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Abstract In this article we use supersymmetry quantum mechanics and factorization methods to study the
bound and scattering state of Klein–Gordon equation with deformed Hulthen plus deformed hyperbolical
potential for arbitrary state in D-dimensions. The analytic relativistic bound state eigenvalues and the scattering
phase factor are found in closed form. We report on the numerical results for the bound state energy in D-
dimensions.
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1 Introduction

In recent times there has been a considerable effort by different authors to investigate the analytical solutions of
theKlein–Gordon equationwithin the framework of higher spatial dimensions or D-dimensionswithmotivated
physical potential models [1–5]. The famous Klein–Gordon equation in relativistic quantum mechanics is one
of the most frequently used equations that describes spin zero particles such as mesons [6–8]. The exact or
approximate solutions of the Klein–Gordon equation are very important in physics and chemistry because
their solution contain all the necessary information needed for the complete description of the quantum state
of the system such as probability density and entropy [9–11] and this quantum system is exactly solvable if all
the eigenvalues and eigenfunctions calculate analytically [12]. In order to obtain the exact and approximate
solutions of the Klein–Gordon equation, various quantum mechanical techniques have been employed such
as Nikiforov–Uvarov (NU) [13], Supersymmetric quantum mechanics (SUSYQM) [14], asymptotic iteration
method (AIM) [15], exact quantization rule [16] and others [17]. Jia et al. [18] studied the Klein–Gordon
equation with improved Manning–Rosen potential using SUSYQM. Xie and Jia [19] investigated the Klein–
Gordon equation in higher dimensions with Morse potential. The KG equation in D-dimensions has been
discussed for some while, the early work by Nieto in 1979 [20] and later was developed and extended [21–24].
Ikot et al. [25] studied the Klein–Gordon equation in D-dimensions for multiparameter exponential typed
potential. Many other researchers have investigated the solutions of the wave equation with different potential
models such as Hylleraas potential [26], Mobius square potential [27], Kratzer potential [28], Rosen –Morse
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Fig. 1 1
r2

and its approximation of equation (13)

potential [29], new generalized Morse potential [30] and pseudoharmonic potential [31]. Recently, Ikot et al.
[32] studied theD-dimensional Klein-Gordon equationwith improvedManning–Rosen potential. Hassanabadi
and Yazarloo [33] studied the bound and scattering state solutions of Klein–Gordon equation with generalized
Poschl–Teller potential. The bound and scattering state solutions of Schrödinger equation with second Poschl–
Teller potential have been investigated by You et al. [34]. The scattering state of the coupled Woods–Saxon
potential for Duffin Kemmer Petiau (DKP) equation had been examined by Ikot et al. [35]. Arda et al. [36]
have investigated the bound and scattering state solutions of the effective mass Klein Gordon equation. Chen
et al. [37] reported on the scattering state of Coulomb potential plus ring shaped potential for Klein–Gordon
equation. Different approximation scheme has been employed to study the bound state solutions of the wave
equation for arbitrary l �= 0 state [38,39]. Many authors used the approximation schemes [39–42] (see Fig. 1)

1

r2
≈ 4α2

[
c0 + e−2αr

1 − e−2αr +
(

e−2αr

1 − e−2αr

)2
]

, (1)

for the centrifugal term to obtain the approximate solutions of the bound state of Schrödinger, Klein–Gordon
and Dirac equation using various methods of NU, AIM and SUSYQM. As You et al. [34] have noted, this
approximation for the centrifugal term cannot be used to obtain the scattering state because of the constant c0 but
can be used effectively to study of the bound state solutions. For the improved Greene-Aldrich approximation
Eq. (1), the exact value of c0 is 1/12 [43]. It is well-known that the position dependent mass (PDM) solutions
of relativistic and non-relativistic quantum mechanics are of great important in physics and have attracted a
considerable attention in recent times [44,45]. Many authors have studied the PDM for Schrödinger, Klein–
Gordon and Dirac equations with different potentials [46–51].

The aim of this paper is to obtain the bound and scattering states energy eigenvalues, phase shift and the
normalization the eigen function for PDM Klein–Gordon equation with Hulthen plus deformed hyperbolic
potential in D-dimensions [52,53]. The Hulthen plus doformed-type hyperbolic potential is defined as [54]
(see Fig. 2)
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Fig. 2 Shape of the Hulthen plus deformed hyperbolic potential for V0 = 0.2 f m−1, V1 = 0.04 f m−1 and various values of
α = 0.4, 0.6 and 0.8 respectively

V (r) = −V0
e−2αr

1 − qe−2αr + V1 cothq (αr) , (2)

where,V0 and V1 are the depth of potential wells, q is the deformation parameter and α is inverse of screening
parameter (see Fig. 2). The mass function is defined as [55]

m(r) = m0 + m1

1 − qe−2αr , (3)

where m0 is the rest mass of relativistic particles and m1 is the perturbed mass. The following can be deduced
from the mass function as special cases

m(r) =
⎧⎨
⎩
m0, m1 → 0
m0 + m1, α → ∞
m0 + m1

1−q , α → 0
. (4)

The q-parameter used in the deformed hyperbolic potential is defined as follows [56]

sinhq(x) = ex − qe−x

2
, coshq(x) = ex + qe−x

2
,

tanhq(x) = sinhq(x)

coshq(x)
, csc hq(x) = 1

sinhq(x)
,

cosh2q(x) − sinh2q(x) = q. (5)

2 Bound state Solution of Klein–Gordon Equation in D-Dimensions

The Klein–Gordon equation in higher dimension for spherically symmetric potential reads [57,58],

− h̄2c2�Dψn,l,m(r, �D) = {[En,l − V (r)]2 − [mc2 + S(r)]2}ψn,l.m(r, �D), (6)
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where En,l ,m, V (r) and S(r) are the relativistic energy, rest mass, the repulsive vector potential and the
attractive scalar potential respectively. Parameter �D is defined as

�D = ∇2
D = 1

r D−1

∂

∂

(
r D−1 ∂

∂r

)
− �2

D(�D)

r2
. (7)

The total wave function in D-dimensions is written as

ψn,l,m(r, �D) = Rn,lD (r)Ym
lD (�D). (8)

The term
�2

D(�D)

r2
is the generalization of the centrifugal term for the higher dimensional space. The eigenvalues

of �2
D(�D) are defined by the relation

�2
D(�D)Ym

lD (�D) = lD(lD + D − 2)Ym
lD (�D), (9)

where Ym
l (�D), Rn,l and lD represent the hyperspherical harmonics, the hyperradial wave function and

the orbital angular momentum quantum number respectively. Now substituting ansatz form Rn,lD (r) =
r− (D−1)

2 Fn,lD (r) for the wave function into Eq. (2) yields

{
h̄2c2

d2

dr2
+ (

En,l − V (r)
)2 − (

m(r)c2 + S(r)
)2 − (D + 2lD − 1)(D + 2lD − 3)h̄2c2

4r2

}
Fn,JD (r) = 0. (10)

Considering unequal scalar and vector potential for the Hulthen plus deformed hyperbolic potential, yields

V (r) = −V0
e−2αr

1 − qe−2αr + V1

(
1 + qe−2αr

1 − qe−2αr

)
,

S(r) = −S0
e−2αr

1 − qe−2αr + S1

(
1 + qe−2αr

1 − qe−2αr

)
. (11)

We obtain the following second-order Schrödinger-like equation{
h̄2c2

d2

dr2
+

(
En,JD −

(
−V0

e−2αr

1 − qe−2αr + V1

(
1 + qe−2αr

1 − qe−2αr

)))2
}
Un,lD (r)

−
[((

m0 + m1

1 − qe−2αr

)
c2 +

(
−S0

e−2αr

1 − qe−2αr + S1

(
1 + qe−2αr

1 − qe−2αr

)))2
]
Un,lD (r)

−
(

(D + 2lD − 1)(D + 2lD − 3)h̄2c2

4r2

)
Un,lD (r) = 0. (12)

It is well-known that Eq. (12) cannot be solved exactly except for J = 0. In order to find the solutions of Eq.
(12), we apply a suitable approximation for the centrifugal term [56] since approximation in Eq. (1) is not
suitable for both bound and scattering state problem. We invoke the suitable approximation as [56]

1

r2
≈ α2

sinh2q(αr)
= 4α2(

1 − qe−2αr
)2 . (13)

Substituting Eq. (13) into Eq. (12) and after a little algebra, we get

− d2FnJD
dr2

+ 1(
1 − qe−2αr

)2 [
ω1e

−4αr + ω2e
−2αr + ω3

]
Fn,JD (r) = Ẽn JD FnJD , (14)

where,
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Ẽn,JD = E2
n,JD

− m2c4

h̄2c2
(15)

ω1 = 1

h̄2c2
[
2m0c

2S0q − 2m0c
2S1q

2 + 2En,JD V0q − 2En,JD V1q
2 + S20 + S21q

2 − V 2
0 + V 2

1 q
2]

ω2 = 1

h̄2c2
[−2m0c

2S0 − 2m1c
2S0 + 2m1c

2S1q − 2EnJDV0

−2S0S1q + 2S21q + 2V0V1q + 2V 2
1 q − 2m0m1c

4q + 4γ h̄2c2α2]
ω3 = 1

h̄2c2
[
2m1c

2S1 + 2m0c
2S1 + 2EnJDV1 − 2S0S1 + S21 + 2V0V1 + V 2

1 + 2m0m2c
4 + m2

1c
4]

γ = (D + 2lD − 1)(D + 2lD − 3)

4
. (16)

In the SUSYQM formulation, the ground-state wave function F0,l(r) is given by [14,18]

F0,l(r) = exp

(
−

∫
W (r)dr

)
, (17)

in which the integrand is called the superpotential and the Hamiltonian is composed of the raising and lowering
operators

H− = Â+ Â = − d2

dr2
+ V−(r), (18)

H+ = Â Â+ = − d2

dr2
+ V+(r), (19)

with

Â = d

dr
− W (r), (20)

Â+ = − d

dr
− W (r), (21)

V±(r) = W 2(r) ∓ W ′(r). (22)

Now substituting Eq. (17) into Eq. (14), we obtain the associated Riccati equation

W 2(r) − W ′(r) = 1(
1 − qe−2αr

)2 [
ω1e

−4αr + ω2e
−2αr + ω3

] − Ẽ0,l . (23)

Here, we choose the superpotential of the form

W (r) = P + Qe−2αr(
1 − qe−2αr

) . (24)

Substituting Eq. (24) into Eq. (23) and solve explicitly, we obtain the following relations

P = −
[−Q2 + ω1 − ω3q2

2qQ

]
(25)

Q = αq

[
−1 ±

√
1 + 1

α2q2
{
ω1 + ω2q + ω3q2

}]
(26)

Ẽ0,JD = −
(−Q2 + ω1 − ω3q2

2qQ

)2

+ ω3. (27)
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We construct the pair of supersymmetric partner potentials V+(r) and V−(r) as follows,

V+(r) = W 2(r) + dW (r)

dr
,

= Q (Q − 2α) e−2αr(
1 − qe−2αr

)2 + Q2e−4αr − Q2e−2αr(
1 − qe−2αr

)2 + 2PQe−2αr(
1 − qe−2αr

) +
(−Q2 + ω1 − ω3q2

2qQ

)2

(28)

V−(r) = W 2(r) − dW (r)

dr
, (29)

= Q (Q + 2α) e−2αr(
1 − qe−2αr

)2 + Q2e−4αr − Q2e−2αr(
1 − qe−2αr

)2 + 2PQe−2αr(
1 − qe−2αr

) +
(−Q2 + ω1 − ω3q2

2qQ

)
.

The partner potential are shape invariance via mapping of the form Q → Q − 2α. Also, it is easy to check the
shape-invariance condition

V+(r, ρ0) = V−(r, ρi ) + R(ρi ) (30)

which holds via the mapping Q → Q − 2α.In this study ρ0 = Q and ρi is a function of ρ0, i.e,ρ1 = f (ρ0) =
ρ0 − 2α. Thus we have ρn = ρ0 − 2αn. From Eq. (30), we write

R (ρn) =
(−ρ2

n−1 + ω1 − ω3q2

2qρn−1

)2

−
(−ρ2

n + ω1 − ω3q2

2qρn

)2

(31)

Ẽ−
n,l =

n∑
k=1

R(ρk) =
(

−ρ2
0 + ω1 − ω3q2

2qρ0

)2

−
(−ρ2

n + ω1 − ω3q2

2qρn

)2

. (32)

Using Eqs. (15), (26) and (31), we obtain the transcendental energy spectrum for the Hulthen plus deformed
hyperbolic potential model for the Klein–Gordon equation in D-dimensions as follows

Ẽn,l = Ẽ−
n,l + Ẽ0,l = −

(−ρ2
n + ω1 − ω3q2

2qρn

)2

+ ω3. (33)

More explicitly, we write the energy Eq. (33) as

E2
nJD − m2

0 = − h̄2c2

4q2

(
ω3q2 − ω1

2α (n + σ)
+ 2α (n + σ)

)2

+ h̄2c2ω3, (34)

where

σ = q

2

(
1 +

√
1 + 1

α2q2
(
ω1 + ω2q + ω3q2

))
. (35)

In order to determine the corresponding wave function for the system, we use z = −qe−2αr . Then we can
write

d2UnJD

dz2
+ 1

z

dUnJD

dz
+ 1

z2(1 − z)2
(−χ1z

2 + χ2z + χ3
)
UnJD (z) = 0, (36)
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where

χ1 = 1

4α2q2h̄2c2
[
2m0c

2S0q − 2m0c
2S1q

2 + 2En,JD V0q − 2En,JD V1q
2 + S20 + S21q

2 − V 2
0 + V 2

1 q
2]

− E2
n,JD

− m2c4

4α2h̄2c2

χ2 = − 1

4α2qh̄2c2

[−2m0c2S0 − 2m1c2S0 + 2m1c2S1q − 2EnJDV0 − 2S0S1q + 2S21q + 2V0V1q
+2V 2

1 q − 2m0m1c4q + 4γ h̄2c2α2

]

−2(E2
n,JD

− m2c4)

4α2h̄2c2

χ3 = 1

4α2h̄2c2
[
2m1c

2S1 + 2m0c
2S1 + 2EnJDV1 − 2S0S1 + S21 + 2V0V1 + V 2

1 + 2m0m2c
4 + m2

1c
4]

− (E2
n,JD

− m2c4)

4α2h̄2c2
. (37)

The solution of Eq. (36) becomes

UnJD (r) = NnJD

(
qe−2αr )√χ3 (1 − qe−2αr )√ 1

4+χ1−χ2+χ3 P

(
2
√

χ3,2
√

1
4+χ1−χ2+χ3

)
n

(
1 − 2qe−2αr ), (38)

where Nn,l is the normalization constant and P(μ,ν)
n (x) is the Jacobi polynomial.

3 Scattering State Solutions

By using of x = 1 − z in Eq. (36), we get

x(1 − x)U ′′(x) − xU ′(x) +
(

�1

x
+ �2

1 − x
+ �3

)
U (x) = 0, (39)

where,

�1 = χ2 + χ3 − χ1

�2 = χ3

�3 = χ1. (40)

By taking the transformation Fn,l = yλ1 (1 − y)λ2 ϕ(z) in Eq. (39), we obtain the hypergeometric function in
the form [36]

z(1 − z)ϕ′′(z) + (1 + 2η1 − (1 + 2η1 + 2η2)z) ϕ(z) − η1η2ϕ(z) = 0, (41)

where,

λ1 = 1

2

(
1 + √

1 − 4�1

)
,

λ2 = − ik

2α
, k =

√
4α2�2. (42)

The solutions of Eq. (41) is the hypergeometric function given by

ϕ(y) = 2F1 (η1, η2, η3, y) , (43)

where,

η1 = 1

2

(
1 + √

1 − 4�1

)
− ik

α
+ √

�3,

η2 = 1

2

(
1 + √

1 − 4�1

)
− ik

α
− √

�3,

η3 = 1 + √
1 − 4�1. (44)
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We can write the complete wave function as

Fn,l(r) = Nn,l
(−qe−2αr )λ1 (1 − qe−2αr )λ2

2F1
(
η1, η2, η3; 1 − qe−2αr ) . (45)

The scattering state for E > 0, are defined as follows [59,60]

U (r) → 0,

r → 0

U (r) → 2 sin

[
kr + δ − lDπ

2

]
,

r → ∞ (46)

in 3D case of the boundary conditions. However, the extension to the D-dimensional case takes the form
[59,60]

U (r) → 0,

r → 0

U (r) → 2 sin

[
kr + δ − π

2

(
lD + (D − 3)

2

)]
,

r → ∞ (47)

Eq.(47) ensures us that the radial wave functions of the scattering state for exponential type potential are also
normalized, where δlD is the phase shift in D-dimensions.

Nowwe study the asymptotic form of Eq. (45) for large values of r and calculate the normalization constant
NnlD and the phase shift. From Eq. (44),we get

η3 − η1 − η2 = 2ik

α
= (η1 + η2 − η3)

∗ (48)

η3 − η1 = 1

2

(
1 + √

1 − 4�1

)
+ ik

α
− √

�3 = η∗
2 (49)

η3 − η2 = 1

2

(
1 + √

1 − 4�1

)
− ik

α
+ √

�3 = η∗
1 . (50)

Now applying the transformation properties for the hypergeometric function [61]

2F1 (η1, η2, η3; 0) = 1, (51)

2F1 (η1, η2, η3; z) = �(η3)� (η3 − η1 − η2)

� (η3 − η1) � (η3 − η2)
2F1 (η3; η2; η1 + η2 − η3 + 1; 1 − z)

+ (1 − z)η3−η1−η2
�(η3)� (η1 + η2 − η3)

�(η1)�(η2)
2F1 (η3 − η1; η3 − η2; η3 − η1 − η2 + 1; 1 − z) . (52)

Thus, the term 2F1
(
η1, η2, η3; 1 − qe−2αr

)
in Eq. (45) becomes

2F1
(
η1, η2, η3; 1 − qe−2αr ) = �(η3)

[
� (η3 − η1 − η2)

� (η3 − η1) � (η3 − η2)

+
[

� (η3 − η1 − η2)

�((η3 − η1))�(η3 − η2)

]∗
q(η3−η1−η2)e−α(η3−η1−η2)r

]
,

= �(η3)q
i(η3−η1−η2)

[
� (η3 − η1 − η2) q−i(η3−η1−η2)

� (η3 − η1) � (η3 − η2)

+
[
� (η3 − η1 − η2) q−i(η3−η1−η2)

�(η3 − η1)�(η3 − η2)

]∗
e−iα(η3−η1−η2)r

]
(53)
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for r → ∞. We can simplify Eq. (53) as follows

2F1
(
η1, η2, η3; 1 − qe−2αr ) = �(η3)q

ik
α

[
� (η3 − η1 − η2) q− ik

α

� (η3 − η1) � (η3 − η2)
+

[
� (η3 − η1 − η2) q− ik

α

�(η3 − η1)�(η3 − η2)

]∗
e−ikr

]

= �(η3)q
ik
α

[
� (2ik/α) q− ik

α

�
(
η∗
2

)
�
(
η∗
1

) +
[

� (2ik/α) q− ik
α

�(η∗
2)�(η∗

1)

]∗
e−ikr

]
. (54)

Also by using the relations

� (η3 − η1 − η2)

� (η3 − η1) � (η3 − η2)
=

∣∣∣∣ � (η3 − η1 − η2)

� (η3 − η1) � (η3 − η2)

∣∣∣∣ eiδ,
=

∣∣∣∣∣ � (2ik/α)

�
(
η∗
2

)
�
(
η∗
1

)
∣∣∣∣∣ eiδ (55)

q− ik
α =

∣∣∣q− ik
α

∣∣∣ eiδ′
, (56)

and Eq. (53), we have

2F1
(
η1, η2, η3; 1 − qe−2αr ) = �(η3)q

ik
α

∣∣∣∣∣� (2ik/α) q− ik
α

�
(
η∗
2

)
�
(
η∗
1

)
∣∣∣∣∣
[
ei(δ+δ′) + e−2ikr e−i(δ+δ′)

]

= �(η3)q
ik
α

∣∣∣∣∣� (2ik/α) q− ik
α

�
(
η∗
2

)
�
(
η∗
1

)
∣∣∣∣∣ e−ikr

[
e
i
(
δ+δ′− k�n2

α
+ikr

)
+ e

−i
(
δ+δ′− k�n2

α
+ikr

)]

= �(η3)q
ik
α

∣∣∣∣∣� (2ik/α) q
ik
α

�
(
η∗
2

)
�
(
η∗
1

)
∣∣∣∣∣ e−ikr sin

(
kr + δ + δ′ − k�n2

α

+ π

2

[
lD + (D − 3)

2

]
+ π

2

[
lD + (D − 1)

2

])
(57)

Therefore, the asymptotic form of Eq. (45) becomes

Fn,lD = 2Nn,lD�(η3)

∣∣∣∣∣� (2ik/α) q
ik
α

�
(
η∗
2

)
�
(
η∗
1

)
∣∣∣∣∣ e−ikr sin

(
kr + δ + δ′ − k�n2

α
+ π

2

[
lD + (D − 3)

2

]

+ π

2

[
lD + (D − 1)

2

])
, (58)

for r → ∞. Now comparing Eq. (58) with the boundary conditions [62–64], r → ∞ ⇒ F(∞) →
2 sin

(
kr + δlD − π

2

(
lD + (D−3)

2

))
, we get the phase shift and the normalization constant as follows

δlD = π

2

(
lD + (D − 3)

2

)
+ δ + δ′

π

2

[
lD + (D − 1)

2

]
− k�n2

α
+ arg� (η3 − η2 − η1) − arg� (η3 − η1)

− arg� (η3 − η2) + arg
(
q

−ik
α

)
(59)

Nn,lD = 1

�(η3)

∣∣∣∣∣ �
(
η∗
2

)
�
(
η∗
1

)
� (2ik/α) q

ik
α

∣∣∣∣∣ (60)

It had been shown that the poles of the S-matrix in the complex energy plane determined the bound states for
the real poles and the scattering states for the complex poles in the lower half of the energy plane [65]. In order
to obtain the bound state solutions, we used the following definition of the gamma functions,

� (z) = � (z + 1)

z
= � (z + 2)

z(z + 1)
= � (z + 3)

z(z + 1)(z + 2)
= . . . , (61)
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Table 1 Energy of the system for different states and dimensions m0 = −5,m1 = −0.2, V0 = 2, α = 0.01, S1 = 3, V1 =
0.5, q = 1

l ED
n,l(D = 1) ED

n,l(D = 2) ED
n,l(D = 3) ED

n,l(D = 4)

n = 0 0 2.569172676 2.569156234 2.569172676 2.569221997
−2.203041293 −2.203011271 −2.203041203 −2.203130998

1 2.569172676 2.569221997 2.569304187 2.569419235
−2.203041203 −2.203130998 −2.203280640 −2.203490115

2 2.569304187 2.569419235 2.569567123 2.569747824
−2.203280640 −2.203490115 −2.203759397 −2.204088452

3 2.569567123 2.569747824 2.569961309 2.570207541
−2.203759397 −2.204088452 −2.204477240 −2.204925711

4 2.569961309 2.570207541 2.570486483 2.570798087
−2.204477240 −2.204925711 −2.205433819 −2.206001495

n = 1 0 2.5953363031 2.595347227 2.595363031 2.595410441
−2.251003944 −2.250974832 −2.251003944 −2.251091282

1 2.595363031 2.595410441 2.595489446 2.595600036
−2.251003944 −2.251091282 −2.251236828 −2.251440570

2 2.595489446 2.595600036 2.595742192 2.595915893
−2.251236828 −2.251440570 −2.251702481 −2.252022535

3 2.595742192 2.595915893 2.596121109 2.596357804
−2.251702481 −2.252022535 −2.252400688 −2.252836894

4 2.596121109 2.596357804 2.596625945 2.596925485
−2.252400688 −2.252836894 −2.253331107 −2.253883264

n = 2 0 2.620547699 2.620532497 2.620547699 2.620593305
−2.297667736 −2.297639403 −2.297667736 −2.297752733

1 2.620547699 2.620593305 2.620669304 2.620775688
−2.297667736 −2.297752733 −2.297894378 −2.2980922663

2 2.620669304 2.620775688 2.620912436 2.621079530
−2.297894378 −2.298092663 −2.298347556 −2.298659035

3 2.620912436 2.621079530 2.621276940 2.621504637
−2.298347556 −2.298659035 −2.299027058 −2.299451584

4 2.621276940 2.621504637 2.621762582 2.622050736
−2.299027058 −2.299451584 −2.299932564 −2.300469940

where z = 0,−1, −2 . . . are the first order poles of the gamma function �(z). Thus, the first order poles in
Eq. (61) is � (η3 − η1) and satisfy the condition

1

2

(
1 + √

1 − 4�1

)
− ik

α
− √

�3 = −nr , (62)

where, nr = 0, 1, 2 . . . At the poles of the scattering amplitude the bound state energy level in D-dimensions
is given by Eq. (62) which is the same as Eq. (33).

4 Results and Discussion

In order to test the accuracy of our work, we computed numerically the bound state energy for the Hulthen
plus deformed hyperbolic potential for arbitrary l-state in D-dimensions in Table 1 and we also show the plot
of the behaviour of the energy level as a function of the potential parameters in Figs. 3, 4, 5, 6, 7, 8, 9 and
10. We also examine the special cases of the phase shift factor and normalization constant and compare our
results with the available literature.

4.1 Scattering State Solutions of Generalized Hulthen Potential in D-dimensions

If we choose, V1 = 0, S0 = S1 = m1 = 0 and α → α
2 in Eq. (2), we obtain the generalized Hulthen potential

as

VH (r) = −V0
e−αr

1 − qe−αr
. (63)
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Fig. 3 Behaviour of the energy level of the system versus S0 for various values of n = 1, 2 and 3 respectively

Fig. 4 Variation of the energy spectrum with S0 for different values of the angular momentum quantum number lD = 0, 1 and 2
respectively

If we substitute these parameters into Eqs. (59) and (60) we obtain the phase factor and normalization constant
for the Hulthen potential in D-dimensions as

δHJ = π

2

[
JD + (D − 1)

2

]
− k�n2

α
+ arg�

(
2ik

α

)
− arg�

(
λ1 − ik

α
− √

�3

)

− arg�

(
λ1 − ik

α
− √

�3

)
+ arg

(
q

−ik
α

)
(64)

NH
nJD = �

(
λH
1 − ik

α
− √

�3
)

�(1 + 2λH
1 )

× �
(
λH
1 − ik

α
− √

�3
)

� (2ik/α) q
ik
α

. (65)

These results are consistent with that reported by Feng et al. [59] in the case of D = 3. The normalized wave
function for the Hulthen potential becomes

UH
nJD (r) = NH

nJD

(
1 − qe−αr )λH

1 (q)
ik
α e−ikr

2F1
(
ηH
1 , ηH

2 , ηH
3 , 1 − qe−αr

)
. (66)
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Fig. 5 Plot of the energy level versus V1 for various values of the principal quantum number n = 1, 2 and 3 respectively

Fig. 6 Variation of the energy eigenvalues with V1 for different values of lD = 0, 1 and 2 respectively

Fig. 7 Energy variation with V0 for n = 1, 2 and 3 respectively
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Fig. 8 Energy changes with V0 for different values of lD = 0, 1 and 2 respectively

Fig. 9 Plot of the energy spectrum with S1 for n = 1, 2 and 3 respectively

Fig. 10 Plot of the energy with S1 for different values of lD = 0, 1 and 2 respectively
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If q = 1 then the generalized Hulthen potential reduced to the standard potential reported by Chen et al. [65].

4.2 Scattering State Solutions of Woods–Saxon Potential in D-dimensions

Again if we set α = 1
R , q = e

θ
R and V0 → V0q = V0e

θ
R as given in Ref. [59], the generalized Hulthen

potential reduces to the standard Woods-Saxon potential [66],

V (r) = V0
1 − exp

[( r−θ
R

)] (67)

where V0 is the potential depth,θ is the width of the potential and R is the surface thickness whose values
correspond to the ionization energies. We obtain the corresponding phase factor and normalization for the
Woods–Saxon potential in D-dimensions as follows,

δWS
J = π

2

[
JD + (D − 1)

2

]
− kR�n2 + arg� (2ikR) − arg�

(
λWS
1 − i Rk + √

�3

)

− arg�
(
λWS
1 + ikR − √

�3

)
+ arg

((
e− θ

R

)−i Rk
)

(68)

NWS
nJD = �

(
λWS
1 − ikR − √

�3
)

�(1 + 2λWS
1 )

×�
(
λWS
1 + ikR − √

�3
)

� (2ikR)
(
e

θ
R

)ikR (69)

UWS
nJD (r) = NWS

nJD

(
1 − exp

(
θ − r

R

))μWS (
exp

(
θ

r

))ikR

e−ikr
2F1

(
a, b, c, 1 − exp

(
(θ − r)

R

))
.

The above result is the same as the one reported by Feng et al. [59] when D = 3.

5 Conclusions

In this paper, we have studied the Klein–Gordon equation with Hulthen plus deformed hyperbolic potential and
obtain the bound state energy eigenvalues and the scattering state phase factor. Special cases of the potential
are discussed in details. The present findings may have many applications in different branches of physics and
quantum chemistry [67].
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