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Abstract We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The
essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance
quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave
functions at small transverse separations, called distribution amplitudes, without any additional parameters.
The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on
form factors and compared to the results of lattice QCD simulations.

1 Introduction

Understanding the characteristics ofHadrons in terms ofQCDdegrees fo freedom, namely quarks and gluons, is
one of the central challenges of particle physics. It is understood that form factors at large momentum transfer
Q2 can be described in terms of distribution amplitudes, i.e. light-cone wave functions at small light-like
separation [1–9]. In this way experimental measurements of form factors can be connected to the momentum
distribution of quarks inside the involved hadrons. For mesons the gold platedmodes are the so called transition
form factors π, η(′) → γ γ ∗ where the hard formally leading contribution in 1

Q2 is not suppressed by powers

of αs
π
. But even there power corrections can reach up to ∼ 20 % at large Q2 ∼ 40 GeV2 [10–14].

For electromagnetic Baryon form factors the hard contributions are suppressed by
(

αs
π

)2 ∼ 0.01 compared
to the so called Feynman (soft) terms where one quark carries almost all of the momentum of the parent hadron
and interacts solely via soft gluons. Therefore the asymptotic regimewhere the perturbative description in terms
of distribution amplitudes is correct is postponed to very high Q2 far out of reach of current experiments.

Under these circumstances additional model assumptions have to be made to interpret experimental data.
One possibility is tomodel transversemomentum dependent (TMD) light-conewave function and use Sudakov
suppression of large transverse distances as initially suggested by Li and Sterman [15].

The possibility we advocate is called light-cone sum rules [16–18]. It is based on an light-cone expansion
in baryon distribution amplitudes of increasing twist using dispersion relations and duality. Soft- and hard
contributions are calculated on the same footing and there is no double counting [19]. This method gives up
to now the most direct connection between form factors and distribution amplitudes and has already been
succesfully applied to several meson decays.

For baryons the case is more complicated and it shall be discussed in some detail in the next section.

This article belongs to the special issue “Nucleon Resonances”.
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Fig. 1 Schematic structure of the light-cone sum rule for baryon form factors

2 Light-Cone Sum Rules for N and N∗ Form Factors

The basic object of the LCSR approach to baryon form factors [20–22] is the correlation function

Πμ(P, q) =
∫
dx e−iqx 〈0|T {η(0) jμ(x)}|P〉 (1)

where jμ represents the electromagnetic probe and η is a suitable operator with nucleon quantum numbers.
The other (in this example, initial state) nucleon is explicitly represented by its state vector |P〉, see a schematic
representation in Fig. 1. LCSRs are then derived by matching two different representations of the correlation
function: If both the momentum flowing through the η-vertex P ′2 = (P − q)2 and the momentum transfer
Q2 are large and negative it can be shown that the main contribution to the integral in (1) comes from the
region x2 ≈ 0. Hence it can be studied using the operator product expansion of the time ordered product of
the two currents around the light-cone. The light-cone divergence of the coefficient function is governed by
the twist, i.e. dimension minus spin, of the respective operator. The matrix element of the operator is related
to the baryon distribution amplitude. The resulting expression is then analytically continued to positive P ′2 by
dispersion relations.

On the other hand the correlation function can be represented as a complete sum over intermediate hadron
states and can be written as a dispersion integral in P ′2 with the nucleon or N∗ contribution separated explicitly
from the higher states.

Quark-Hadron duality allows to equate both representations from a certain duality threshold s0 on giving
an expression for the form factor

λ1 F1(Q2)

m2
N − P ′2 =

s0∫

0

ds

s − P ′2 ImsΠ(s, Q2) + subtractions.

A Borel-transformation gets rid of subtraction terms needed to render the dispersion integrals finite and
suppresses higher order states (contributions of large s) on the cost of introducing an additional parameter M2.
The dependence on this parameter is artificial in a similar way as the dependence on the factorization scale μ
in perturbation theory.

2.1 Form Factors

The electromagnetic or electroproduction form factors we are considering are conventionally defined as the
matrix element of the electromagnetic current

jemμ (x) = euū(x)γμu(x) + ed d̄(x)γμd(x) (2)

taken either between nucleon states or between the negative parity spin 1
2 partner N∗ and a nucleon:

〈N (P ′)| jemμ |N (P)〉 = ūN (P ′)
[
γμF1(Q

2) − i
σμνqν

2mN
F2(Q

2)

]
uN (P),

〈N∗(P ′)| jemμ |N (P)〉 = ūN∗(P ′)
[

γ5
G1(q2)

m2
N

(/qqμ − q2γμ) − i
G2(q2)

mN
σμρq

ρ

]

uN (P). (3)



Light-Cone Sum Rule Approach for Baryon Form Factors 977

Roughly speaking they are a measure for the probability of a nucleon being hit by an energetic photon to form
a nucleon or a N∗. The second form factor is needed to describe the effect of the anomalous magnetic moment
of the respective hadron. Possible third and fourth form factors are not necessary due to current conservation
and parity invariance of the electromagnetic interaction. For the nucleon these form factors are called Dirac
F1 and Pauli F2 form factor. For experimental measurements it is more convenient to consider the so called
electric and magnetic Sachs form factors

GM (Q2) = F1(Q
2) + F2(Q

2), GE (Q2) = F1(Q
2) − Q2

4m2
N

F2(Q
2). (4)

They lead to a separation of the form factors in the famous Rosenbluth scattering cross-section.
The helicity amplitudes A1/2(Q2) and S1/2(Q2) for the electroproduction of N∗(1535) can be expressed

in terms of the form factors [23] via:

A1/2 = eB
[
Q2G1(Q

2) + mN (mN∗ − mN )G2(Q
2)

]
, S1/2 = eBC√

2

[
(mN − mN∗)G1(Q

2) + mNG2(Q
2)

]
,

(5)

where e = √
4πα is the elementary charge and B, C are kinematic factors defined as

B =
√

Q2 + (mN∗ + mN )2

2m5
N (m2

N∗ − m2
N )

, C =
√

1 + (Q2 − m2
N∗ + m2

N )2

4Q2m2
N∗

. (6)

2.2 Distribution Amplitudes

One of the attractive features about light-cone sum rules is that one can calculate form factors in terms of
distribution amplitudes which correspond to light-cone wave functions at small transverse distances and are
fundamental process independent functions that describe the longitudinalmomentumdistribution of the partons
inside the hadron.

They are defined as matrix elements of non-local light-ray operators. The leading twist distribution ampli-
tude of the nucleon is given by [24,25]

〈0|εi jk
(
u↑
i (a1n)C � nu↓

j (a2n)
)
�nd↑

k (a3n)|P〉 = −1

2
fN Pn �n N↑(P)

∫
[dx] e−i Pn

∑
xi ai ϕN (xi ), (7)

where n is a light-like vector n2 = 0 and fN is the decay constant of the nucleon. The distribution amplitudes
can be expanded into a set of orthogonal polynomials which are eigenfunctions of the corresponding one-
loop evolution kernel [26–29]. The coefficients are matrix elements of local conformal operators which can be
calculated on the lattice [30–33] to constrain the shape of the respective distribution amplitude, see also Tables 1
and 2. In the following we will call these coefficients, shape parameters. Higher twist distribution amplitudes

Table 1 LCSR (ABO1) and LCSR (ABO2) refer to the two models ABO1 and ABO2 extracted in [34]

Method fN /λ1 ϕ10 ϕ11 ϕ20 ϕ21 ϕ22 η10 η11 Refs.

LCSR(ABO1) −0.17 0.05 0.05 0.075(15) −0.027(38) 0.17(15) −0.039(5) 0.140(16) [34]
LCSR(ABO2) −0.17 0.05 0.05 0.038(15) −0.018(37) −0.13(13) −0.027(5) 0.092(15) [34]
LATTICE −0.083(6) 0.043(15) 0.041(14) 0.038(100) −0.14(15) −0.47(33) – – [30]
LATTICE −0.075(5) 0.038(3) 0.039(6) −0.050(80) −0.19(12) −0.19(14) – – [31]
QCDSR (NLO) −0.15 – – – – – – – [35]

The values of the normalization of the leading and next-to-leading twist distribution amplitudes fN /λ1 and the first order shape
parameter of the leading distribution amplitude, ϕ10 and ϕ11 have been fixed before fitting to the experimental data. The

comparatively large value of fN was needed to get the normalization of the experimental data right and is in agreement with a
recent NLO sum rule determination [35]. ϕ20, ϕ21 and ϕ22 refer to the second order shape parameters of the leading twist

distribution amplitude. η10 and η11 are the first order shape parameter of the twist 4 distribution amplitudes. All values are given
at a scale μ2 = 2 GeV2
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Table 2 Similar to Table 1

Method λN∗
1 /λN

1 fN∗/λN∗
1 ϕ10 ϕ11 ϕ20 ϕ21 ϕ22 η10 η11 Refs.

LCSR (1) 0.633 0.027 0.36 −0.95 0 0 0 0.00 0.94 [36]
LCSR (2) 0.633 0.027 0.37 −0.96 0 0 0 −0.29 0.23 [36]
LATTICE 0.633 (43) 0.027 (2) 0.28 (12) −0.86 (10) 1.7 (14) −2.0 (18) 1.7 (26) – – [32]

LCSR (1) corresponds to a fit to the form factors G1(Q2) and G2(Q2) extracted from the measurements of helicity amplitudes
in [37]. The uncertainties of the extracted form factors were added in quadrature. LCSR (2) is obtained from a fit to helicity
amplitudes including all available data at Q2 > 1.7 GeV2 [37–40] λN∗

1 /λN
1 and fN∗/λN∗

1 were fixed to the lattice results

either describe Fock-states with additional partons, e.g. qqqG-states, or with relative angular momentum or
both [25]. For the N∗ there is some freedom in defining the distribution amplitudes by choosing different
positions of γ5. We have defined them in such a way that all the relations for the nucleon case stay intact and
that the coefficient functions in the light-cone sum rules are exactly the same. Since distribution amplitudes
with additional partons are up to now very poorly known we don’t consider them in our calculation.

3 Results

The results presented here needed several prerequisites which were derived in the last several years.

1. a consistent and practical renormalization scheme for three-quark operators was developed [41]
2. expressions for matrix elements of operators with non light-like distance in terms of distribution amplitudes

were derived [34]
3. next to leading order corrections both for twist 3 and 4 were calculated [34,42]
4. the kinematic contributions to higher twist distribution amplitudes, the so called Wandzura–Wilczek con-

tributions, were taken into account [43]
5. off light-cone corrections (x2-corrections) to leading twist distribution amplitudes were recalculated [34]
6. the leading twist distribution amplitude was expanded up to second order [34]

These advances allowed for the first time to make quantitative statements on the shape of the nucleon and
N∗ distribution amplitude based on experimental data. The extracted shape parameters for the nucleon and
N∗ with lattice results for comparison are given in Tables 1 and 2. The shape of the resulting distribution
amplitudes is plotted in Fig. 7.

3.1 Nucleon Electromagnetic Form Factors

We did two separate fits fixing the normalization fN/λ1, and the lowest order shape parameters ϕ10, ϕ11 to the
values given in Table 1 for two Borel-prameters to the proton data on the magnetic form factor Gp

M (Q2) and
the ratio Gp

E (Q2)/Gp
M (Q2) in the interval 1 < Q2 < 8.5GeV2. The fitted values of the shape parameters are

given in Table 1 and the corresponding form factors are shown in Fig. 2. Several noteworthy points are seen
in the result:

First, the experimental data prefers larger values for the ratio of fN/λ1 compatible with NLO sum rule
calculations but a factor two larger than the lattice result. A fit with all parameters free gets unstable but we see
that for different fixed parameters it is a rather robust feature that a large normalization and small first order
shape parameters are favored.

Second, the neutron magnetic form factor Gn
M (Q2) which is not fitted comes out about 20 to 30% too low.

This feature is pretty robust. A fit to both proton and neutron data simultaneously leads to very large values
of η10, η11 ∼ O(1) and leads to a worse description of proton data. We think this is an artefact of missing
information on even higher twist distribution amplitudes and of the more involved OPE of the form factor F2.
Part of this can be understood with the help of Fig. 4 where the experimental data is separated into u- and
d-quark contribution. It is seen that the Dirac form factors Fu,d

1 (Q2) are described rather well while there

are considerable deviations in the Pauli form factors Fu,d
2 (Q2) at low Q2. This does not come unexpected.

At low Q2 one would expect F2 to get sizeable corrections from very high twist, e.g. factorizable five quark
distribution amplitudes and the structure of the correlation function is so, that to get the same accuracy in



Light-Cone Sum Rule Approach for Baryon Form Factors 979

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1.0

1.2

Q2

Gp
M (Q2)/µpGD(Q2)

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1.0

1.2

Q2

Gn
M (Q2)/µnGD(Q2)

0 2 4 6 8 10 12
0.5

0.0

0.5

1.0

1.5

Q2

µpG
p
E(Q

2)/Gp
M (Q2)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q2

µnG
n
E(Q

2)/Gn
M (Q2)

Fig. 2 Nucleon electromagnetic form factors from LCSRs compared to the experimental data [44–50]. Parameters of the nucleon
DAs correspond to the sets ABO1 and ABO2 in Table 1 for the solid and dashed curves, respectively. The fits were done for
different Borel parameters, i.e. M2 = 1.5GeV2 for ABO1 and M2 = 2GeV2 for ABO2
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Fig. 3 The ratio of Pauli and Dirac electromagnetic proton form factors from LCSRs compared to the experimental data [46–48].
Parameters of the nucleon DAs correspond to the sets ABO1 and ABO2 in Table 1 for the solid and dashed curves, respectively.
Borel parameter M2 = 1.5GeV2 for ABO1 and M2 = 2GeV2 for ABO2

the NLO contributions for F2 one would need to take into account second order corrections in the deviation
from the light-cone which are reserved for a future project. Additionally it is seen that the NLO corrections
to the d-quark contribution are generally very large, probably a feature of the spin-flavor structure of the
Ioffe-current, which means they are generally less precise and potentially stronger affected by higher QCD
corrections. Since in the neutron the role of the d-quark is taken by the u-quark, the larger charge factor leads
to an enhancement of aforementioned problems and therefore to lesser accuracy in the neutron form factors.

Third, we did not take into account the uncertainty due to the Borel-parameter separately but rather did
two fits with different Borel-parameters. The difference in the shape parameters between the two fits can be
seen as a measure for the induced deviation. We have illustrated the separate variation of the Borel-parameter
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Fig. 4 Contributions of different quark flavors to the proton electromagnetic form factors compared to the compilation of experi-
mental data in Ref. [51]. The corresponding leading-order results are shown by the dash-dotted curves for comparison. Parameters
of the nucleon DAs correspond to the set ABO1 in Table 1
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Fig. 5 Helicity amplitudes A12 and S12 for electroproduction of N∗(1535) (left panel) and the form factors G1(Q2), G2(Q2),
normalized to the dipole formula (right panel). Experimental data on the left panel are taken from [38] (empty squares) [39]
(filled squares) [40] (filled circles) and [37] (triangles). The form factors on the right panel are calculated from the data [37] on
helicity amplitudes adding the errors in quadrature. The curves show the results of the NLO LCSR fit to the form factors G1(Q2)

and G2(Q2) for Q2 ≥ 1.7 GeV2 with parameters of the N∗(1535) DAs specified in the first line in Table 1

in figure 6 of [34]. Fourth, the factorization scale dependence increases with increasing momentum transfer
Q2. This might at first glance seem counterintuitive but it is consistent with the expected dominant role of the
hard scattering corrections which start at next-next-to-leading order (NNLO).



Light-Cone Sum Rule Approach for Baryon Form Factors 981

0 2 4 6 8 10 12
0.05

0.00

0.05

0.10

0.15

Q2

A12(Q2)

S12(Q2)

0 2 4 6 8 10 12

0.5

0.0

0.5

1.0

Q2

G1(Q2)/D(Q2)

G2(Q2)/D(Q2)

Fig. 6 The same as in Fig. 2 but for the fit to helicity amplitudes A12, S12 including all available data at Q2 ≥ 1.7 GeV2. The
fitted parameters of the N∗(1535) DAs are specified in the second line in Table 1

Fig. 7 Leading twist distribution amplitude of the proton ϕ(xi ) for the parameter sets ABO1 (left) and ABO2 (right) in Table 1.
Central values are used for the second order parameters

3.2 N∗ Electroproduction Form Factors

Due to the larger mass of the N∗ the light-cone sum rules get unstable for Q2 < 2 GeV2 in this case. Since
data for Q2 > 2 GeV2 is relatively scarce we set ϕ20, ϕ21 and ϕ22 to zero and fix λ∗

1, fN∗ , ϕ10 and ϕ11 to
the lattice values. In this way we are left only with the twist 4 parameters η10 and η11. We did two separate
fits. One where we extracted the form factors from the helicity amplitudes A12 and S12 from [37] adding the
uncertainties in quadrature and then fit the shape parameters to the form factors.

And one where we fitted directly to all data on the helicity amplitudes. The latter fit is driven by the data
from [38–40] on the helicity amplitude A12 which is not entirely consistent with [37]. Therefore a worse
description of the extracted form factors is expected.

In general the sum rules have dominant contributions from P-wave states that is states with one unit
of angular momentum. Especially the helicity amplitude A12 and the Dirac-like form factor G1 are nearly
insensitive to the shape of the leading twist distribution amplitude mainly due to the very small normalization
constant fN∗ . Even the sensitivity on η10 and η11 is rather mild. They are predominantly affected by the ratio
λN∗
1 /λN

1 which comes out rather robust in the range of the lattice result. S12 and the Pauli-like form factor G2
on the other hand are far more sensitive to η10 and η11 and due to cancellations of higher twist contributions
even to the leading twist distribution amplitude but to a lesser degree. More data will be needed to make this
extraction more robust.

4 Conclusions

We have presented the results of the first consistent NLO light-cone sum rules description of the nucleon
electromagnetic form factor and of the N∗ electroproduction form factors. The results are consistent with lattice
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calculations and are the first quantitative extraction of the leading distribution amplitudes from experimental
data. For the proton(neutron) a consistent picture emerges, where the distribution amplitude peaks for 40%
of the momentum carried by the u(d)-quark with the same helicity as the nucleon and 30% carried by each
of the other quarks. This is the first hint for a diquark-symmetry coming from a QCD calculation though this
symmetry is not exact: It is broken by the different renormalization scale behavior of ϕ10 and ϕ11 and by
contributions coming from higher order terms in the conformal expansion.

For the N∗ the data are described reasonably well, especially forG1(Q2), but there are threemain problems
that increase the uncertainty:

1. the small value of fN∗ suppresses the leading Fock-state without relative angular momentum and we see
that the form factors are dominated by P-wave contributions

2. the higher mass of the N∗ has a similar effect. It increases the contributions of higher twist and it heightens
the uncertainty in the NLO part since there we only took into account terms linear in the N∗ mass

3. strong cancellations of higher twist contributions for the Pauli-like form factor G2(Q2)

Several more projects are either planned or work in progress. The axial form factor of the nucleon [52] and an
exploratory study of the Λc(b) → N∗ [53] form factors are close to being finished. An extension towards the
Roper-resonance or the N∗(1650) is planned. In both cases a better understanding of higher twist distribution
amplitudes will be needed.

Finally on a longer time scale to bring both the form factors F2 and G2 on the same level as F1 and G1
and to lessen the uncertainty for the higher mass resonances in view of expected new data [54,55] we plan to
calculate them2

N (N∗) -corrections at NLO. This will require a dedicated calculation where several new relations
at the twist 5 level will have to be derived.
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