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Abstract A new form of the light front Feynman propagators is proposed. It contains no energy denominators.
Instead the dependence on the longitudinal subinterval x2L = 2x+x− is explicit and a new formalism for doing
the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective
potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the
standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some
remarks on the calculations with fermion and gauge fields in QED and QCD are added.

1 Introduction

Wightman function for a free massive scalar field 〈0|φ(x)φ(0)|0〉 = W2(x) has its LF momentum represen-
tation

W2(x
+, x−, x⊥) =

∫

R2

d2k⊥
(2π)2

e−ik⊥·x⊥
∞∫

0

dk+

4πk+ e−ik+x−
e−i

m2+k2⊥
2k+ x+

. (1)

The LF propagator ΔLF(x) is defined by the chronological (in x+) ordering

ΔLF(x) = 〈0|T+φ(x)φ(0)|0〉 := Θ(x+)〈0|φ(x)φ(0)|0〉 + Θ(−x+)〈0|φ(0)φ(x)|0〉
= Θ(x+)W2(x

+, x−, x⊥) + Θ(−x+)W2(−x+, −x−, −x⊥). (2)

Within the standard LF approach [1] (for review see [2]) one introduces the Fourier representation for the
Heaviside step function

Θ(x+) =
∫

R

dk−

2π
e−ik−x+ i

k− + i0
, (3)

J. A. Przeszowski (B) · E. Dzimida-Chmielewska · J. Żochowski
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then changes the order of integrations and finally one shifts the integration variable which gives

∫

R

dk−

2π

i e−ik−x+

k− + i0

∞∫

0

dk+

k+ e−ik+x−
e−i x+(m2+k2⊥)/(2k+) =

∞∫

0

dk+

k+ e−ik+x−
∫

R

dk−

2π
e−ik−x+ i

k− − m2+k2⊥
2k+ + i0

.

(4)

For k+ → 0, the pole in k− moves to infinity, so the naive implementation of the residua theorem can lead to
false results. This problem overlaps with the usual LF singularity due to 1/k+ pole. The very trick, presented
in (4), is analogous to the equal-time propagators, where one makes the ordering in x0 temporal variable, so
one introduces

Θ(x0) =
∫

R

dk0
2π

e−ik0x0 i

k0 + i0
, (5)

and then one proceeds as follows

∫

R

dk0
2π

e−ik0x0 i

k0 + i0

1

2ωk
e−i x0ωk =

∫

R

dk0
2π

e−ik0x0

2ωk

i

k0 − ωk + i0
. (6)

In this calculation the shifting of k0 is reliable since the limit ωk → ∞ is suppressed by the inverse power of
ωk in the invariant measure factor, on contrary in the Eq. (4). Therefore it is not strange that the LF propagator
with the pole structure as in (4) may lead to various artificial singularities of Feynman diagrams, which are
absent in the analogous equal-time calculation.

2 Novel LF Representation of Propagator and Convolutions of Propagators

We observe that we may make the following changes of integration variables: for x+ > 0 we take k+ = 2λx+

W2(x) �
∞∫

0

dk+

4πk+ e−ik+x−
e−i

m2+k2⊥
2k+ x+ =

∞∫

0

dλ

4πλ
e−iλx2L e−i(m2+k2⊥)/(4λ), (7)

while for x+ < 0 we take k+ = −2λx+

W2(−x) �
∞∫

0

dk+

4πk+ eik
+x−

ei
m2+k2⊥
2k+ x+ =

∞∫

0

dλ

4πλ
e−iλx2L e−i(m2+k2⊥)/(4λ) (8)

This leads to the LF propagator in the form, which we call λ-representation,

〈0|T+φ(x)φ(0)|0〉 =
∫

R2

d2k⊥
(2π)2

e−ik⊥·x⊥
∞∫

0

dλ

4πλ
e−iλx2L e−iM2/(4λ) = ΔLF(x), (9)

where x2L = 2x+x− and M2 = m2 + k2⊥. If one wishes to compare this new representation with the covariant
formula in the 4-momentum space, then one takes the Fourier transform in the 2-dimensional longitudinal
subspace (31) and then integrates over λ, as defined in the sense of distributions in (30). This gives the
equivalence between λ-representation and covariant Feynman propagators

ΔLF(x) =
∫

R2

d2k⊥
(2π)2

∫

R2

d2kL
(4π)2

e−ik⊥·x⊥e−ikL ·xL 4i

k2L − k2⊥ + m2 + i0
= ΔF (x). (10)

Evidently λ-representation ofΔLF(x) is singular at x+ = 0, but one may check its consistency with the help of
its Volterra equation, which is quite similar to the Volterra equation for theWightman function of a freemassive
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scalar field [3]. Next we consider the convolutions of LF propagators and we begin with the convolution of
two LF propagators defined as follows

[ΔLF ∗ ΔLF](x − z) = Δ2
LF(x − z) :=

∫

R4

d4yΔLF(x − y)ΔLF(y − z). (11)

By inserting λ-representation, with (λ1, p1⊥) and (λ2, p2⊥) for respective propagators, one may directly
integrate over the transverse and longitudinal coordinates using (32a) and (32c)

Δ2
LF(x − z) =

∫

R2

d2 p1⊥
(2π)2

∫

R2

d2 p1⊥ δ2( p1⊥ − p2⊥)e−i p1⊥·(x⊥−z⊥)

∞∫

0

dλ1

4πλ1

∞∫

0

dλ2

4πλ2

× π

λ1 + λ2
e
−i

2λ1λ2
λ1+λ2

(x+−z+)(x−−z−)
e−iM2

1 /(4λ1)e−iM2
1 /(4λ2). (12)

where M2
1 = m2+ p 2

1⊥ and M2
2 = m2+ p 2

2⊥. While the integration over p2⊥ is immediate, then for evaluating
the integrals over λ1,2 one needs to parameterize them as λ1 = λ/ξ , λ2 = λ/(1 − ξ), with new parameters
λ ∈ 〈0, ∞) and ξ ∈ (0, 1). This allows to evaluate the integration over ξ explicitly, and finally we obtain
λ-representation for the convolution of two LF propagators, (where we put p1⊥ = p⊥)

Δ2
LF(x − z) = 1

4

∫

R2

d2 p⊥
(2π)2

e−i p⊥·(x⊥−z⊥)

∞∫

0

dλ

4πλ2
e−iλ(xL−zL )2e−i

m2+ p2⊥
4λ . (13)

By induction one finds the convolution of n propagators

Δn
LF(x − z) = 1

4n−1

1

(n − 1)!
∫

R2

d2 p⊥
(2π)2

e−i p⊥·(x⊥−z⊥)

∞∫

0

dλ

4πλn
e−iλ(xL−zL )2e−i

m2+ p2⊥
4λ . (14)

The 1-loop effective potential (for the g/(4!)φ4 theory) is given by [4]

V (1)
e f f [φc] = i

2

∑
n=1

(−i)n

n

(g
2
φ2
c

)n
Δn

LF(0), (15)

thus we need to evaluate Δn
LF(0), where using the general formula (30) we find

Δn
LF(0) = 1

4n−1

1

(n − 1)!
∫

R2

d2 p⊥
(2π)2

∞∫

0

dλ

4πλn
e−i

m2+ p2⊥
4λ = in−1

4π(n − 1)

∫

R2

d2 p⊥
(2π)2

1

(m2 + p2⊥)n−1
. (16)

This expression gives nontrivial contribution to the effective potential, which can be compared with the result
obtained within the standard LF formulation [4]

Δ̄n
LF(0) =

∫

R2

d2 p⊥
(2π)2

∫

R

dp+

4π(p+)n

∫

R

dp− 1[
p− − m2+ p2⊥

2p+ + isgn(p+)0

]n , (17)

which for n > 1, vanishes by residua, unless the contribution from the arc is properly taken into account.
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3 One Loop 2-Point Diagrams

Now we will consider one loop 2-point diagrams with a flow of non-zero external 4-momentum qμ, starting
with the simplest scalar self-energy diagram

Σ(q) =
∫

R4

d4xe+iq·xΔF (x)ΔF (x) =
∫

R4

d4k

(2π)4

i

k2 − m2 + i0

i

(k + q)2 − m2 + i0
, (18)

where the standard covariant Feynman propagators are inserted and further after the Wick rotation one may
evaluate the Euclidean momentum integrals. Our aim is to calculate Σ(q) with λ-representation for ΔLF(x)

Σ(q) =
∫

R4

d4x e+iq·xΔLF(x)ΔLF(x). (19)

We denote (λ1, p1⊥) and (λ2, p2⊥) for ΔLF(x) respectively and start with the integration over the space-time
coordinates, using (32b),

Σ(q) =
∫

R2

d2 p1⊥
(2π)2

∫

R2

d2 p2⊥δ2( p1⊥ + p2⊥ − q⊥)

∞∫

0

dλ1

4πλ1

∞∫

0

dλ2

4πλ2
e−i(λ1+λ2)(xL )2 e−iM2

1 /(4λ1) e
i

q2L
4(λ1+λ2) ,

(20)

where M2
1 = m2 + p 2

1⊥ and M2
2 = m2 + p 2

2⊥. Then we parameterize λ1 = λξ, λ2 = λ(1 − ξ) with the
JacobianJ = λ and the transverse momenta as p1⊥ = p⊥ξ + k⊥, p2⊥ = p⊥(1−ξ)− k⊥ with the Jacobian
J = 1, which leads to

Σ(q) =
∫

R2

d2 p⊥
(2π)2

∫

R2

d2k⊥δ2( p⊥ − q⊥)

∞∫

0

dλ

16πλ2

1∫

0

dξ

ξ(1 − ξ)
ei

q2L
4λ e−iM2

1 /(4ξλ) e−iM2
2 /(4(1−ξ)λ). (21)

The integration over p⊥ is simple and due to the property (33), one finds

Σ(q) =
∫

R2

d2k⊥
(2π)2

∞∫

0

dλ

16πλ2

1∫

0

dξ

ξ(1 − ξ)
ei(q

2
L−q2⊥)/(4λ) e−i(m2+k2⊥)/(4ξ(1−ξ)λ). (22)

The integral over λ can be performed explicitly according to (30) for n = 1, so

Σ(q) = i

4π

1∫

0

dξ

∫

R2

d2k⊥
(2π)2

1

q2ξ(1 − ξ) − m2 − k2⊥ + i0
, (23)

which coincides with the result of calculation with the covariant Feynman propagators. Then we wish to
consider another 2-point function

Σμ(q) = i
∫

R4

d4xeiq·x∂μΔF (x)ΔF (x) =
∫

R4

d4k

(2π)4

kμ

k2 − m2 + i0

i2

(k + q)2 − m2 + i0
. (24)

We now insert the propagators in λ-representation and take steps analogous to those in the calculation ofΣ(q).
There is a slight difference,because i∂μΔLF(x) appears instead of ΔLF(x). First, for the longitudinal partial
derivatives (32d) one obtains the extra factor λ1q±/(λ1 + λ2), which after the re-parametrization of λ1,2 boils
down to the extra factor qμξ . Second, for the transverse partial derivatives one obtains another extra factor
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p1⊥ = p⊥ξ + k⊥. Third, the term linear in k⊥, due to its antisymmetry, will vanish during the integration
over k⊥. Ultimately one obtains the covariant expression

Σμ(q) = i qμ

4π

1∫

0

dξ

∫

R2

d2k⊥
(2π)2

ξ

q2ξ(1 − ξ) − m2 − k2⊥ + i0
. (25)

Finally we may consider the 2-point function, which has been used by Melikhov and Simula in [5] for their
discussion of spurious end-point singularities

Σms
μ (q) = i

∫

R4

d4xeiq·x∂μΔF (x)Δ2
F (x) =

∫

R4

d4k

(2π)4

kμ

k2 − m2 + i0

i3

[(k + q)2 − m2 + i0]2 . (26)

From λ-representations forΔF (x) in (9) and the convolutionΔ2
F (x) in (13), we see thatΣms

μ (q) contains extra
term 1/(4λ2) = [4λ(1 − ξ)]−1 in comparison with Σμ(q). Thus following all steps preceding (25) we find

Σms
μ (q) = qμ

∫

R2

d2k⊥
(2π)2

∞∫

0

dλ

16πλ3

1∫

0

dξ

ξ(1 − ξ)

ξ

1 − ξ
ei(q

2
L−q2⊥)/(4λ) e−i(m2+k2⊥)/(4ξ(1−ξ)λ). (27)

The integral over λ can be performed explicitly according to (30) for n = 1, which leads to the desired form

Σms
μ (q) = iqμ

4π

1∫

0

dξ

∫

R2

d2k⊥
(2π)2

ξ2

[q2ξ(1 − ξ) − m2 − k2⊥ + i0]2 , (28)

with no sign of any end-point singularities.

4 Conclusions and Prospects

We conclude that the novel λ-representation for the scalar field LF propagator, which appears naturally within
the LF quantization, is a very useful tool for evaluation 1-loop diagrams. For 2-point functions, we have derived
the desired form of covariant expression with no spurious end-point singularities. For the effective potential
we arrived at the nontrivial integrals over the transverse momenta, which are consistent with the equal-time
results. Evidently, the next step should be to evaluate 3-point functions and to compare our method with the
existing LF alternative approach proposed by Heinzl [6].

Also we would like to mention what happens for fields with non-zero spin. For the gauge field in the LC
gauge A+ = 0 one obtains for the chronological ordering in x+

〈0|T+A+(x)A+(0)|0〉 = 2∂+
x−∫

0

dτDLF(x+, τ, x⊥) − iδ(x+)δ2(x⊥)|x−|, (29)

with the LF massless Feynman propagator function DLF(x) = limm→0 ΔLF. For the first term, which has
the form proposed by Bassetto [7], one may introduce λ-representation consistently, but the second term,
which is local in time x+ needs to be subtracted. This agrees with the standard LF quantization, where the
LF propagator also has this additional local term. Analogous situation occurs for the fermion field propagator,
where one obtains an additional local term for the “bad components” ψ−, ψ

†
− of the fermion field. However

in the LF Hamiltonian there are local interaction terms which exactly cancel the contribution from local terms
in the LF propagators, thus effectively one obtains Feynman diagrams for the perturbative QED and QCD
without local term contributions.

We hope that our novel representation for propagators may shed a new light on the equivalence problem
between the LF and equal-time perturbative calculations [8]. At last, it will be quite interesting to apply
λ-regularization for the LF Bethe-Salpeter equations as in [9].
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Appendix: Definitions and Useful Formulas

The LF longitudinal coordinates are defined as x± = (x0 ± x3)/
√
2 and the partial derivatives are denoted

as ∂± = ∂/∂x±. The Minkowski space-time metric tensor has non-vanishing components g+− = g−+ =
1, gi j = −δi j .

We have the formula for n ∈ N − {1}
∞∫

0

dλ

λn+1 e
i A/λ = in(n − 1)!

(A + i0)n
. (30)

The Fourier transform in the longitudinal coordinates

e−iλx2L = e−i2x+x−λ =
∫

R2

dk+dk−

4πλ
e−i(k+x−+k−x−)eik

+k−/(2λ) =
∫

R2

d2kL
4πλ

e−ikL ·xL eik
2
L/(4λ), (31)

The integrations over the transverse and longitudinal coordinates give respectively∫

R2

d2 y⊥e−i p1⊥·(x⊥− y⊥)e−i p2⊥·( y⊥−z⊥) = (2π)2δ2( p1⊥ − p2⊥)e−i p1⊥·x⊥ei p2⊥·z⊥, (32a)

∫

R2

d2x⊥e−ix⊥· p1⊥e−ix⊥· p2⊥eiq⊥·x⊥ = (2π)2δ2( p1⊥ + p2⊥ − q⊥), (32b)

∫

R2

d2 yLe
−iλ1(xL− yL )2e−i2λ2( yL−zL )2 = π

λ1 + λ2
exp−i

(
λ1λ2

λ1 + λ2
(xL − zL)2

)
, (32c)

∫

R2

d2xL
[
e−ix2Lλ1,

(
i∂±e−ix2Lλ1

)]
e−ix2Lλ2eiqL ·xL = π

λ1 + λ2

[
1,

λ1q±
λ1 + λ2

]
exp

i q2L
4(λ1 + λ2)

. (32d)

The parameterization of transverse momenta leads to

M2
1

ξ
+ M2

2

1 − ξ
= m2 + ( p⊥ξ + k⊥)2

ξ
+ m2 + ( p⊥(1 − ξ) − k⊥)2

1 − ξ
= m2 + k2⊥

ξ(1 − ξ)
+ p2⊥. (33)

Acknowledgments We would like to thank the organizers of the LC2015 Workshop for all their efforts and hospitality.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1. Chang, S.-J., Yan, T.-M.: Quantum field theories in the infinite-momentum frame. II. Scattering matrices of scalar and Dirac
fields. Phys. Rev. D 7, 1147–1161 (1973)

2. Brodsky, S.J., Pauli, H.-C., Pinsky, S.: Quantum chromodynamics and other field theories on the light cone. Phys. Lett. C
(Phys. Rep.) 301, 299–486 (1998)

3. Przeszowski, J.A.: Lorentz symmetry for the light-front Wightman functions. Acta Phys. Pol. Proc. Suppl. B 6, 327–333
(2013)

4. Convery, M.E., Taylor, C.C., Jun, J.W.: Vacuum structure, zero modes, and the effective potential in light-cone quantization.
Phys. Rev. D 51, 4445–4450 (1995)

5. Melikhov, D., Simula, S.: End-point singularities of Feynman graphs on the light cone. Phys. Lett. B 556, 135–141 (2003)
6. Heinzl, T.: Alternative approach to light-front perturbation theory. Phys. Rev. D 75, 025013 (2007)
7. Bassetto, A.: Free vector propagator in the light-cone gauge and the Mandelstam-Leibbrandt prescription. Phys. Rev. D 46,

3676–3677 (1992)
8. Bakker, B.L.G., DeWitt, M.A., Ji, C.-R., Mischenko, Y.: Restoring the equivalence between the light-front and manifestly

covariant formalisms. Phys. Rev. D 72, 076005 (2005)
9. Sales, J.H.O., Frederico, T., Carlson, B.V., Sauer, P.U.: Light-front Bethe-Salpeter equation. Phys. Rev. C 61, 044003 (2000)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Light-Front Perturbation Without Spurious Singularities
	Abstract
	1 Introduction
	2 Novel LF Representation of Propagator and Convolutions of Propagators
	3 One Loop 2-Point Diagrams
	4 Conclusions and Prospects
	Appendix: Definitions and Useful Formulas
	Acknowledgments
	References




