (q)

G(NLO)
s (p) = G(LO)

s (p)R(NLO)
s (p, E) + 3

π

�∫

0

dqq2Dt (q, E)R(LO)(q, p, E)G(NLO)
t (q)

+ 1

π

�∫

0

dqq2Ds(q, E)R(LO)(q, p, E)G(NLO)
s (q), (22)

where

R(NLO)
{t,s} (p, E) = Z{t,s} − 1

2γ{t,s}

(
γ{t,s} +

√
3

4
p2 − MN E

)
. (23)

Zt = 1.6908 (Zs = 0.9015) is the residue at the 3S1 (1S0) channel pole [43,45]. The residues Zs and Zt are
equal in the Wigner-SU(4) symmetric limit. Expanding these equations in δ gives the O(rδ0) term1

G(NLO)
+ (p) = G(0)

+ (p)R(NLO)
+ (p, E) + 4

π

�∫

0

dqq2D(q, E)R(LO)(q, p, E)G(NLO)
+ (q), (24)

1 Note, when expanding in powers of δ the γ{t,s} in the expression (Z{t,s} − 1)/(2γ{t,s}) is not expanded, because this whole
quantity is taken as the range correction.
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Fig. 2 Binding energy of the triton as a function of the Wigner-SU(4)-breaking parameter δ, where the three-body force is fit to
the triton binding energy at the physical value of δ. The same three-body force is used for all other values of δ, and Wigner-SU(4)
breaking is treated non-perturbatively

where G(NLO)
+ (p) is the NLO-in-range-but-LO-in-Wigner correction (O(rδ0)) to G+(p) and we have dropped

the part of the range correction that breaks Wigner-SU(4) symmetry. The Wigner-SU(4)-symmetric part of the
range correction involves the function R(NLO)

+ (p, E), defined as

R(NLO)
+ (p, E) = ρAVE

(
γAVE +

√
3

4
p2 − MN E

)
, (25)

where

ρAVE = 1

2

(
Zt − 1

2γt
+ Zs − 1

2γs

)
. (26)

This means that, for the O(r) correction, in addition to expanding in powers of δ, we also expand in powers of

δr = 1

2

(
Zt − 1

2γt
− Zs − 1

2γs

)
, (27)

and the equations derived here are O(δ0
r ).

4 Binding Energy

To understand Wigner-SU(4) breaking in the three-body system we first investigate its effects on the triton
binding energy. We do this at LO in the EFT(/π) expansion. Figure 2 plots the binding energy of the triton as
a function of the Wigner-SU(4) breaking parameter δ, with Wigner-SU(4) breaking treated nonperturbatively.
In this calculation we employ a three-body force that is independent of δ, and is fixed so as to reproduce the
triton binding energy, B3H = 8.48 MeV, at the physical value of δ = 26.80 MeV, which corresponds to the
right edge of Fig. 2. The difference between the binding energy at the physical δ and in the Wigner-SU(4) limit,
δ = 0, is only 11%. The shape of the curve is essentially quadratic, demonstrating that the first Wigner-SU(4)
correction to the binding energy comes in at O(δ2). This should come as no surprise: the vertex functions are
SU(4) symmetric at leading order in the expansion in powers of δ, and so the insertion of an SU(4)-breaking
correction between them must yield zero. This, indeed, is why the self energy �(E), has no term of O(δ).

Since in this paper we expand all observables around the Wigner-SU(4) limit, all our remaining calculations
here are carried out with the binding energy chosen to have its δ = 0 value, B = 7.62 MeV. This corresponds
to using the same three-body force that was used to generate Fig. 2.
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5 Charge and Matter Radii

5.1 Relations Between Radii Under Wigner-SU(4) Symmetry

In the absence of Coulomb, and assuming isospin is a conserved symmetry, 3He is the isospin mirror of 3H.
Therefore, the proton radius of 3He is the neutron radius of 3H and vice versa. Using this fact it is straightforward
to show that for the 3H and 3He wavefunctions〈

3H

∣∣∣∣
∑
i

τ
(i)
3 x2

i

∣∣∣∣3H

〉
= 〈r2

3H

〉− 2
〈
r2

3He

〉
, (28)

and 〈
3He

∣∣∣∣
∑
i

τ
(i)
3 x2

i

∣∣∣∣3He

〉
= 2
〈
r2

3He

〉− 〈r2
3H

〉
, (29)

where 〈r2
3H

〉 and 〈r2
3He

〉 are the 3H and 3He point charge radii squared respectively and i sums over the nucleons.
In the Wigner-SU(4) limit the wavefunction is spatially symmetric such that

〈
AZ

∣∣∣∣
∑
i

τ
(i)
3 x2

i

∣∣∣∣AZ
〉

= 1

3

〈
AZ

∣∣∣∣2T3

∑
i

x2
i

∣∣∣∣AZ
〉

, (30)

where |AZ 〉 is either the 3H or 3He wavefunction, and T3 the operator for isospin in the z-direction on these
wavefunctions. (For a proof of this statment see Appendix.) Noting that

〈
3H

∣∣∣∣
∑
i

x2
i

∣∣∣∣3H

〉
= 2
〈
r2

3He

〉+ 〈r2
3H

〉
, (31)

and using Eqs. (30) and (28) we find

−1

3

(
2
〈
r2

3He

〉+ 〈r2
3H

〉) = 〈r2
3H

〉− 2
〈
r2

3He

〉
. (32)

Solving this gives 〈r2
3H

〉 = 〈r2
3He

〉, and therefore in the Wigner-SU(4) limit the charge radii of 3H and 3He are

equivalent. In addition the point matter radii for 3H and 3He will be the same and equivalent to their point
charge radii.

Assuming that Wigner-SU(4) corrections are kept to all orders Eq. (31) still holds. Therefore, considering
O(δ) corrections Eq (31) gives

〈
3H

∣∣∣∣
∑
i

x2
i

∣∣∣∣δ3H

〉
+
〈
δ3H

∣∣∣∣
∑
i

x2
i

∣∣∣∣3H

〉
= 2
〈
r2

3He

〉
δ
+ 〈r2

3H

〉
δ
, (33)

where |δ3H
〉

is the first order Wigner-correction to the 3H wavefunction and 〈r2
3H

〉δ and 〈r2
3He

〉δ are the first

order Wigner-corrections to the 3H and 3He charge radii squared respectively. This relationship is exactly the
same for the 3He wavefunctions. The quantity

∑
Z

〈
AZ

∣∣∣∣
∑
i

x2
i

∣∣∣∣δAZ
〉

= 0, (34)

where the sum over “Z” simply sums both the 3H and 3He wavefunctions. Taking the sum over “Z” makes this
quantity a Wigner-SU(4) scalar, but it has one insertion of an operator that breaks Wigner-SU(4) symmetry
and therefore must be zero. Combining Eqs. (33) and (34) gives

4
〈
r2

3He

〉
δ
+ 2
〈
r2

3H

〉
δ

= 0. (35)

From this it follows that that the O(δ) correction to the 3H point charge radius squared is twice as large and
has the opposite sign as the O(δ) correction to the 3He point charge radius squared. This relationship can also
be proven using the identities in Ref. [33] and expanding them to O(δ). However, this method is long and
tedious.
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Fig. 3 Plot of cutofff dependence of LO, NLO, and O(r + δ) prediction for the triton point charge radius. The pink band
corresponds to a 15% error estimate about the LO central value, the green band to a 5% error about the NLO central value, and
the blue band a 5% error estimate about the O(r + δ) value. The dotted black line is the experimental value for the triton point
charge radius of 1.5978 ± 0.040 fm and the solid black lines about it its error [1]

5.2 Results

To obtain the triton charge radius in the Wigner-SU(4) limit the results of Ref. [33] can simply be recalculated
setting γt = γs = γAVE and (Zt −1)/2γt = (Zs −1)/2γs = ρAVE. A second approach is to take the analytical
expressions in Ref. [33] and expand them about the Wigner-limit to O(δ). This allows calculation of the O(δ)
correction and the calculation of the triton charge radius in the Wigner-SU(4) limit using only the triton vertex
functions G(0)

+ (p) and G(1)
− (p). Both approaches give the same result in the limit δ = 0.

We compute the triton point charge radius at LO (O(r0δ0)), NLO (O(rδ0)), and O(r + δ), where the
last calculation involves the addition of both a single range insertion and a single Wigner-SU(4)-breaking
insertion, but only considered separately, not in combination. Cutoff dependence of these three different
results is displayed in Fig. 3.

All orders of the triton point charge radius considered here converge as a function of cutoff, and are therefore
properly renormalized. The LO triton point charge radius is 1.22 fm, the NLO value 1.66 fm, and the O(r + δ)
value 1.58 fm. The experimental value for the triton point charge radius is 1.5978±0.040 fm [1], which agrees
well with our O(r + δ) calculation. When Wigner-SU(4) breaking is included to all orders, i.e., the physical
values of γs and γt , and the physical triton binding energy, B3H = 8.48 MeV, are employed, at LO (NLO) in
EFT(/π) the triton point charge radius is 1.14 fm (1.59 fm) [33]. 3He has an experimental point charge radius
of 1.77527 ± 0.0054 fm [1]. This is about 7% away from the NLO-in-range-but-SU(4)-symmetric prediction
of 1.66 fm. As already noted, the Wigner-SU(4)-breaking correction for the 3He point charge radius squared
is half that for the 3H point charge radius squared and of opposite sign. Therefore, the O(r + δ) 3He point
charge radius squared is 1.70 fm, about 4% away from the experimental value.

The error due to missing range corrections is about 10%. The dominant, SU(4)-symmetric, part of this
correction will affect the 3H and 3He charge radii equally. In contrast, the effects of the Coulomb interaction,
not included here, will affect only the charge radius of 3He. We estimate this effect to be of order αMN/κt
(where κt = √MN B3H is the binding momentum of the triton), which is about 8%. Meanwhile, the uncertainty
due to Wigner-SU(4) breaking in the NN effective ranges is naively 3% since

δr

a
≈
{(

Zt − 1

2γt
− Zs − 1

2γs

)/( Zt − 1

2γt
+ Zs − 1

2γs

)}(
γt

mπ

)
∼ 0.033. (36)

Terms of O(rδ) are also omitted. These could also be as large as a few per cent of the individual radii, since
range corrections to those are large. Corrections that are Wigner-SU(4) odd (e.g. O(δ), O(rδ), and O(rδr ))
will affect only the isovector combination of trinucleon charge radii,

〈
r2
v

〉 = 1

2

(
2
〈
r2

3He

〉− 〈r2
3H

〉)
, (37)

and give zero contribution to to the isoscalar combination:

〈
r2
s

〉 = 1

2

(
2
〈
r2

3He

〉+ 〈r2
3H

〉)
. (38)



26 Page 10 of 15 J. Vanasse, D. R. Phillips

Finally, considering the convergence of the expansion in powers of δ, e. g., the ratio between G(0)
+ (p) and

G(2)
+ (p), suggests that O(δ2) effects could have perhaps a 5% effect on the radii.

6 Convergence of the Wigner-SU(4) Expansion

In order to assess the efficacy of expanding about the Wigner-SU(4) limit we plot the relative error of the
triton vertex function with the breaking of Wigner-SU(4) symmetry in the NN scattering lengths included to
all orders, as compared with that obtained when this source of Wigner-SU(4) symmetry breaking is treated
perturbatively order-by-order in δ.

Figure 4 shows the relative error of the cumulative sum in the expansion in powers of δ,
∑n

m=0 G(2m)
+ (q)δ2m ,

compared to G(LO)
+ (q), up to O(δ6), over a range of momenta that essentially corresponds to the domain of

validity of EFT(/π), q=0–200 MeV. The data is chosen at the cutoff �=51,286 MeV; by this cutoff all results
have effectively converged as a function of �. Order-by-order convergence in the δ expansion can clearly be
seen in the relative error.

In Fig. 5 the relative difference between G(LO)
− (q) and the cumulative sum

∑n
m=0 G(2m+1)

− (q)δ2m+1 is
shown for the same range of momenta and the same cutoff �, up to O(δ5). Again, order-by-order convergence
is clearly observed. The dip at NLO merely corresponds to the fact that G(LO)

− (q) and G(1)
− (q)δ cross each other

at a momentum ≈ γt , i.e., about 50 MeV. Finally, we compare the size of G(LO)
− (q) and G(LO)

+ (q), see Fig. 6.

G(LO)
− (q) is at most 8% of G(LO)

+ (q) over the entire momentum region of interest.
These results support the claim that an expansion about the Wigner-SU(4) limit converges rapidly. We

recognize, of course, that triton vertex functions are not observables. However, since the construction of any
three-nucleon bound-state property in EFT(/π) will involve these non-perturbative objects, the fact that they
converge rapidly in the δ expansion suggests that the expansion will generally be successful for three-nucleon
bound-state observables.

7 Comments on the Unitary Limit

König et al. [48] have recently argued that the binding energies of nuclei up to A = 4 can be understood
in an expansion about the unitary limit, where γs = γt = 0. The unitary limit is clearly a special case of
Wigner-SU(4) symmetry; taking γs = γt = 0 enlarges the symmetry group still further, since the discrete
scale invariance of EFT(/π) at LO then relates all the unitary-limit Efimov states by a fixed rescaling. In the
case of finite scattering lengths the Efimov spectrum still possesses discrete scale invariance, but a particular

A
bs

G(
L
O
)

+
(q
) −

n m
=
0
G(

2
m

)
+

(q
)δ

2
m

A
bs

G(
L
O
)

+
( q
)

q [MeV]

LO
N2LO
N4LO
N6LO

Fig. 4 Plot of relative difference between G+(q) and
∑n

m=0 G(2m)
+ (q)δ2m to O(δ6). The relative error is plotted over the range

q=0–200 MeV and the data is for the cutoff �=51,286 MeV. The LO (O(δ0)) result is given by the solid red curve, the N2LO
(O(δ2)) result by the long-dashed green curve, the N4LO (O(δ4)) result by the short-dashed blue curve, and the N6LO (O(δ6))
result by the short-long-dashed purple curve
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Fig. 5 Plot of relative error ofdifference between G(LO)
− (q) and

∑n
m=0 G(2m+1)

− (q)δ2m+1 to O(δ5). The relative error is plotted
over the range q=0–200 MeV and the data is for the cutoff �=51,286 MeV. The NLO (O(δ)) result is given by the solid red
curve, the N3LO (O(δ3)) result by the long-dashed green curve, and the N5LO (O(δ5)) result given by the short-dashed blue
curve

G(
L
O
)

−
(q
) /
G(

L
O
)

+
(q
)

q [MeV]

Fig. 6 The ratio of G(LO)
− (q) and G(LO)

+ (q), again computed for a cutoff of �=51,286 MeV

Efimov state is related to others at a different NN scattering length [2]. As we have done here, König et al. fix
the size of the three-body force to reproduce the binding energy of the physical triton. They demonstrate that
the binding-energy difference of 3He and 3H remains well predicted in the unitary limit (cf. Refs. [49,50]).
They also show that the alpha particle, while overbound by about 10 MeV at exact unitarity, attains almost
exactly its experimental binding energy (28.30 MeV) once first-order corrections in the expansion in γt are
included.

It is straightforward for us to take the limit γAVE → 0 in our results and so obtain point charge radii for
three-nucleon bound states in the unitary limit. At leading order in the range expansion this gives 〈r2〉1/2

pt = 1.10

fm (for B = 7.62 MeV), in accord with the analytic result [2]2

〈
r2〉

pt MN B = (1 + s0)
2

9
≈ 0.224. (39)

This lends support to the argument of König et al., since it is within 10% of either the Wigner-SU(4) limit
result quoted above, or the full LO EFT(/π) answer of 1.14 fm [33].

Adding corrections of first order in the range of the NN interaction corrects the radius obtained from
Eq. (39) by an amount ∼ rκt—such effects are present even though r/a = 0 at unitarity. (Note, however, that

2 In fact, Ref. [2] quotes this as the result for the matter radius in the unitary limit for three equal-mass particles. However, in
that limit the symmetry of the three-body wave function leads to equal charge and matter radii.
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Table 1 Anatomy of the point charge radii 〈r2〉1/2
pt , of three-nucleon bound states

Unitary limit Wigner-SU(4) limit O(δ) Full Wigner-SU(4) breaking

LO EFT(/π ) (r = 0) 1.10 1.22 1.08/1.19 1.14/1.26
O(r) 1.42 1.66 1.58/1.70 1.59/1.72

When only one number is quoted the radii are equal for 3H and 3He, if two numbers are given the first is for the triton and the
second for 3He. All numbers are in fm. Note that the lower line, third entry in the table is the O(r + δ) calculation of this paper.
The “Full Wigner-SU(4) breaking” numbers treat Wigner-breaking in the scattering lengths and (in the second line) effective
ranges nonperturbatively and use the physical triton binding energy [33,51]. The experimental evaluation of Ref. [1] quotes
1.598(40)/1.7753(54)

the factors Zs and Zt remain at their LO values of one as long as we consider γs = γt = 0 3.) This shifts
〈r2〉1/2

pt to 1.42 fm, i.e., the size of the range correction at unitarity is about 70% of that when γAVE takes its
physical value.

Table 1 summarizes the effect that different limits in the NN system have on the radii of the three-nucleon
bound states. In the case of the triton we can compare to Ref. [33], which obtained 1.14 fm at LO in EFT(/π),
but with Wigner-SU(4) breaking included to all orders in δ, and 1.59 fm in a calculation that was first order in
the ranges (including SU(4) breaking therein), and again had the physical values of γs and γt . The proximity
of our O(r + δ) results to these is very striking.

The unitary limit seems a worse starting point—at least for radii—especially since the shift that results
from range corrections is significantly underpredicted there. It may be that radii are more challenging for
the expansion proposed in Ref. [48], since they are quite sensitive to infra-red physics, and the long-distance
properties of the three-nucleon system in the unitary limit differ dramatically from reality: at both LO and
NLO in the expansion of Ref. [48] infinite towers of bound Efimov excited states occur.

8 Conclusions

Working to O(r +δ) in the range and δ expansion of EFT(/π) we obtain a point charge radius for 3H of 1.58 fm,
which agrees with the experimental number, 1.5978 ± 0.040 fm [1], within the experimental errors. It also
agrees with the NLO result of 1.59 fm obtained using the physical values of the NN scattering lengths and
triton binding energy [33], within theoretical errors. It follows that all higher-order corrections in δ and δr must
conspire to give a total correction of only .01 fm to 〈r2

3H
〉1/2
pt . Naively O(δ2) corrections could give 5% of the

LO Wigner SU(4)-symmetric charge radius 1.22 fm, i.e., they should be ≈0.06 fm. However, at O(δ2) there
will be effects both from expanding the expressions of Ref. [33] out to O(δ2), and from the O(δ2) shift of the
three-nucleon bound state energy from B = 7.62 MeV to the physical triton binding energy. The small overall
result of a 0.01 fm shift is probably due to a cancellation between these two classes of O(δ2) corrections.

Working to first order in both Wigner-SU(4) breaking and the NN effective range produces a 3He point
charge radius of 1.70 fm, about 4% below the experimental value of 1.77527 ± 0.0054 fm [1]. The difference
is mostly from missing Coulomb and higher-order range corrections, since the 3He charge radius with Wigner
SU(4)-breaking included to all orders (including breaking in ranges), but no Coulomb effects, is 1.72 fm at
NLO in the range expansion [51].

In this (isospin symmetric) limit 3H and 3He have a common binding energy. It is thus an SU(4) scalar,
and so receives no correction at O(δ). We find that O(δ2) effects make the triton 11% less bound in the
Wigner-SU(4) limit than it is at the physical value, δ = 27 MeV.

δ is in fact larger than γAVE = 19 MeV, and so the rapid convergence of the expansion in powers of δ at first
glance is somewhat mysterious. However, the expansion is really an expansion in powers of δD(q, E), with
D(q, E) the EFT(/π) propagator for the NN system that appears in the three-body equations. This renders the
expansion around the SU(4) limit one in (γt − γs)/κt , with κt = 89 MeV the binding momentum of the triton.

Examining both the three-nucleon binding energy and the relative size of the SU(4)-symmetric and SU(4)-
anti-symmetric pieces of the three-nucleon vertex function,G(LO)

− (p)/G(LO)
+ (p), suggests that the error induced

in observables through going to the Wigner-SU(4) limit will be at most 10%. This implies that an efficient way
to account for Wigner-SU(4) breaking is to equate δ ∼ r2, i.e., only compute one correction in Wigner-SU(4)

3 In the unitary limit and Wigner-SU(4) limit (Z{t,s} − 1)/(2γ{t,s}) → 1
2 ρ, where ρ = 1

2 (ρt + ρs), with ρt = 1.765 fm
(ρs = 2.730 fm) being the effective range about the 3S1 (1S0) pole.



Three-Nucleon Bound States and the Wigner-SU(4) Limit Page 13 of 15 26

breaking for every two orders in the range expansion. Unfortunately, an O(r2) calculation requires a new
three-body force that must be renormalized to a three-body datum [29,31]. Since the Wigner-SU(4) limit is
not expected to work nearly as well for scattering observables that additional three-body force should be fit to
a three-body bound state observable. We postpone this to future work.

Finally, we note that the Wigner-SU(4) symmetry which emerges in EFT(/π) is not obviously related to the
contracted SU(4) of QCD in the limit of a large number of colors (NC ) [52]. In the large-NC limit Wigner-
SU(4) symmetry of nuclear forces naturally emerges [53–55], but this happens only at a renormalization scale
∼ �QCD, whereas the SU(4) in EFT(/π) emerges already for renormalization scales ∼ mπ .

Acknowledgements We thank Shung-Ichi Ando for comments that helped us clarify the manuscript. We are grateful to the
ExtreMe Matter Institute EMMI at the GSI Helmholtz Centre for Heavy Ion Research for support as part of the Rapid Reaction
Task Force, “The systematic treatment of the Coulomb interaction in few-body systems”. We acknowledge financial support by
the US Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-FG02-93ER40756.

Appendix: Proof of Eq. (30)

In order to prove Eq. (30) the spatial permutation operator is defined as Pi j . This operator permutes the i th and
j th particles in the spatial part of the wavefunction while leaving the spin and isospin parts of the wavefunction
untouched. Noting P2

i j = 1 gives

〈
AZ

∣∣∣∣
∑
i

τ
(i)
3 x2

i

∣∣∣∣AZ
〉

= 1

3

〈
AZ

∣∣∣∣
∑
i

τ
(i)
3

(
x2
i + P2

i j x2
i P

2
i j + P2

ikx2
i P

2
ik

) ∣∣∣∣AZ
〉

, (A1)

where i �= j , i �= k, and j �= k. In the Wigner SU(4)-limit the spatial part of the tri-nucleon wavefunction
is spatially symmetric since it is equivalent to that of three bosons, and is thus invariant under any spatial
permutation. Now, since the spatial permutation operator does not act on isospin it can be commuted with τ

(i)
3 ,

leading to
〈
AZ

∣∣∣∣
∑
i

τ
(i)
3 x2

i

∣∣∣∣AZ
〉

= 1

3
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〉

, (A2)

which reduces finally to
〈
AZ
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∑
i

τ
(i)
3 x2

i
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〉

= 1
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. (A3)
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