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Abstract We have recently constructed two very successful n-9Be optical potentials (Bonaccorso and Charity
in Phys Rev C89:024619, 2014). One by the Dispersive OpticalModel (DOM)method and the other (AB) fully
phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary
parts. This featuremakes themparticularly suitable to build a single-folded (light-) nucleus-9Beoptical potential
by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.
anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon–
nucleon cross-sections can be used also to obtain a neutron and/or proton-9Be imaginary folding potential. We
will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain
both a n-9Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report
on the cases of 8B, 8Li and 8C projectiles. Our approach could be the basis for a systematic study of optical
potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of
other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those
cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description,
in particular its localization.

The work of R.J. Charity was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under
Award No. DE-FG02-87ER-4036.

A. Bonaccorso (B)
INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
E-mail: bonac@df.unipi.it

F. Carstoiu
Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania

R. J. Charity
Department of Chemistry, Washington University, St. Louis, MO 63130, USA

R. Kumar
Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal,
Sonepat, Haryana 131039, India

G. Salvioni
Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

Present address
G. Salvioni
Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014 Jyvaskyla, Finland

http://www.phy.anl.gov/theory/research/density/
http://www.phy.anl.gov/theory/research/density/
http://www.phy.anl.gov/theory/research/density/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00601-016-1082-4&domain=pdf


332 A. Bonaccorso et al.

1 Introduction

Light exotic nuclei have been studied extensively in the last thirty years and their structure was first enlightened
from measurements of the total reaction cross sections analyzed in terms of the Glauber model [1]. This
lead automatically to calculations of imaginary parts of the nucleus-nucleus optical potential in the folding
model. Such a procedure, although very simple, is questionable because the folding model is first order in the
nucleon-nucleon interaction, while the Feshbach imaginary potential is second order for a real nucleon-nucleon
interaction. Furthermore for light projectiles on light targets the optical model itself has to be handled with
great care.

In the following we will present simple ideas to overcome the above difficulties. First we will show that
an “all order” potential can be obtained if, instead of using a double folding model, one uses a single folding
model in which a microscopic projectile density is folded with a phenomenological n-target optical potential
and explicit breakup channels of the projectile can be introduced via a small additional surface term.

The potentials thus obtained will be used to calculate S-matrices and total reaction cross sections for the
systems 8Li-9Be and 8B-9Be forwhich experimental data exist. The comparisonbetweenourmodel calculations
and the data will show that the procedure leads to encouraging results which could have interesting applications
in knockout formalisms as well.

2 Nucleus-Nucleus Optical Potential

In the Glauber description of nucleus-nucleus scattering the reaction cross section is given by

σR =
∞∫

0

db
(
1 − |SNN (b)|2) (1)

where
|SNN (b)|2 = e2χI (b) (2)

can be interpreted as the probability that the scattering is elastic for a given impact parameter.
At low energy, it is important to take into account the Coulomb deflection. In this case, the impact parameter

can be substituted by the distance of closest approach in the S-matrix calculation b→ b′ = ac + √
a2c + b2,

with ac the Coulomb-length parameter.
The imaginary part of the eikonal phase shift can be written as

χI (b) = 1

h̄v

∫
dz W NN (b, z)

= 1

h̄v

∫
dz

∫
db1 WnN (b1 − b, z)

∫
dz1 ρ(b1, z1) (3)

where WNN is negative defined and

WNN (r) =
∫

dr1WnN (r1 − r)ρ(r1) (4)

is the imaginary part of the single-folded optical potential given in terms of the nucleon-nucleus optical potential
WnN (r) and the matter density ρ(b1, z1) of the other nucleus. In the single-folding method WnN (r) can be
the imaginary part of a phenomenological nucleon-target potential such as the (DOM) or the (AB) potentials
of Ref. [2]. However, WNN can also be obtained from the double-folding method using microscopic densities
ρp,t (r) for the projectile and target respectively and an energy dependent nucleon-nucleon cross section σnn ,
i.e,

WNN (r) = −1

2
h̄vσnn

∫
db1 ρp(b1 − b, z)

∫
dz1 ρt (b1, z1). (5)

Here

WnN (r) = −1

2
h̄vσnnρt (r). (6)
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would be a single-folded zero-range n-target imaginary potential and v is the nucleon-target velocity of relative
motion. This equation shows that the WnN potential has the same range as the target density because σnn is a
simple scaling factor and does not contain much dynamical effects.

In this case, the phase shift becomes:

χI (b) = −1

2
σnn

∫
db1

∫
dz ρ(b1 − b, z)

∫
dz1 ρ(b1, z1). (7)

A finite range potential can also be defined as:

WNN (r) = −1

2
h̄v

∫
dr1dr2 ρp(r1) ρt (r2)vnn(r1 + r − r2) (8)

Where vnn can be a finite-range or zero-range Gogny or M3Y or phenomenological nucleon-nucleon inter-
action. Equation (8) can give reasonable potentials whose imaginary parts need however to be renormalized
most of the times.

In this paper we will: (i) first compare the characteristics of the imaginary potentials from Ref. [2] with
those of the potential obtained from Eq. (6) with the 9Be density from Ref. [3]; (ii) calculate Eq. (3) with the
potentials of Ref. [2] and Eq. (5) with the microscopic densities; (iii) compare the respective S-matrices from
Eq. (2) and obtain the strong absorption radii Rs defined as |SNN (Rs)|2 = 1

2 ; (iv) calculate the reaction cross
sections obtained from Eq. (1).

3 n-9Be Imaginary Potential

In this section we compare the (DOM) and (AB) potentials with the potential from Eq. (6). Figure 1 shows on
the LHS, the neutron-9Be imaginary potential at 100MeV. The blue full curve, is the (AB) potential from Ref.
[2] while the dotted curves are from Eq. (6) using 9Be density from Ref. [3,4]. The red curve was obtained
using σnp while the blue curve with σpp for which we used the parametrized form given in Ref. [5]. The
RHS is the same as the LHS but at an energy of 40MeV. The red full curve is the (DOM) potential from Ref.
[2]. This figure shows that both “phenomenological” potentials (DOM) and (AB) are dominated by surface
components and have a longer range than the folded potential, although the latter is obtained from a realistic
density. For example at 40MeV we get < r2 >1/2 = 2.72 fm for the (AB) potential and < r2 >1/2 = 3.12 fm
for the (DOM) potential while the folded potential gives < r2 >1/2 = 2.41 fm. Notice also that the 9Be density
from Ref. [3] provides< r2 >1/2 = 2.42 fm while the charge distribution r.m.s. from Ref. [6] is 2.519 fm. Thus
it is clear that a folded potential is affected by the ambiguities discussed in Ref. [7] related to the choice of
the nucleon-nucleon cross section, but what is most important at least for a light, very deformed nucleus like
9Be, it will miss the strong dynamical effect, contained instead in a phenomenological potential, of a surface
dominance and a longer range.

Fig. 1 (Color online) LHS: Absolute values of neutron-9Be imaginary potential at 100MeV. Blue full curve, (AB) potential from
Ref. [2]. Dotted curves from Eq. (6) using 9Be density from Ref. [3]. Red with σnp , blue with σpp . RHS: Same as LHS but at 40
MeV. The red full curve is the (DOM) potential from Ref. [2]
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4 Nucleus-9Be Imaginary Potential

In this section we discuss nucleus-nucleus imaginary potentials for scattering of light exotic nuclei on a 9Be
target. Already in the seminal paper by Satchler and Love [8] on the folding model for 9Be scattering, the
authors found evidence of anomalously large deformation and surface effects, which is consistent with the
results of [2]. However one characteristic of a folded potential is that its radial shape is determined solely
by those of the densities used. As such the distinction of surface and volume terms and in particular their
respective contribution, which is strongly energy dependent, as shown by phenomenological potentials, cannot
be reproduced. Indeed when experimental data are available, this problem is often solved by renormalizing
the folded potential so that it would reproduce the data. But dynamical aspects of surface reactions which are
typical and very relevant for light nuclei would be difficult to reproduce by a folded potential which then cannot
have any predictive power. We will show in the following that a better way to determine the imaginary part of
a nucleus-nucleus potential for light exotic ions is to make a single folding calculation using one density and
one nucleon-nucleus phenomenological potential, provided the latter is available from a fit to experimental
data. The accuracy of such a procedure can be checked by using the potentials to calculate total reaction cross
sections, whose experimental values are now available in many cases. Such cross sections will be reproduced,
in the eikonal approximation, without renormalizing the potential at energies larger than about 80A.MeV [9].
Thus it appears that the energy dependence of the n-nucleus potential is enough to provide the correct energy
dependence of the nucleus-nucleus potential, which will then have an accurate predictive power.

We will study a series of potentials and calculate the reaction cross sections obtained by using them, for
scattering of light exotic nuclei on a 9Be target. The double folding will be calculated by using VMC densities.
Calculations with HF densities, and the JLM method will be presented elsewhere [9]. On the other hand we
will fold the (DOM) and (AB) potentials of Ref. [2] with the same VMC densities used in the double folding
and compare the results. This procedure will suggest ways to determine the “strong absorption radius” for the
core-target elastic scattering in one-nucleon knockout reactions and thus to constraint the core-target S-matrix
Sct which is a very relevant quantity in the calculation of the absolute cross sections and in the extraction of
the “experimental” spectroscopic factors.

First we show in Fig. 2, (LHS), the 8B-9Be cases at 65AMeV. The starting points are the n-9Be potentials
shown in the RHS of Fig. 1 and the 8B density from Ref. [3,4]. The full blue and red dot-dashed curves
are obtained with the (AB) and (DOM) potentials respectively while the green curve is obtained from the
double-folded potential, Eq. (5), where σpp was used. The corresponding r.m.s. radii are < r2 >1/2 = 3.66,
3.87, 3.36 fm. On the other hand the r.m.s. of the total densities used are < r2 >1/2 = 2.34, 2.66 fm for 8B
and 8C respectively. On the (RHS) we show the corresponding impact parameter dependence of |SNN |2 which
have Rs = 5.38, 5.14 and 4.8 fm respectively according to the following parametrization:

SNN = exp (− ln 2 exp((Rs − b)/a)) (9)

with a diffuseness like parameter a = 0.65 fm, and Rs the strong absorption radius.
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Fig. 2 (Color online) LHS: 8B-9Be folding potentials. Obtained with 8B density from Ref. [3]. The blue full curve and red
dot-dashed curve are obtained with the (AB) and (DOM) potentials respectively for n-9Be while the green dashed curve is the
double-folded potential, Eq. (5) where σpp was used. RHS: |SNN |2 corresponding to the potentials on the LHS. The orange full
curve is for a ’8C’ projectile
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Table 1 Energy dependent strong absorption radii and calculated total reaction cross sections compared to experimental values
from Refs. [10,11] for 8Li+9Be and 8B+8Be

Elab σexp(8Li) σth Elab σexp(8B) σth Rs rs
(AMeV) (mb) (mb) (AMeV) (mb) (mb) (fm) (fm)

40.9 1124±15 990–1132 37.5 1306±13 996–1281 5.55 1.36
60.9 1002±15 930–1011 60.2 1087±24 935–1096 5.35 1.31
86.3 856±17 869 5.20 1.27
96.8 816±14 847 5.05 1.24
105.4 781±13 829 4.95 1.21

The upper values (RHS) in the two columns σth are obtained with a surface correction to the folded potential

Due to the energy dependence of the optical potential, the strong absorption radius is also energy dependent.
It is customary to parametrize such as a dependence as

Rs = rs(Einc)
(
A1/3
p + A1/3

t

)
. (10)

It is interesting to see that although the potentials on the (LHS) of Fig. 2 are evidently very different, their
r.m.s. radii are quite close to each other. However the corresponding strong absorption radii are very different
from each other and would give large differences in the absolute knockout cross section.

The orange curve on the (RHS) of Fig. 2 is for a ’8C’ projectile. It can be parametrized according to Eq. (9)
with Rs = 5.45 fm and a = 0.85 fm. It is interesting to see in this case how the large values of the parameters
of the S-matrix reflect the “unbound” nature of 8C and thus the extreme peripheral nature of the reactions
involving it.

It is useful to compare our results with existing experimental data from Refs. [10,11] in which reaction
cross sections for 8B-9Be and 8Li-9Be have been measured and density distributions have been extracted using
a Glauber model. These data point out to a different density distribution for 8B and 8Li in contrast to the
expectation from isospin symmetry that they should be the same. Our calculated values are given in Table 1
and they are in very good agreement with both the absolute values of the experimental cross sections and their
energy dependence at all but the two lowest energies. We notice that at such energies the loosely bound nature
of the projectiles would provide a Dynamical Polarization Potential representing the valence nucleon breakup
channel. Since the foldingmodel misses such a term, we have added a surface potential with very small strength
(0.6 and 0.4MeV for 8B and 0.3 and 0.2MeV for 8Li), the radius has been taken equal to 3.7 fm in both cases
while the diffuseness has been taken large, following the prescription of [12] and equal to 1/(2

√
2mSp,n/h̄)

which gives 2.95 and 1.6 fm respectively for 8B and 8Li. In this way we have obtained the cross sections given
as the upper values (and RHS) in the columns σth . The agreement with the experimental cross sections is now
quite amazing and it suggests that this would be an interesting way to consider for further improvements to
the folding model.

5 Conclusions

In this short contribution we have presented some preliminary results obtained using new ideas to improve
the calculation of the nucleus-nucleus imaginary potential, the corresponding S-matrices and total reaction
cross sections. We have been concerned concerned with light exotic nuclei for which the optical model and,
in particular, the folding-model version of it needs careful handling and a good understanding of the reaction
channels involved. We have improved the existing formalisms by using a single folding model in which the
n-9Be target potential has been taken from a phenomenological fit to data over a large range of energies [2].
Projectile densities have been taken from very accurate microscopic ab-initio calculations [3]. Finally when
necessary, we have introduced a semi-microscopic surface term according to [12]. The results are extremely
encouraging and a full systematic study along these lines is in progress.

References

1. Tanihata, I.: Neutron Halo Nuclei. J. Phys. G Nucl. Part. Phys. 22, 157 (1996)



336 A. Bonaccorso et al.

2. Bonaccorso, A., Charity, R.J.: Optical potential for the n-9Be reaction. Phys. Rev. C 89, 024619 (2014)
3. Wiringa, R.B.: http://www.phy.anl.gov/theory/research/density/
4. Pieper, S.C., Wiringa, R.B.: Quantum Monte Carlo Calculations of Light Nuclei. Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)
5. Xiangzhou, C., Jun, F., Wenqing, S., Yugang, M., Jiansong, W., Wei, Y.: In-medium nucleon-nucleon cross section and its

effect on total nuclear reaction cross section. Phys. Rev. C 58, 572 (1998)
6. De Vries, H., De Jager, C.W., De Vries, C.: Nuclear charge-density-distribution parameters from elastic electron scattering.

At. Data Nucl. Data Tables 36, 495–536 (1987)
7. Bertulani, C.A., De Conti, C.: Pauli blocking and medium effects in nucleon knockout reactions. Phys. Rev. C 81, 064603

(2010)
8. Satchler, G.R., Love, W.G.: Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183

(1979)
9. Bonaccorso et al., A.: (in preparation)

10. Fan, G.W., et al.: Structure of Li8 from a reaction cross-section measurement. Phys. Rev. C 90, 044321 (2014)
11. Fukuda, M., et al.: Density distribution of 8B studied via reaction cross sections. Nucl. Phys. A 656, 209 (1999)
12. Bonaccorso, A., Carstoiu, F.: Optical potentials of halo and weakly bound nuclei. Nucl. Phys. A 706, 322 (2002)

http://www.phy.anl.gov/theory/research/density/

	Differences Between a Single- and a Double-Folding Nucleus-9Be Optical Potential 
	Abstract
	1 Introduction
	2 Nucleus-Nucleus Optical Potential
	3 n-9Be Imaginary Potential
	4 Nucleus-9Be Imaginary Potential
	5 Conclusions
	References




